organic compounds
4-(2,3-Dimethylanilino)pent-3-en-2-one
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
*Correspondence e-mail: ventergjs@ufs.ac.za
In the title compound, C13H17NO, the dihedral angle between the aryl ring and the aminoacrylaldehyde mean plane [N—C=C—C=O; maximum deviation = 0.0144 (9) Å] is 53.43 (4)°. There is an intramolecular N—H⋯O hydrogen bond involving the amine and carbonyl groups. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming chains propagating along [001].
Related literature
For background to the synthesis of the title compound, see: Shaheen et al. (2006); Venter et al. (2010). For applications of rhodium compounds containing bidentate ligand systems, see: Pyżuk et al. (1993); Tan et al. (2008); Xia et al. (2008). For related rhodium enaminoketonato complexes, see: Brink et al. (2010); Damoense et al. (1994); Roodt & Steyn (2000); Venter et al. (2009a,b; 2012).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812038779/su2465sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812038779/su2465Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812038779/su2465Isup3.cml
The title compound was prepared following the literature procedure (Shaheen et al., 2006; Venter et al., 2010).
The NH H atom was located in a difference Fourier map and freely refined. The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: C—H = 0.95 and 0.98 Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H atoms and = 1.2 for other H atoms. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors.
The β-diketone compound AcacH (acetylacetone; or when coordinated acetylacetonato, acac-) has been studied extensively, with a multitude of derivatives synthesized to date. One such derivative type, known as enaminoketones, containing N and O atoms as well as an unsaturated C═C bond, and are of interest in various fields including liquid crystals (Pyżuk et al., 1993) and fluorescence studies (Xia et al., 2008). They also have significant application possibilities in medicine (Tan et al., 2008)] and catalysis (Roodt & Steyn, 2000; Brink et al., 2010).
The title compound (Fig. 1) is an enaminoketone derivative of 4-(phenylamino)pent-3-en-2-one (Shaheen et al., 2006). Bond distances in the the title compound differ significantly from those in compounds where the ligand is coordinated to rhodium (Venter et al., 2009a,b; 2012); Damoense et al., 1994), but it share characteristics with other enaminoketones of this type (Venter et al., 2010). The C2–C3 bond distance of 1.3849 (14) Å versus the C3–C4 distance of 1.4251 (13) Å indicates an unsaturated bond in the pentenone backbone. Here the intramolecular distance N1···O1 is 2.6348 (13) Å which is considerably less (~ 0.2 Å) than that observed when the ligand is coordinated to rhodium for example (Venter et al., 2009a,b; 2012; Damoense et al., 1994).
The intramolecular N-H···O hydrogen bond that is formed (Fig. 1 and Table 1) enhances the planarity of the aminopentenone moiety. The aminoacrylaldehyde mean plane [N1-C2═C3-C4═O1; maximum deviation = 0.0144 (9) Å] makes a dihedral angle of 53.43 (4)° with the C11-C16 benzene ring. This angle is dependent on the position of the substituents on the aromatic ring. Compounds with substituents in the ortho positions result in larger dihedral angles, while smaller angles are found for derivatives with substituents in the para position (Venter et al., 2009a,b; 2012).
In the crystal, there are C-H···O hydrogen bonds leading to the formation of chains propagating along [001] (Table 1 and Fig. 2).
For background to the synthesis of the title compound, see: Shaheen et al. (2006); Venter et al. (2010). For applications of rhodium compounds containing bidentate ligand systems, see: Pyżuk et al. (1993); Tan et al. (2008); Xia et al. (2008). For related rhodium enaminoketonato complexes, see: Brink et al. (2010); Damoense et al. (1994); Roodt & Steyn (2000); Venter et al. (2009a,b; 2012).
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).C13H17NO | F(000) = 440 |
Mr = 203.28 | Dx = 1.197 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9978 reflections |
a = 7.526 (3) Å | θ = 2.7–28.4° |
b = 12.450 (5) Å | µ = 0.08 mm−1 |
c = 12.040 (4) Å | T = 100 K |
β = 90.243 (4)° | Cuboid, colourless |
V = 1128.1 (7) Å3 | 0.18 × 0.16 × 0.08 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 2817 independent reflections |
Radiation source: fine-focus sealed tube | 2528 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
phi and ω scans | θmax = 28.4°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −9→10 |
Tmin = 0.987, Tmax = 0.994 | k = −16→16 |
20265 measured reflections | l = −15→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0535P)2 + 0.3712P] where P = (Fo2 + 2Fc2)/3 |
2817 reflections | (Δ/σ)max < 0.001 |
144 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C13H17NO | V = 1128.1 (7) Å3 |
Mr = 203.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.526 (3) Å | µ = 0.08 mm−1 |
b = 12.450 (5) Å | T = 100 K |
c = 12.040 (4) Å | 0.18 × 0.16 × 0.08 mm |
β = 90.243 (4)° |
Bruker APEXII CCD area-detector diffractometer | 2817 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2528 reflections with I > 2σ(I) |
Tmin = 0.987, Tmax = 0.994 | Rint = 0.024 |
20265 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.33 e Å−3 |
2817 reflections | Δρmin = −0.24 e Å−3 |
144 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.06673 (13) | 0.30089 (8) | 0.27466 (8) | 0.0206 (2) | |
H1A | 0.1442 | 0.3069 | 0.34 | 0.031* | |
H1B | −0.0323 | 0.2525 | 0.2913 | 0.031* | |
H1C | 0.0202 | 0.372 | 0.2552 | 0.031* | |
C2 | 0.17093 (11) | 0.25693 (7) | 0.17890 (7) | 0.01569 (19) | |
C3 | 0.15832 (12) | 0.14919 (7) | 0.15135 (7) | 0.01678 (19) | |
H3 | 0.083 | 0.1047 | 0.1946 | 0.02* | |
C4 | 0.25242 (12) | 0.10152 (7) | 0.06148 (7) | 0.01660 (19) | |
C5 | 0.23616 (14) | −0.01799 (8) | 0.04301 (9) | 0.0233 (2) | |
H5A | 0.1841 | −0.0315 | −0.0304 | 0.035* | |
H5B | 0.1597 | −0.0491 | 0.1003 | 0.035* | |
H5C | 0.3542 | −0.051 | 0.0472 | 0.035* | |
C11 | 0.29955 (12) | 0.43578 (7) | 0.13435 (7) | 0.01577 (19) | |
C12 | 0.27101 (11) | 0.50391 (7) | 0.04322 (7) | 0.01532 (19) | |
C13 | 0.30377 (12) | 0.61452 (7) | 0.05608 (8) | 0.01670 (19) | |
C14 | 0.36216 (12) | 0.65366 (8) | 0.15862 (8) | 0.0192 (2) | |
H14 | 0.385 | 0.7283 | 0.167 | 0.023* | |
C15 | 0.38734 (12) | 0.58538 (8) | 0.24843 (8) | 0.0199 (2) | |
H15 | 0.4246 | 0.6136 | 0.318 | 0.024* | |
C16 | 0.35811 (13) | 0.47587 (8) | 0.23660 (8) | 0.0185 (2) | |
H16 | 0.3777 | 0.4286 | 0.2974 | 0.022* | |
C17 | 0.20554 (13) | 0.46041 (8) | −0.06639 (8) | 0.0190 (2) | |
H17A | 0.3054 | 0.4546 | −0.118 | 0.028* | |
H17B | 0.1158 | 0.5091 | −0.0974 | 0.028* | |
H17C | 0.1529 | 0.3893 | −0.055 | 0.028* | |
C18 | 0.27215 (14) | 0.69111 (8) | −0.03884 (9) | 0.0223 (2) | |
H18A | 0.1441 | 0.6989 | −0.0515 | 0.034* | |
H18B | 0.3282 | 0.6629 | −0.1061 | 0.034* | |
H18C | 0.3235 | 0.7613 | −0.0206 | 0.034* | |
N1 | 0.27422 (11) | 0.32320 (6) | 0.11920 (7) | 0.01722 (18) | |
O1 | 0.35012 (9) | 0.15398 (5) | −0.00317 (6) | 0.01903 (16) | |
H1 | 0.3236 (19) | 0.2906 (12) | 0.0590 (12) | 0.033 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0210 (4) | 0.0217 (5) | 0.0193 (4) | −0.0008 (4) | 0.0040 (3) | −0.0023 (3) |
C2 | 0.0148 (4) | 0.0177 (4) | 0.0146 (4) | 0.0006 (3) | −0.0018 (3) | 0.0005 (3) |
C3 | 0.0176 (4) | 0.0159 (4) | 0.0169 (4) | −0.0007 (3) | 0.0001 (3) | 0.0017 (3) |
C4 | 0.0167 (4) | 0.0155 (4) | 0.0176 (4) | 0.0002 (3) | −0.0033 (3) | 0.0006 (3) |
C5 | 0.0264 (5) | 0.0150 (4) | 0.0285 (5) | −0.0019 (4) | 0.0046 (4) | −0.0016 (4) |
C11 | 0.0155 (4) | 0.0138 (4) | 0.0181 (4) | 0.0003 (3) | 0.0018 (3) | −0.0018 (3) |
C12 | 0.0125 (4) | 0.0166 (4) | 0.0168 (4) | 0.0006 (3) | 0.0009 (3) | −0.0014 (3) |
C13 | 0.0135 (4) | 0.0154 (4) | 0.0212 (4) | 0.0012 (3) | 0.0011 (3) | 0.0002 (3) |
C14 | 0.0166 (4) | 0.0153 (4) | 0.0258 (5) | 0.0000 (3) | 0.0005 (3) | −0.0041 (3) |
C15 | 0.0183 (4) | 0.0221 (5) | 0.0192 (4) | 0.0002 (3) | −0.0010 (3) | −0.0063 (4) |
C16 | 0.0190 (4) | 0.0197 (4) | 0.0170 (4) | 0.0009 (3) | −0.0003 (3) | −0.0005 (3) |
C17 | 0.0207 (4) | 0.0194 (4) | 0.0168 (4) | −0.0008 (3) | −0.0012 (3) | −0.0009 (3) |
C18 | 0.0227 (5) | 0.0171 (4) | 0.0272 (5) | 0.0002 (4) | −0.0018 (4) | 0.0039 (4) |
N1 | 0.0209 (4) | 0.0139 (4) | 0.0169 (4) | −0.0001 (3) | 0.0031 (3) | −0.0015 (3) |
O1 | 0.0223 (3) | 0.0165 (3) | 0.0183 (3) | −0.0011 (3) | 0.0025 (3) | −0.0004 (2) |
C1—C2 | 1.5005 (13) | C12—C13 | 1.4074 (14) |
C1—H1A | 0.98 | C12—C17 | 1.5074 (13) |
C1—H1B | 0.98 | C13—C14 | 1.3964 (14) |
C1—H1C | 0.98 | C13—C18 | 1.5066 (14) |
C2—N1 | 1.3441 (12) | C14—C15 | 1.3878 (14) |
C2—C3 | 1.3849 (14) | C14—H14 | 0.95 |
C3—C4 | 1.4251 (13) | C15—C16 | 1.3883 (14) |
C3—H3 | 0.95 | C15—H15 | 0.95 |
C4—O1 | 1.2562 (12) | C16—H16 | 0.95 |
C4—C5 | 1.5093 (14) | C17—H17A | 0.98 |
C5—H5A | 0.98 | C17—H17B | 0.98 |
C5—H5B | 0.98 | C17—H17C | 0.98 |
C5—H5C | 0.98 | C18—H18A | 0.98 |
C11—C16 | 1.3979 (13) | C18—H18B | 0.98 |
C11—C12 | 1.4027 (13) | C18—H18C | 0.98 |
C11—N1 | 1.4262 (13) | N1—H1 | 0.911 (15) |
C2—C1—H1A | 109.5 | C14—C13—C12 | 119.54 (8) |
C2—C1—H1B | 109.5 | C14—C13—C18 | 119.86 (9) |
H1A—C1—H1B | 109.5 | C12—C13—C18 | 120.58 (9) |
C2—C1—H1C | 109.5 | C15—C14—C13 | 121.10 (9) |
H1A—C1—H1C | 109.5 | C15—C14—H14 | 119.4 |
H1B—C1—H1C | 109.5 | C13—C14—H14 | 119.5 |
N1—C2—C3 | 120.37 (8) | C14—C15—C16 | 120.03 (9) |
N1—C2—C1 | 119.50 (8) | C14—C15—H15 | 120 |
C3—C2—C1 | 120.12 (8) | C16—C15—H15 | 120 |
C2—C3—C4 | 123.46 (8) | C15—C16—C11 | 119.35 (9) |
C2—C3—H3 | 118.3 | C15—C16—H16 | 120.3 |
C4—C3—H3 | 118.3 | C11—C16—H16 | 120.3 |
O1—C4—C3 | 123.23 (9) | C12—C17—H17A | 109.5 |
O1—C4—C5 | 117.94 (8) | C12—C17—H17B | 109.5 |
C3—C4—C5 | 118.82 (8) | H17A—C17—H17B | 109.5 |
C4—C5—H5A | 109.5 | C12—C17—H17C | 109.5 |
C4—C5—H5B | 109.5 | H17A—C17—H17C | 109.5 |
H5A—C5—H5B | 109.5 | H17B—C17—H17C | 109.5 |
C4—C5—H5C | 109.5 | C13—C18—H18A | 109.5 |
H5A—C5—H5C | 109.5 | C13—C18—H18B | 109.5 |
H5B—C5—H5C | 109.5 | H18A—C18—H18B | 109.5 |
C16—C11—C12 | 121.31 (9) | C13—C18—H18C | 109.5 |
C16—C11—N1 | 120.33 (8) | H18A—C18—H18C | 109.5 |
C12—C11—N1 | 118.32 (8) | H18B—C18—H18C | 109.5 |
C11—C12—C13 | 118.65 (9) | C2—N1—C11 | 127.75 (8) |
C11—C12—C17 | 121.06 (8) | C2—N1—H1 | 113.0 (9) |
C13—C12—C17 | 120.29 (8) | C11—N1—H1 | 119.0 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.911 (15) | 1.869 (15) | 2.6348 (13) | 140.2 (13) |
C1—H1A···O1i | 0.98 | 2.49 | 3.4599 (15) | 173 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C13H17NO |
Mr | 203.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.526 (3), 12.450 (5), 12.040 (4) |
β (°) | 90.243 (4) |
V (Å3) | 1128.1 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.18 × 0.16 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.987, 0.994 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20265, 2817, 2528 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.103, 1.05 |
No. of reflections | 2817 |
No. of parameters | 144 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.24 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SIR92 (Altomare et al., 1992), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.911 (15) | 1.869 (15) | 2.6348 (13) | 140.2 (13) |
C1—H1A···O1i | 0.98 | 2.49 | 3.4599 (15) | 173 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
Dr Tania Hill is thanked for the XRD data collection. Financial assistance from the University of the Free State Strategic Academic Cluster Initiative, SASOL, the South African National Research Foundation (SA-NRF/THRIP) and the Inkaba yeAfrika Research Initiative is gratefully acknowledged. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1992). SIR92. University of Bari, Italy. Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572–5578. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Damoense, L. J., Purcell, W., Roodt, A. & Leipoldt, J. G. (1994). Rhodium Express, 5, 10–13. CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Pyżuk, W., Krówczynsk, A. & Górecka, E. (1993). Mol. Cryst. Liq. Cryst. 237, 75–84. Google Scholar
Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry. Vol. 2, pp. 1–23. Trivandrum, India: Transworld Research Network. Google Scholar
Shaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873–o874. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N.-T. (2008). Lab Chip, 8, 885–891. CrossRef PubMed CAS Google Scholar
Venter, G. J. S., Steyl, G. & Roodt, A. (2009a). Acta Cryst. E65, m1321–m1322. Web of Science CSD CrossRef IUCr Journals Google Scholar
Venter, G. J. S., Steyl, G. & Roodt, A. (2009b). Acta Cryst. E65, m1606–m1607. Web of Science CSD CrossRef IUCr Journals Google Scholar
Venter, G. J. S., Steyl, G. & Roodt, A. (2010). Acta Cryst. E66, o3011–o3012. Web of Science CSD CrossRef IUCr Journals Google Scholar
Venter, G. J. S., Steyl, G. & Roodt, A. (2012). Acta Cryst. E68, m666–m667. CSD CrossRef IUCr Journals Google Scholar
Xia, M., Wu, B. & Xiang, G. (2008). J. Fluor. Chem. 129, 402–408. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The β-diketone compound AcacH (acetylacetone; or when coordinated acetylacetonato, acac-) has been studied extensively, with a multitude of derivatives synthesized to date. One such derivative type, known as enaminoketones, containing N and O atoms as well as an unsaturated C═C bond, and are of interest in various fields including liquid crystals (Pyżuk et al., 1993) and fluorescence studies (Xia et al., 2008). They also have significant application possibilities in medicine (Tan et al., 2008)] and catalysis (Roodt & Steyn, 2000; Brink et al., 2010).
The title compound (Fig. 1) is an enaminoketone derivative of 4-(phenylamino)pent-3-en-2-one (Shaheen et al., 2006). Bond distances in the the title compound differ significantly from those in compounds where the ligand is coordinated to rhodium (Venter et al., 2009a,b; 2012); Damoense et al., 1994), but it share characteristics with other enaminoketones of this type (Venter et al., 2010). The C2–C3 bond distance of 1.3849 (14) Å versus the C3–C4 distance of 1.4251 (13) Å indicates an unsaturated bond in the pentenone backbone. Here the intramolecular distance N1···O1 is 2.6348 (13) Å which is considerably less (~ 0.2 Å) than that observed when the ligand is coordinated to rhodium for example (Venter et al., 2009a,b; 2012; Damoense et al., 1994).
The intramolecular N-H···O hydrogen bond that is formed (Fig. 1 and Table 1) enhances the planarity of the aminopentenone moiety. The aminoacrylaldehyde mean plane [N1-C2═C3-C4═O1; maximum deviation = 0.0144 (9) Å] makes a dihedral angle of 53.43 (4)° with the C11-C16 benzene ring. This angle is dependent on the position of the substituents on the aromatic ring. Compounds with substituents in the ortho positions result in larger dihedral angles, while smaller angles are found for derivatives with substituents in the para position (Venter et al., 2009a,b; 2012).
In the crystal, there are C-H···O hydrogen bonds leading to the formation of chains propagating along [001] (Table 1 and Fig. 2).