organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2,3-Di­methyl­anilino)pent-3-en-2-one

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
*Correspondence e-mail: ventergjs@ufs.ac.za

(Received 18 June 2012; accepted 10 September 2012; online 15 September 2012)

In the title compound, C13H17NO, the dihedral angle between the aryl ring and the amino­acryl­aldehyde mean plane [N—C=C—C=O; maximum deviation = 0.0144 (9) Å] is 53.43 (4)°. There is an intra­molecular N—H⋯O hydrogen bond involving the amine and carbonyl groups. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains propagating along [001].

Related literature

For background to the synthesis of the title compound, see: Shaheen et al. (2006[Shaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873-o874.]); Venter et al. (2010[Venter, G. J. S., Steyl, G. & Roodt, A. (2010). Acta Cryst. E66, o3011-o3012.]). For applications of rhodium compounds containing bidentate ligand systems, see: Pyżuk et al. (1993[Pyżuk, W., Krówczynsk, A. & Górecka, E. (1993). Mol. Cryst. Liq. Cryst. 237, 75-84.]); Tan et al. (2008[Tan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N.-T. (2008). Lab Chip, 8, 885-891.]); Xia et al. (2008[Xia, M., Wu, B. & Xiang, G. (2008). J. Fluor. Chem. 129, 402-408.]). For related rhodium enamino­ketonato complexes, see: Brink et al. (2010[Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572-5578.]); Damoense et al. (1994[Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10-13.]); Roodt & Steyn (2000[Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry. Vol. 2, pp. 1-23. Trivandrum, India: Transworld Research Network.]); Venter et al. (2009a[Venter, G. J. S., Steyl, G. & Roodt, A. (2009a). Acta Cryst. E65, m1321-m1322.],b[Venter, G. J. S., Steyl, G. & Roodt, A. (2009b). Acta Cryst. E65, m1606-m1607.]; 2012[Venter, G. J. S., Steyl, G. & Roodt, A. (2012). Acta Cryst. E68, m666-m667.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17NO

  • Mr = 203.28

  • Monoclinic, P 21 /c

  • a = 7.526 (3) Å

  • b = 12.450 (5) Å

  • c = 12.040 (4) Å

  • β = 90.243 (4)°

  • V = 1128.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.18 × 0.16 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.987, Tmax = 0.994

  • 20265 measured reflections

  • 2817 independent reflections

  • 2528 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.05

  • 2817 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.911 (15) 1.869 (15) 2.6348 (13) 140.2 (13)
C1—H1A⋯O1i 0.98 2.49 3.4599 (15) 173
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1992)[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1992). SIR92. University of Bari, Italy.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The β-diketone compound AcacH (acetylacetone; or when coordinated acetylacetonato, acac-) has been studied extensively, with a multitude of derivatives synthesized to date. One such derivative type, known as enaminoketones, containing N and O atoms as well as an unsaturated CC bond, and are of interest in various fields including liquid crystals (Pyżuk et al., 1993) and fluorescence studies (Xia et al., 2008). They also have significant application possibilities in medicine (Tan et al., 2008)] and catalysis (Roodt & Steyn, 2000; Brink et al., 2010).

The title compound (Fig. 1) is an enaminoketone derivative of 4-(phenylamino)pent-3-en-2-one (Shaheen et al., 2006). Bond distances in the the title compound differ significantly from those in compounds where the ligand is coordinated to rhodium (Venter et al., 2009a,b; 2012); Damoense et al., 1994), but it share characteristics with other enaminoketones of this type (Venter et al., 2010). The C2–C3 bond distance of 1.3849 (14) Å versus the C3–C4 distance of 1.4251 (13) Å indicates an unsaturated bond in the pentenone backbone. Here the intramolecular distance N1···O1 is 2.6348 (13) Å which is considerably less (~ 0.2 Å) than that observed when the ligand is coordinated to rhodium for example (Venter et al., 2009a,b; 2012; Damoense et al., 1994).

The intramolecular N-H···O hydrogen bond that is formed (Fig. 1 and Table 1) enhances the planarity of the aminopentenone moiety. The aminoacrylaldehyde mean plane [N1-C2C3-C4O1; maximum deviation = 0.0144 (9) Å] makes a dihedral angle of 53.43 (4)° with the C11-C16 benzene ring. This angle is dependent on the position of the substituents on the aromatic ring. Compounds with substituents in the ortho positions result in larger dihedral angles, while smaller angles are found for derivatives with substituents in the para position (Venter et al., 2009a,b; 2012).

In the crystal, there are C-H···O hydrogen bonds leading to the formation of chains propagating along [001] (Table 1 and Fig. 2).

Related literature top

For background to the synthesis of the title compound, see: Shaheen et al. (2006); Venter et al. (2010). For applications of rhodium compounds containing bidentate ligand systems, see: Pyżuk et al. (1993); Tan et al. (2008); Xia et al. (2008). For related rhodium enaminoketonato complexes, see: Brink et al. (2010); Damoense et al. (1994); Roodt & Steyn (2000); Venter et al. (2009a,b; 2012).

Experimental top

The title compound was prepared following the literature procedure (Shaheen et al., 2006; Venter et al., 2010).

Refinement top

The NH H atom was located in a difference Fourier map and freely refined. The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: C—H = 0.95 and 0.98 Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H atoms and = 1.2 for other H atoms. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors.

Structure description top

The β-diketone compound AcacH (acetylacetone; or when coordinated acetylacetonato, acac-) has been studied extensively, with a multitude of derivatives synthesized to date. One such derivative type, known as enaminoketones, containing N and O atoms as well as an unsaturated CC bond, and are of interest in various fields including liquid crystals (Pyżuk et al., 1993) and fluorescence studies (Xia et al., 2008). They also have significant application possibilities in medicine (Tan et al., 2008)] and catalysis (Roodt & Steyn, 2000; Brink et al., 2010).

The title compound (Fig. 1) is an enaminoketone derivative of 4-(phenylamino)pent-3-en-2-one (Shaheen et al., 2006). Bond distances in the the title compound differ significantly from those in compounds where the ligand is coordinated to rhodium (Venter et al., 2009a,b; 2012); Damoense et al., 1994), but it share characteristics with other enaminoketones of this type (Venter et al., 2010). The C2–C3 bond distance of 1.3849 (14) Å versus the C3–C4 distance of 1.4251 (13) Å indicates an unsaturated bond in the pentenone backbone. Here the intramolecular distance N1···O1 is 2.6348 (13) Å which is considerably less (~ 0.2 Å) than that observed when the ligand is coordinated to rhodium for example (Venter et al., 2009a,b; 2012; Damoense et al., 1994).

The intramolecular N-H···O hydrogen bond that is formed (Fig. 1 and Table 1) enhances the planarity of the aminopentenone moiety. The aminoacrylaldehyde mean plane [N1-C2C3-C4O1; maximum deviation = 0.0144 (9) Å] makes a dihedral angle of 53.43 (4)° with the C11-C16 benzene ring. This angle is dependent on the position of the substituents on the aromatic ring. Compounds with substituents in the ortho positions result in larger dihedral angles, while smaller angles are found for derivatives with substituents in the para position (Venter et al., 2009a,b; 2012).

In the crystal, there are C-H···O hydrogen bonds leading to the formation of chains propagating along [001] (Table 1 and Fig. 2).

For background to the synthesis of the title compound, see: Shaheen et al. (2006); Venter et al. (2010). For applications of rhodium compounds containing bidentate ligand systems, see: Pyżuk et al. (1993); Tan et al. (2008); Xia et al. (2008). For related rhodium enaminoketonato complexes, see: Brink et al. (2010); Damoense et al. (1994); Roodt & Steyn (2000); Venter et al. (2009a,b; 2012).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering. the displacement ellipsoids are drawn at the 50% probability displacement level. The intramolecular N—H···O hydrogen bond is shown as a yellow dashed line (see Table 1 for details).
4-(2,3-Dimethylanilino)pent-3-en-2-one top
Crystal data top
C13H17NOF(000) = 440
Mr = 203.28Dx = 1.197 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9978 reflections
a = 7.526 (3) Åθ = 2.7–28.4°
b = 12.450 (5) ŵ = 0.08 mm1
c = 12.040 (4) ÅT = 100 K
β = 90.243 (4)°Cuboid, colourless
V = 1128.1 (7) Å30.18 × 0.16 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2817 independent reflections
Radiation source: fine-focus sealed tube2528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 28.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 910
Tmin = 0.987, Tmax = 0.994k = 1616
20265 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.3712P]
where P = (Fo2 + 2Fc2)/3
2817 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H17NOV = 1128.1 (7) Å3
Mr = 203.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.526 (3) ŵ = 0.08 mm1
b = 12.450 (5) ÅT = 100 K
c = 12.040 (4) Å0.18 × 0.16 × 0.08 mm
β = 90.243 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2817 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2528 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.994Rint = 0.024
20265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
2817 reflectionsΔρmin = 0.24 e Å3
144 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06673 (13)0.30089 (8)0.27466 (8)0.0206 (2)
H1A0.14420.30690.340.031*
H1B0.03230.25250.29130.031*
H1C0.02020.3720.25520.031*
C20.17093 (11)0.25693 (7)0.17890 (7)0.01569 (19)
C30.15832 (12)0.14919 (7)0.15135 (7)0.01678 (19)
H30.0830.10470.19460.02*
C40.25242 (12)0.10152 (7)0.06148 (7)0.01660 (19)
C50.23616 (14)0.01799 (8)0.04301 (9)0.0233 (2)
H5A0.18410.03150.03040.035*
H5B0.15970.04910.10030.035*
H5C0.35420.0510.04720.035*
C110.29955 (12)0.43578 (7)0.13435 (7)0.01577 (19)
C120.27101 (11)0.50391 (7)0.04322 (7)0.01532 (19)
C130.30377 (12)0.61452 (7)0.05608 (8)0.01670 (19)
C140.36216 (12)0.65366 (8)0.15862 (8)0.0192 (2)
H140.3850.72830.1670.023*
C150.38734 (12)0.58538 (8)0.24843 (8)0.0199 (2)
H150.42460.61360.3180.024*
C160.35811 (13)0.47587 (8)0.23660 (8)0.0185 (2)
H160.37770.42860.29740.022*
C170.20554 (13)0.46041 (8)0.06639 (8)0.0190 (2)
H17A0.30540.45460.1180.028*
H17B0.11580.50910.09740.028*
H17C0.15290.38930.0550.028*
C180.27215 (14)0.69111 (8)0.03884 (9)0.0223 (2)
H18A0.14410.69890.05150.034*
H18B0.32820.66290.10610.034*
H18C0.32350.76130.02060.034*
N10.27422 (11)0.32320 (6)0.11920 (7)0.01722 (18)
O10.35012 (9)0.15398 (5)0.00317 (6)0.01903 (16)
H10.3236 (19)0.2906 (12)0.0590 (12)0.033 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0210 (4)0.0217 (5)0.0193 (4)0.0008 (4)0.0040 (3)0.0023 (3)
C20.0148 (4)0.0177 (4)0.0146 (4)0.0006 (3)0.0018 (3)0.0005 (3)
C30.0176 (4)0.0159 (4)0.0169 (4)0.0007 (3)0.0001 (3)0.0017 (3)
C40.0167 (4)0.0155 (4)0.0176 (4)0.0002 (3)0.0033 (3)0.0006 (3)
C50.0264 (5)0.0150 (4)0.0285 (5)0.0019 (4)0.0046 (4)0.0016 (4)
C110.0155 (4)0.0138 (4)0.0181 (4)0.0003 (3)0.0018 (3)0.0018 (3)
C120.0125 (4)0.0166 (4)0.0168 (4)0.0006 (3)0.0009 (3)0.0014 (3)
C130.0135 (4)0.0154 (4)0.0212 (4)0.0012 (3)0.0011 (3)0.0002 (3)
C140.0166 (4)0.0153 (4)0.0258 (5)0.0000 (3)0.0005 (3)0.0041 (3)
C150.0183 (4)0.0221 (5)0.0192 (4)0.0002 (3)0.0010 (3)0.0063 (4)
C160.0190 (4)0.0197 (4)0.0170 (4)0.0009 (3)0.0003 (3)0.0005 (3)
C170.0207 (4)0.0194 (4)0.0168 (4)0.0008 (3)0.0012 (3)0.0009 (3)
C180.0227 (5)0.0171 (4)0.0272 (5)0.0002 (4)0.0018 (4)0.0039 (4)
N10.0209 (4)0.0139 (4)0.0169 (4)0.0001 (3)0.0031 (3)0.0015 (3)
O10.0223 (3)0.0165 (3)0.0183 (3)0.0011 (3)0.0025 (3)0.0004 (2)
Geometric parameters (Å, º) top
C1—C21.5005 (13)C12—C131.4074 (14)
C1—H1A0.98C12—C171.5074 (13)
C1—H1B0.98C13—C141.3964 (14)
C1—H1C0.98C13—C181.5066 (14)
C2—N11.3441 (12)C14—C151.3878 (14)
C2—C31.3849 (14)C14—H140.95
C3—C41.4251 (13)C15—C161.3883 (14)
C3—H30.95C15—H150.95
C4—O11.2562 (12)C16—H160.95
C4—C51.5093 (14)C17—H17A0.98
C5—H5A0.98C17—H17B0.98
C5—H5B0.98C17—H17C0.98
C5—H5C0.98C18—H18A0.98
C11—C161.3979 (13)C18—H18B0.98
C11—C121.4027 (13)C18—H18C0.98
C11—N11.4262 (13)N1—H10.911 (15)
C2—C1—H1A109.5C14—C13—C12119.54 (8)
C2—C1—H1B109.5C14—C13—C18119.86 (9)
H1A—C1—H1B109.5C12—C13—C18120.58 (9)
C2—C1—H1C109.5C15—C14—C13121.10 (9)
H1A—C1—H1C109.5C15—C14—H14119.4
H1B—C1—H1C109.5C13—C14—H14119.5
N1—C2—C3120.37 (8)C14—C15—C16120.03 (9)
N1—C2—C1119.50 (8)C14—C15—H15120
C3—C2—C1120.12 (8)C16—C15—H15120
C2—C3—C4123.46 (8)C15—C16—C11119.35 (9)
C2—C3—H3118.3C15—C16—H16120.3
C4—C3—H3118.3C11—C16—H16120.3
O1—C4—C3123.23 (9)C12—C17—H17A109.5
O1—C4—C5117.94 (8)C12—C17—H17B109.5
C3—C4—C5118.82 (8)H17A—C17—H17B109.5
C4—C5—H5A109.5C12—C17—H17C109.5
C4—C5—H5B109.5H17A—C17—H17C109.5
H5A—C5—H5B109.5H17B—C17—H17C109.5
C4—C5—H5C109.5C13—C18—H18A109.5
H5A—C5—H5C109.5C13—C18—H18B109.5
H5B—C5—H5C109.5H18A—C18—H18B109.5
C16—C11—C12121.31 (9)C13—C18—H18C109.5
C16—C11—N1120.33 (8)H18A—C18—H18C109.5
C12—C11—N1118.32 (8)H18B—C18—H18C109.5
C11—C12—C13118.65 (9)C2—N1—C11127.75 (8)
C11—C12—C17121.06 (8)C2—N1—H1113.0 (9)
C13—C12—C17120.29 (8)C11—N1—H1119.0 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.911 (15)1.869 (15)2.6348 (13)140.2 (13)
C1—H1A···O1i0.982.493.4599 (15)173
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H17NO
Mr203.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.526 (3), 12.450 (5), 12.040 (4)
β (°) 90.243 (4)
V3)1128.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.16 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.987, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
20265, 2817, 2528
Rint0.024
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.05
No. of reflections2817
No. of parameters144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SIR92 (Altomare et al., 1992), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.911 (15)1.869 (15)2.6348 (13)140.2 (13)
C1—H1A···O1i0.982.493.4599 (15)173
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

Dr Tania Hill is thanked for the XRD data collection. Financial assistance from the University of the Free State Strategic Academic Cluster Initiative, SASOL, the South African National Research Foundation (SA-NRF/THRIP) and the Inkaba yeAfrika Research Initiative is gratefully acknowledged. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1992). SIR92. University of Bari, Italy.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572–5578.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDamoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10–13.  CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPyżuk, W., Krówczynsk, A. & Górecka, E. (1993). Mol. Cryst. Liq. Cryst. 237, 75–84.  Google Scholar
First citationRoodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry. Vol. 2, pp. 1–23. Trivandrum, India: Transworld Research Network.  Google Scholar
First citationShaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873–o874.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N.-T. (2008). Lab Chip, 8, 885–891.  CrossRef PubMed CAS Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2009a). Acta Cryst. E65, m1321–m1322.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2009b). Acta Cryst. E65, m1606–m1607.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2010). Acta Cryst. E66, o3011–o3012.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2012). Acta Cryst. E68, m666–m667.  CSD CrossRef IUCr Journals Google Scholar
First citationXia, M., Wu, B. & Xiang, G. (2008). J. Fluor. Chem. 129, 402–408.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds