organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­fluoro-2,2′-[imidazolidine-1,3-diylbis(methyl­ene)]diphenol

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No.45-03, Bogotá, Código Postal 111321, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 20 September 2012; accepted 23 September 2012; online 29 September 2012)

In the title compound, C17H18F2N2O2, the imidazolidine ring system exists in a twist conformation. The mean plane through this ring system forms dihedral angles of 80.8 (8)° and 66.2 (13)°, with the benzene rings. The dihedral angle between the benzene rings is 52.0 (14)°. Two intra­molecular O—H⋯N hydrogen bonds each generate S(6) ring motifs. In the crystal, weak C—H⋯O hydrogen bonds form dimers, which are connected by further C—H⋯O inter­actions.

Related literature

For related structures, see: Rivera et al. (2011[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2581.], 2012[Rivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o170-o171.]). For the preparation of the title compound, see: Rivera et al. (1993[Rivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1993). Synth. Commun. 23, 2921-2929.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the involvement of organo halides in hydrogen bonds, see: Rathore et al. (2011[Rathore, R. S., Karthikeyan, N. S., Alekhya, Y., Sathiyanarayanan, K. & Aravindan, P. G. (2011). J. Chem. Sci. 123, 403-409.]); Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]); Chopra & Guru Row (2005[Chopra, D. & Guru Row, T. N. (2005). J. Mol. Struct. 733, 133-141.]). For the extinction correction used, see: Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18F2N2O2

  • Mr = 320.3

  • Monoclinic, P 21 /n

  • a = 9.5952 (2) Å

  • b = 9.7018 (2) Å

  • c = 16.2065 (3) Å

  • β = 99.4807 (17)°

  • V = 1488.07 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.94 mm−1

  • T = 120 K

  • 0.35 × 0.22 × 0.21 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.123, Tmax = 1

  • 35554 measured reflections

  • 2669 independent reflections

  • 2452 reflections with I > 3σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.108

  • S = 2.21

  • 2669 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.937 (16) 1.756 (16) 2.6413 (12) 156.2 (14)
O2—H2⋯N1 0.903 (16) 1.821 (15) 2.6579 (12) 153.2 (13)
C11—H1c11⋯O1i 0.96 2.44 3.4001 (13) 174.43
C17—H2c17⋯O1ii 0.96 2.55 3.4837 (13) 166
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Among the various types of intermolecular interactions, the hydrogen bond is, without doubt, the most important one. Organic halide compounds have attracted much attention due to the role of weak intermolecular C—H···X interactions in supramolecular assembly (Rathore et al. 2011, Steiner 2002). In recent literature, the importance of interactions involving fluorine as possible tools in crystal engineering has been explored in greater detail (Chopra & Guru Row, 2005). With the purpose to understand its effects in Mannich bases, we turn our attention to title compound (I) because fluorine is also able to form non-classical intermolecular C–H···F hydrogen bonds. In this study, we describe the crystal structure of the title compound, 4,4'-difluoro-2,2'-[imidazolidine-1,3-diylbis(methylene)]diphenol.

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles of (I) are within normal ranges and are comparable to those related structures (Rivera et al., 2011, 2012). As observed in related structures (Rivera et al., 2011, 2012). The imidazoline ring adopts a twist conformation, Q2 = 0.4008 (13) Å and φ2 = 51.81 (18)° (Cremer & Pople, 1975), with a twist about the N2 —C14 bond. In order to reduce steric congestion, the benzene rings have different orientations with respect to the central imidazolidine ring. Thus, one p-fluoro-substituted benzene ring (C1/C2/C5/C10/C6/C17)is approximately orthogonal to the mean plane of the imidazolidine ring defined by N1, C13 and C9, making a dihedral angle of 80.82 (79)°, whereas the other ring (C3/C4/C7/C13/C16/C12) forms a dihedral angle of 66.18 (130)°. The dihedral angle between the benzene rings is 52.04 (136)°. There are two intramolecular hydrogen bonds between the phenolic hydroxyl groups and the nitrogen atoms with graph-set motif S(6) (Bernstein et al., 1995).

The results demonstrate, that not only the packing in (I) is governed by weak C—H···O hydrogen bonds (Table 1), resulting in a hydrogen bonded dimer, which is connected by further C—H···O interactions, but also that fluorine does not participate in any intermolecular interactions. Similarly, in ortho-F and ortho-Cl substituted analogs (Rivera et al., 2012, 2011), the halogen fails to participate in any non-bonded interaction.

Related literature top

For related structures, see: Rivera et al. (2011, 2012). For the preparation of the title compound, see: Rivera et al. (1993). For standard bond lengths, see: Allen et al. (1987). For ring conformations, see Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995). For the involvement of organo halides in hydrogen bonds, see: Rathore et al. (2011); Steiner (2002); Chopra & Guru Row (2005). For the extinction correction used, see: Becker & Coppens (1974).

Experimental top

For the originally reported synthesis of the title compound, see: Rivera et al. (1993). Crystals suitable for X-ray diffraction were obtained from chloroform with a few drops of MeOH upon slow evaporation of the solvents over 3 days at room temperature.

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice H atoms bonded C atoms were kept in ideal positions with C—H distance 0.96 Å during the refinement. The hydroxyl H atoms were found in difference Fourier maps and their coordinates were refined freely. All H atoms were refined with displacement displacement coefficients Uiso(H) set to 1.5Ueq(C, O) for methyl and hydroxyl groups and to to 1.2Ueq(C) for the CH— and CH2— groups.

Structure description top

Among the various types of intermolecular interactions, the hydrogen bond is, without doubt, the most important one. Organic halide compounds have attracted much attention due to the role of weak intermolecular C—H···X interactions in supramolecular assembly (Rathore et al. 2011, Steiner 2002). In recent literature, the importance of interactions involving fluorine as possible tools in crystal engineering has been explored in greater detail (Chopra & Guru Row, 2005). With the purpose to understand its effects in Mannich bases, we turn our attention to title compound (I) because fluorine is also able to form non-classical intermolecular C–H···F hydrogen bonds. In this study, we describe the crystal structure of the title compound, 4,4'-difluoro-2,2'-[imidazolidine-1,3-diylbis(methylene)]diphenol.

The molecular structure and atom-numbering scheme for (I) are shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles of (I) are within normal ranges and are comparable to those related structures (Rivera et al., 2011, 2012). As observed in related structures (Rivera et al., 2011, 2012). The imidazoline ring adopts a twist conformation, Q2 = 0.4008 (13) Å and φ2 = 51.81 (18)° (Cremer & Pople, 1975), with a twist about the N2 —C14 bond. In order to reduce steric congestion, the benzene rings have different orientations with respect to the central imidazolidine ring. Thus, one p-fluoro-substituted benzene ring (C1/C2/C5/C10/C6/C17)is approximately orthogonal to the mean plane of the imidazolidine ring defined by N1, C13 and C9, making a dihedral angle of 80.82 (79)°, whereas the other ring (C3/C4/C7/C13/C16/C12) forms a dihedral angle of 66.18 (130)°. The dihedral angle between the benzene rings is 52.04 (136)°. There are two intramolecular hydrogen bonds between the phenolic hydroxyl groups and the nitrogen atoms with graph-set motif S(6) (Bernstein et al., 1995).

The results demonstrate, that not only the packing in (I) is governed by weak C—H···O hydrogen bonds (Table 1), resulting in a hydrogen bonded dimer, which is connected by further C—H···O interactions, but also that fluorine does not participate in any intermolecular interactions. Similarly, in ortho-F and ortho-Cl substituted analogs (Rivera et al., 2012, 2011), the halogen fails to participate in any non-bonded interaction.

For related structures, see: Rivera et al. (2011, 2012). For the preparation of the title compound, see: Rivera et al. (1993). For standard bond lengths, see: Allen et al. (1987). For ring conformations, see Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995). For the involvement of organo halides in hydrogen bonds, see: Rathore et al. (2011); Steiner (2002); Chopra & Guru Row (2005). For the extinction correction used, see: Becker & Coppens (1974).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Intramolecular hydrogen bonds are drawn as dashed lines.
4,4'-Difluoro-2,2'-[imidazolidine-1,3-diylbis(methylene)]diphenol top
Crystal data top
C17H18F2N2O2F(000) = 672
Mr = 320.3Dx = 1.429 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2yabcCell parameters from 21321 reflections
a = 9.5952 (2) Åθ = 4.6–67.0°
b = 9.7018 (2) ŵ = 0.94 mm1
c = 16.2065 (3) ÅT = 120 K
β = 99.4807 (17)°Polygon shape, white
V = 1488.07 (5) Å30.35 × 0.22 × 0.21 mm
Z = 4
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
2669 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2452 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.3784 pixels mm-1θmax = 67.1°, θmin = 5.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1111
Tmin = 0.123, Tmax = 1l = 1919
35554 measured reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F > 3σ(F)] = 0.031Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
wR(F) = 0.108(Δ/σ)max = 0.009
S = 2.21Δρmax = 0.19 e Å3
2669 reflectionsΔρmin = 0.17 e Å3
215 parametersExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 900 (400)
66 constraints
Crystal data top
C17H18F2N2O2V = 1488.07 (5) Å3
Mr = 320.3Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.5952 (2) ŵ = 0.94 mm1
b = 9.7018 (2) ÅT = 120 K
c = 16.2065 (3) Å0.35 × 0.22 × 0.21 mm
β = 99.4807 (17)°
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
2669 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2452 reflections with I > 3σ(I)
Tmin = 0.123, Tmax = 1Rint = 0.025
35554 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0310 restraints
wR(F) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 2.21Δρmax = 0.19 e Å3
2669 reflectionsΔρmin = 0.17 e Å3
215 parameters
Special details top

Experimental. CrysAlisPro, Agilent, 2010

Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.58488 (7)0.98624 (8)0.11639 (4)0.0290 (2)
F20.02275 (8)0.97367 (8)0.76918 (5)0.0339 (3)
O10.37960 (8)0.95183 (9)0.53830 (5)0.0225 (3)
O20.14871 (8)1.28848 (8)0.20259 (5)0.0238 (3)
N10.25088 (9)1.23815 (10)0.36231 (6)0.0205 (3)
N20.32537 (9)1.21463 (10)0.50457 (5)0.0193 (3)
C10.30030 (12)1.22156 (12)0.59151 (7)0.0211 (3)
C20.25940 (11)1.21368 (11)0.18359 (7)0.0203 (3)
C30.45165 (11)1.05403 (12)0.21953 (7)0.0210 (3)
C40.39919 (12)1.14642 (12)0.07918 (7)0.0245 (3)
C50.33984 (11)1.12752 (12)0.24310 (6)0.0195 (3)
C60.28663 (11)0.96039 (12)0.59366 (7)0.0196 (3)
C70.24230 (11)1.08848 (12)0.62013 (6)0.0189 (3)
C80.15072 (11)1.09088 (12)0.67872 (7)0.0217 (3)
C90.40565 (12)1.33344 (13)0.48144 (7)0.0248 (3)
C100.14906 (12)0.84193 (13)0.68378 (7)0.0239 (3)
C110.29049 (12)1.22389 (12)0.10290 (7)0.0236 (3)
C120.23894 (11)0.83887 (12)0.62461 (7)0.0222 (3)
C130.36823 (12)1.33886 (12)0.38570 (7)0.0240 (4)
C140.19724 (11)1.21598 (12)0.44037 (6)0.0206 (3)
C150.47692 (11)1.06297 (12)0.13855 (7)0.0223 (3)
C160.10847 (12)0.96840 (13)0.70989 (7)0.0241 (4)
C170.30169 (11)1.10785 (12)0.32918 (7)0.0211 (3)
H1c10.2358011.2953430.5970240.0253*
H2c10.3869451.244080.6276480.0253*
H1c30.5107210.9974910.259540.0251*
H1c40.4195021.1508880.0231840.0294*
H1c80.117481.1770840.6971310.026*
H1c90.5049521.3161250.4973070.0297*
H2c90.3728581.4158830.5048260.0297*
H1c100.1163510.7581910.7057130.0286*
H1c110.2364481.2849330.0633170.0283*
H1c120.268250.7518860.6050190.0266*
H1c130.3358671.4297150.3686340.0288*
H2c130.4485561.3107470.3615060.0288*
H1c140.1517111.1276920.4388430.0247*
H2c140.1384271.2922310.4503220.0247*
H1c170.2297091.0385650.3267990.0253*
H2c170.3827371.0749350.366750.0253*
H20.1570 (14)1.2826 (15)0.2588 (10)0.0286*
H10.3808 (15)1.0424 (16)0.5183 (9)0.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0325 (4)0.0281 (4)0.0293 (4)0.0037 (3)0.0133 (3)0.0034 (3)
F20.0408 (4)0.0331 (5)0.0338 (4)0.0006 (3)0.0235 (3)0.0031 (3)
O10.0263 (4)0.0211 (5)0.0221 (4)0.0031 (3)0.0096 (3)0.0006 (3)
O20.0268 (4)0.0238 (5)0.0209 (4)0.0045 (3)0.0038 (3)0.0029 (3)
N10.0247 (5)0.0200 (5)0.0177 (4)0.0002 (4)0.0061 (4)0.0010 (4)
N20.0211 (4)0.0196 (5)0.0177 (5)0.0005 (4)0.0045 (3)0.0005 (3)
C10.0263 (5)0.0200 (6)0.0173 (5)0.0004 (4)0.0045 (4)0.0016 (4)
C20.0231 (5)0.0168 (6)0.0207 (5)0.0026 (4)0.0027 (4)0.0006 (4)
C30.0240 (5)0.0170 (6)0.0214 (6)0.0024 (4)0.0025 (4)0.0008 (4)
C40.0313 (6)0.0247 (6)0.0183 (5)0.0058 (5)0.0067 (4)0.0015 (4)
C50.0234 (5)0.0172 (6)0.0175 (5)0.0027 (4)0.0028 (4)0.0008 (4)
C60.0191 (5)0.0235 (6)0.0155 (5)0.0010 (4)0.0011 (4)0.0003 (4)
C70.0210 (5)0.0207 (6)0.0143 (5)0.0003 (4)0.0011 (4)0.0007 (4)
C80.0250 (5)0.0221 (6)0.0183 (5)0.0029 (5)0.0046 (4)0.0010 (4)
C90.0281 (6)0.0228 (6)0.0242 (6)0.0056 (5)0.0063 (4)0.0009 (4)
C100.0266 (6)0.0227 (6)0.0222 (6)0.0022 (5)0.0038 (4)0.0035 (4)
C110.0292 (6)0.0215 (6)0.0193 (5)0.0027 (5)0.0015 (4)0.0028 (4)
C120.0261 (6)0.0199 (6)0.0201 (5)0.0020 (4)0.0022 (4)0.0014 (4)
C130.0290 (6)0.0206 (6)0.0236 (6)0.0023 (5)0.0081 (4)0.0017 (4)
C140.0212 (5)0.0221 (6)0.0189 (5)0.0012 (4)0.0044 (4)0.0013 (4)
C150.0248 (5)0.0190 (6)0.0244 (6)0.0028 (4)0.0075 (4)0.0042 (4)
C160.0245 (5)0.0295 (7)0.0199 (5)0.0006 (5)0.0081 (4)0.0005 (5)
C170.0261 (5)0.0198 (6)0.0177 (5)0.0020 (4)0.0047 (4)0.0025 (4)
Geometric parameters (Å, º) top
F1—C151.3706 (14)C4—H1c40.96
F2—C161.3648 (15)C5—C171.5116 (16)
O1—C61.3680 (14)C6—C71.4034 (16)
O1—H10.937 (16)C6—C121.3879 (16)
O2—C21.3628 (14)C7—C81.3962 (16)
O2—H20.903 (16)C8—C161.3780 (17)
N1—C131.4919 (14)C8—H1c80.96
N1—C141.4581 (15)C9—C131.5348 (15)
N1—C171.4867 (15)C9—H1c90.96
N2—C11.4694 (14)C9—H2c90.96
N2—C91.4689 (15)C10—C121.3916 (17)
N2—C141.4741 (13)C10—C161.3750 (17)
C1—C71.5089 (16)C10—H1c100.96
C1—H1c10.96C11—H1c110.96
C1—H2c10.96C12—H1c120.96
C2—C51.4070 (14)C13—H1c130.96
C2—C111.3918 (16)C13—H2c130.96
C3—C51.3928 (16)C14—H1c140.96
C3—C151.3761 (16)C14—H2c140.96
C3—H1c30.96C17—H1c170.96
C4—C111.3902 (17)C17—H2c170.96
C4—C151.3789 (15)
C6—O1—H1102.5 (10)N2—C9—H2c9109.47
C2—O2—H2104.6 (9)C13—C9—H1c9109.47
C13—N1—C14103.64 (8)C13—C9—H2c9109.47
C13—N1—C17111.71 (9)H1c9—C9—H2c9114.55
C14—N1—C17111.82 (9)C12—C10—C16118.04 (11)
C1—N2—C9112.60 (8)C12—C10—H1c10120.98
C1—N2—C14115.28 (9)C16—C10—H1c10120.98
C9—N2—C14102.96 (8)C2—C11—C4120.53 (10)
N2—C1—C7112.49 (9)C2—C11—H1c11119.73
N2—C1—H1c1109.47C4—C11—H1c11119.73
N2—C1—H2c1109.47C6—C12—C10120.64 (11)
C7—C1—H1c1109.47C6—C12—H1c12119.68
C7—C1—H2c1109.47C10—C12—H1c12119.68
H1c1—C1—H2c1106.28N1—C13—C9105.99 (9)
O2—C2—C5121.43 (10)N1—C13—H1c13109.47
O2—C2—C11118.03 (9)N1—C13—H2c13109.47
C5—C2—C11120.53 (10)C9—C13—H1c13109.47
C5—C3—C15119.60 (10)C9—C13—H2c13109.47
C5—C3—H1c3120.2H1c13—C13—H2c13112.74
C15—C3—H1c3120.2N1—C14—N2103.95 (8)
C11—C4—C15117.95 (11)N1—C14—H1c14109.47
C11—C4—H1c4121.03N1—C14—H2c14109.47
C15—C4—H1c4121.03N2—C14—H1c14109.47
C2—C5—C3118.46 (10)N2—C14—H2c14109.47
C2—C5—C17121.24 (10)H1c14—C14—H2c14114.48
C3—C5—C17120.20 (9)F1—C15—C3118.37 (9)
O1—C6—C7121.16 (10)F1—C15—C4118.77 (10)
O1—C6—C12118.35 (10)C3—C15—C4122.85 (11)
C7—C6—C12120.48 (10)F2—C16—C8118.27 (11)
C1—C7—C6121.21 (10)F2—C16—C10118.96 (11)
C1—C7—C8120.01 (10)C8—C16—C10122.77 (11)
C6—C7—C8118.62 (10)N1—C17—C5111.70 (9)
C7—C8—C16119.41 (11)N1—C17—H1c17109.47
C7—C8—H1c8120.29N1—C17—H2c17109.47
C16—C8—H1c8120.29C5—C17—H1c17109.47
N2—C9—C13103.87 (9)C5—C17—H2c17109.47
N2—C9—H1c9109.47H1c17—C17—H2c17107.14
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.937 (16)1.756 (16)2.6413 (12)156.2 (14)
O2—H2···N10.903 (16)1.821 (15)2.6579 (12)153.2 (13)
C11—H1c11···O1i0.962.443.4001 (13)174.43
C17—H2c17···O1ii0.962.553.4837 (13)166
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC17H18F2N2O2
Mr320.3
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)9.5952 (2), 9.7018 (2), 16.2065 (3)
β (°) 99.4807 (17)
V3)1488.07 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.94
Crystal size (mm)0.35 × 0.22 × 0.21
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini ultra)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.123, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
35554, 2669, 2452
Rint0.025
(sin θ/λ)max1)0.598
Refinement
R[F > 3σ(F)], wR(F), S 0.031, 0.108, 2.21
No. of reflections2669
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: CrysAlis PRO (Agilent, 2010), SUPERFLIP (Palatinus & Chapuis, 2007), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.937 (16)1.756 (16)2.6413 (12)156.2 (14)
O2—H2···N10.903 (16)1.821 (15)2.6579 (12)153.2 (13)
C11—H1c11···O1i0.962.443.4001 (13)174.43
C17—H2c17···O1ii0.962.553.4837 (13)166
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+2, z+1.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work as well as the Praemium Academiae project of the Academy of Sciences of the Czech Republic. LSN thanks COLCIENCIAS for a fellowship.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationChopra, D. & Guru Row, T. N. (2005). J. Mol. Struct. 733, 133–141.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dusěk, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRathore, R. S., Karthikeyan, N. S., Alekhya, Y., Sathiyanarayanan, K. & Aravindan, P. G. (2011). J. Chem. Sci. 123, 403–409.  CSD CrossRef CAS Google Scholar
First citationRivera, A., Gallo, G. I., Gayón, M. E. & Joseph-Nathan, P. (1993). Synth. Commun. 23, 2921–2929.  CrossRef CAS Web of Science Google Scholar
First citationRivera, A., Nerio, L. S., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o170–o171.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRivera, A., Sadat-Bernal, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2581.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds