metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[iodidocopper(I)]-{μ-N-[(pyridin-2-yl-κN)methyl­­idene]pyridin-3-amine-κ2N3:N1}] aceto­nitrile hemisolvate]

aDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, and bDepartment of Chemistry, Alzahra University, Tehran, Iran
*Correspondence e-mail: Mahmoudi_Ali@yahoo.com

(Received 16 July 2012; accepted 29 August 2012; online 19 September 2012)

In the asymmetric unit of the title polymeric complex, {[CuI(C11H9N3)]·0.5CH3CN}n, there are two CuI atoms, two N-[(pyridin-2-yl-κN)methyl­idene]pyridin-3-amine (PyPy) ligands and two I atoms. Both CuI atoms have a distorted tetra­hedral geometry, each being coordinated by one I atom, two N atoms of one PyPy ligand and one N atom from an adjacent PyPy ligand. In the crystal, infinite helical chains of [Cu2(PyPy)2]n are formed propagating along the b axis. These chains are linked via weak C—H⋯I hydrogen bonds and ππ stacking inter­actions [shortest centroid–centroid distance = 3.2727 (14) Å]. During the refinement, electron-density peaks were located that were believed to be highly disordered solvent mol­ecules (possibly acetonitrile). The SQUEEZE option in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155] indicated there were solvent cavities with a total volume of 196 Å3 containing approximately 60 electrons per unit cell, which equated to one mol­ecule of acetonitrile per asymmetric unit.

Related literature

For related structures and applications of coordination polymers, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Fei et al. (2000[Fei, B. L., Sun, W. Y., Yu, K. B. & Tang, W. X. (2000). J. Chem. Soc. Dalton Trans. pp. 805-811.]). For the synthesis of the title ligand, see: Dehghanpour et al. (2009[Dehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205-1210.]).

[Scheme 1]

Experimental

Crystal data
  • [CuI(C11H9N3)]·0.5C2H3N

  • Mr = 394.18

  • Monoclinic, P 21 /n

  • a = 7.1800 (2) Å

  • b = 13.2303 (7) Å

  • c = 27.9383 (13) Å

  • β = 90.741 (3)°

  • V = 2653.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.96 mm−1

  • T = 150 K

  • 0.17 × 0.12 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.569, Tmax = 0.733

  • 19063 measured reflections

  • 4676 independent reflections

  • 2627 reflections with I > 2σ(I)

  • Rint = 0.104

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.178

  • S = 1.02

  • 4676 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 1.39 e Å−3

  • Δρmin = −1.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22A⋯I1i 0.95 3.03 3.789 (12) 138
C20—H20A⋯I1ii 0.95 3.14 4.025 (12) 156
C17—H17A⋯I2iii 0.95 3.16 4.011 (11) 149
Symmetry codes: (i) x, y-1, z; (ii) -x+3, -y-1, -z+1; (iii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years, coordination polymers have received much attention due to their variety of architectures and the potential applications as functional materials (Moulton & Zaworotko, 2001). Early reports have shown that nitrogen heterocyclic ligands have been employed in the synthesis of many novel structures (Fei et al., 2000). Here, we report on the synthetic and crystal structure of a novel copper iodide complex based on the ligand pyridin-3-ylpyridin-2-ylmethyleneamine (PyPy).

The asymmetric unit of the title compound, Fig. 1, contains two CuI atoms, two pyridin-3-ylpyridin-2-ylmethyleneamine (Dehghanpour et al., 2009) ligands, and two I atoms, Each Cu+ atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from one PyPy ligand, one N atom from an adjacent PyPy ligand and one I atom. Each PyPy ligand chelates the Cu atom (via N, N' atoms) and also bridges to another Cu atom (with N" atom), resulting in the formation of chains propagating along the b axis.

The two ligands in the asymmetric unit are nearly planar. In ligand A the interplanar angles between chelate ring (N2/C6/C7/N3) and pyridine ring (lN3/C7-C11) is 2.11 (3)°, while for ligand B [chelate ring N5/C17/C18/N6 and pyridine ring N6/C18-C22] the same angle is 5.82 (4)°. In ligand A the two pyridine rings (N1/C1-C5 and N3/C7-C11) are inclined to one another by 12.11 (4)°. In ligand B the two pyridine rings (N6/C18-C22 and N4/C12-5C16) are inclined to one another by 7.49 (3)°. However, the interplanar angle between two ligand mean planes (A and B) is 52.82 (1)°.

In the crystal, these chains interact via ππ interactions between adjacent, inversion replated PyPy ligands The shortest distance of 3.2727 (14) Å [C15-C19 ring, symmetry code: (iii) = -x + 3, -y - 1, -z + 1] is observed between two inversion related ligands. These chains are further connected through C—H···I interactions (Table 1 and Fig 2.).

Related literature top

For related structures and applications of coordination polymers, see: Moulton & Zaworotko (2001); Fei et al. (2000). For the synthesis of the title ligand, see: Dehghanpour et al. (2009).

Experimental top

The title complex was prepared by the reaction of CuI (19.1 mg, 0.1 mmol) and pyridin-3-ylpyridin-2-ylmethyleneamine (18.3 mg, 0.1 mmol) in 20 ml of acetonitrile at room temperature. Crystals of the title compound, suitable for X-ray analysis, were obtained by slow evaporation of the solvent at rt.

Refinement top

H atoms were placed in calculated positions and included in the refinement in a riding-motion approximation: C—H = 0.95 Å with Uiso(H)= 1.2Ueq(C). During the refinement of the structure, electron density peaks were located that were believed to be highly disordered solvent molecules (possibly acetonitrile). Attempts to model the solvent molecule were not successful. The SQUEEZE option in PLATON (Spek, A. L. (2009). Acta Cryst. D65, 148-155) indicated there were solvent cavities with a total volume of 196 Å3 containing approximately 60 electrons per unit cell. This was equated to one molecule of acetonitrile per asymmetric unit. The density, the F(000) value, the molecular weight and the formula are given taking into account the results obtained with the SQUEEZE option in PLATON.

Structure description top

In recent years, coordination polymers have received much attention due to their variety of architectures and the potential applications as functional materials (Moulton & Zaworotko, 2001). Early reports have shown that nitrogen heterocyclic ligands have been employed in the synthesis of many novel structures (Fei et al., 2000). Here, we report on the synthetic and crystal structure of a novel copper iodide complex based on the ligand pyridin-3-ylpyridin-2-ylmethyleneamine (PyPy).

The asymmetric unit of the title compound, Fig. 1, contains two CuI atoms, two pyridin-3-ylpyridin-2-ylmethyleneamine (Dehghanpour et al., 2009) ligands, and two I atoms, Each Cu+ atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from one PyPy ligand, one N atom from an adjacent PyPy ligand and one I atom. Each PyPy ligand chelates the Cu atom (via N, N' atoms) and also bridges to another Cu atom (with N" atom), resulting in the formation of chains propagating along the b axis.

The two ligands in the asymmetric unit are nearly planar. In ligand A the interplanar angles between chelate ring (N2/C6/C7/N3) and pyridine ring (lN3/C7-C11) is 2.11 (3)°, while for ligand B [chelate ring N5/C17/C18/N6 and pyridine ring N6/C18-C22] the same angle is 5.82 (4)°. In ligand A the two pyridine rings (N1/C1-C5 and N3/C7-C11) are inclined to one another by 12.11 (4)°. In ligand B the two pyridine rings (N6/C18-C22 and N4/C12-5C16) are inclined to one another by 7.49 (3)°. However, the interplanar angle between two ligand mean planes (A and B) is 52.82 (1)°.

In the crystal, these chains interact via ππ interactions between adjacent, inversion replated PyPy ligands The shortest distance of 3.2727 (14) Å [C15-C19 ring, symmetry code: (iii) = -x + 3, -y - 1, -z + 1] is observed between two inversion related ligands. These chains are further connected through C—H···I interactions (Table 1 and Fig 2.).

For related structures and applications of coordination polymers, see: Moulton & Zaworotko (2001); Fei et al. (2000). For the synthesis of the title ligand, see: Dehghanpour et al. (2009).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title complex, with atom numbering. Displacement ellipsoids are drawn at the 50% probability level [Symmetry codes: (ix) 5/2 - x, -1/2 + y, 1/2 - z; (x) x, -1 + y, z; (xiii) 5/2 - x, 1/2 + y, 1/2 - z].
[Figure 2] Fig. 2. A view of the ππ interactions and C—H···I hydrogen bonds (dotted lines) in the crystal structure of the title compound.
catena-Poly[[[iodidocopper(I)]-{µ-N-[(pyridin-2- yl-κN)methylidene]pyridin-3-amine-κ2N3:N1}] acetonitrile monosolvate] top
Crystal data top
[CuI(C11H9N3)]·0.5C2H3NF(000) = 1512
Mr = 394.18Dx = 1.973 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 19063 reflections
a = 7.1800 (2) Åθ = 2.5–25.0°
b = 13.2303 (7) ŵ = 3.96 mm1
c = 27.9383 (13) ÅT = 150 K
β = 90.741 (3)°Block, brown
V = 2653.7 (2) Å30.17 × 0.12 × 0.10 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
4676 independent reflections
Radiation source: fine-focus sealed tube2627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.7°
φ scans and ω scans with κ offsetsh = 88
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1515
Tmin = 0.569, Tmax = 0.733l = 3333
19063 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0943P)2]
where P = (Fo2 + 2Fc2)/3
4676 reflections(Δ/σ)max = 0.002
289 parametersΔρmax = 1.39 e Å3
0 restraintsΔρmin = 1.24 e Å3
Crystal data top
[CuI(C11H9N3)]·0.5C2H3NV = 2653.7 (2) Å3
Mr = 394.18Z = 8
Monoclinic, P21/nMo Kα radiation
a = 7.1800 (2) ŵ = 3.96 mm1
b = 13.2303 (7) ÅT = 150 K
c = 27.9383 (13) Å0.17 × 0.12 × 0.10 mm
β = 90.741 (3)°
Data collection top
Nonius KappaCCD
diffractometer
4676 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2627 reflections with I > 2σ(I)
Tmin = 0.569, Tmax = 0.733Rint = 0.104
19063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.02Δρmax = 1.39 e Å3
4676 reflectionsΔρmin = 1.24 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.60988 (13)0.00459 (7)0.36787 (3)0.0589 (3)
I20.61501 (9)0.05499 (6)0.10018 (2)0.0389 (3)
Cu11.50363 (18)0.17127 (11)0.32943 (4)0.0400 (4)
Cu20.97229 (16)0.07450 (11)0.10723 (4)0.0365 (4)
N11.0526 (12)0.0684 (7)0.1767 (3)0.039 (2)
N21.4312 (11)0.1559 (6)0.2576 (3)0.032 (2)
N31.7228 (11)0.2492 (7)0.2989 (3)0.039 (2)
N41.3514 (11)0.2392 (7)0.3785 (3)0.036 (2)
N51.3643 (10)0.4852 (7)0.4384 (3)0.029 (2)
N61.4522 (11)0.6811 (7)0.4423 (3)0.037 (2)
C10.9411 (16)0.0224 (9)0.2091 (4)0.042 (3)
H1A0.82620.00630.19870.051*
C20.9913 (15)0.0165 (9)0.2567 (4)0.044 (3)
H2A0.91470.01760.27900.053*
C31.1567 (14)0.0616 (8)0.2713 (4)0.038 (3)
H3A1.19480.05930.30400.045*
C41.2640 (14)0.1092 (8)0.2385 (4)0.037 (3)
C51.2109 (13)0.1129 (8)0.1925 (3)0.030 (2)
H5A1.28670.14780.17030.036*
C61.5589 (15)0.1921 (8)0.2304 (4)0.036 (3)
H6A1.54640.18530.19660.043*
C71.7202 (14)0.2428 (8)0.2502 (3)0.034 (3)
C81.8553 (15)0.2858 (9)0.2230 (4)0.042 (3)
H8A1.84780.28060.18910.050*
C92.0017 (16)0.3364 (9)0.2440 (4)0.044 (3)
H9A2.09550.36660.22500.053*
C102.0096 (15)0.3424 (9)0.2930 (4)0.049 (3)
H10A2.11010.37570.30880.059*
C111.8675 (14)0.2987 (9)0.3186 (4)0.045 (3)
H11A1.87250.30410.35250.054*
C121.2362 (14)0.1885 (9)0.4062 (4)0.040 (3)
H12A1.21220.11960.39880.049*
C131.1467 (14)0.2310 (9)0.4462 (4)0.045 (3)
H13A1.05880.19280.46380.054*
C141.1884 (13)0.3277 (9)0.4593 (4)0.040 (3)
H14A1.13560.35700.48700.048*
C151.3101 (13)0.3826 (9)0.4310 (3)0.033 (3)
C161.3879 (12)0.3373 (8)0.3914 (3)0.031 (3)
H16A1.47040.37580.37240.037*
C171.2990 (12)0.5374 (8)0.4725 (4)0.033 (3)
H17A1.21500.50680.49410.040*
C181.3492 (14)0.6418 (8)0.4791 (4)0.035 (3)
C191.3045 (14)0.6992 (9)0.5186 (4)0.042 (3)
H19A1.23410.66950.54350.051*
C201.3595 (14)0.7977 (10)0.5228 (4)0.043 (3)
H20A1.32600.83780.54960.052*
C211.4685 (16)0.8371 (9)0.4854 (4)0.050 (3)
H21A1.51340.90450.48720.060*
C221.5098 (16)0.7777 (9)0.4462 (4)0.049 (3)
H22A1.58140.80600.42120.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0911 (7)0.0473 (6)0.0383 (5)0.0199 (5)0.0001 (4)0.0023 (4)
I20.0311 (4)0.0564 (6)0.0292 (4)0.0023 (3)0.0015 (3)0.0035 (4)
Cu10.0506 (8)0.0436 (9)0.0259 (7)0.0010 (6)0.0002 (6)0.0026 (6)
Cu20.0346 (7)0.0508 (10)0.0241 (7)0.0002 (6)0.0001 (5)0.0010 (6)
N10.048 (6)0.047 (6)0.023 (5)0.004 (5)0.001 (4)0.002 (4)
N20.037 (5)0.034 (6)0.024 (5)0.001 (4)0.005 (4)0.007 (4)
N30.031 (5)0.039 (6)0.046 (6)0.005 (4)0.009 (4)0.003 (5)
N40.033 (5)0.040 (6)0.034 (5)0.006 (4)0.000 (4)0.012 (5)
N50.029 (4)0.041 (6)0.019 (4)0.004 (4)0.005 (3)0.003 (4)
N60.035 (5)0.036 (6)0.038 (5)0.010 (4)0.007 (4)0.008 (5)
C10.051 (7)0.046 (8)0.030 (6)0.006 (6)0.004 (5)0.003 (5)
C20.044 (7)0.065 (9)0.024 (6)0.006 (6)0.004 (5)0.001 (6)
C30.047 (7)0.037 (7)0.029 (6)0.013 (5)0.009 (5)0.005 (5)
C40.036 (6)0.037 (7)0.037 (7)0.005 (5)0.003 (5)0.000 (6)
C50.030 (6)0.036 (7)0.025 (6)0.000 (5)0.004 (4)0.003 (5)
C60.055 (7)0.034 (7)0.019 (5)0.003 (5)0.001 (5)0.002 (5)
C70.042 (6)0.038 (7)0.022 (6)0.005 (5)0.004 (5)0.001 (5)
C80.044 (7)0.047 (8)0.034 (6)0.009 (6)0.005 (5)0.007 (6)
C90.049 (7)0.037 (7)0.046 (8)0.003 (6)0.017 (6)0.014 (6)
C100.040 (7)0.052 (9)0.054 (8)0.018 (6)0.004 (6)0.007 (7)
C110.040 (7)0.048 (8)0.045 (7)0.006 (6)0.004 (5)0.005 (6)
C120.037 (6)0.031 (7)0.053 (8)0.006 (5)0.008 (5)0.005 (6)
C130.031 (6)0.043 (8)0.061 (8)0.003 (5)0.008 (5)0.007 (6)
C140.036 (6)0.047 (8)0.037 (6)0.005 (5)0.006 (5)0.009 (6)
C150.028 (5)0.047 (8)0.025 (6)0.001 (5)0.008 (4)0.002 (5)
C160.025 (5)0.039 (7)0.030 (6)0.011 (5)0.005 (4)0.008 (5)
C170.020 (5)0.048 (8)0.031 (6)0.005 (5)0.006 (4)0.013 (5)
C180.038 (6)0.038 (7)0.028 (6)0.008 (5)0.014 (5)0.000 (5)
C190.042 (6)0.055 (9)0.030 (6)0.010 (6)0.004 (5)0.011 (6)
C200.043 (7)0.052 (9)0.035 (7)0.006 (6)0.008 (5)0.008 (6)
C210.062 (8)0.033 (8)0.054 (8)0.008 (6)0.019 (6)0.002 (6)
C220.068 (8)0.038 (8)0.040 (7)0.010 (6)0.004 (6)0.008 (6)
Geometric parameters (Å, º) top
I1—Cu12.5645 (16)C5—H5A0.9500
I2—Cu22.5832 (14)C6—C71.443 (14)
Cu1—N41.980 (9)C6—H6A0.9500
Cu1—N32.074 (9)C7—C81.365 (14)
Cu1—N22.078 (8)C8—C91.372 (15)
Cu2—N12.018 (8)C8—H8A0.9500
Cu2—N6i2.053 (9)C9—C101.371 (15)
Cu2—N5i2.107 (8)C9—H9A0.9500
N1—C51.350 (12)C10—C111.382 (14)
N1—C11.361 (13)C10—H10A0.9500
N2—C61.291 (12)C11—H11A0.9500
N2—C41.445 (12)C12—C131.415 (15)
N3—C111.341 (13)C12—H12A0.9500
N3—C71.362 (12)C13—C141.362 (15)
N4—C121.323 (12)C13—H13A0.9500
N4—C161.372 (13)C14—C151.390 (14)
N5—C171.270 (12)C14—H14A0.9500
N5—C151.426 (13)C15—C161.381 (13)
N5—Cu2ii2.107 (8)C16—H16A0.9500
N6—C221.347 (14)C17—C181.439 (15)
N6—C181.376 (13)C17—H17A0.9500
N6—Cu2ii2.053 (9)C18—C191.382 (14)
C1—C21.376 (14)C19—C201.366 (16)
C1—H1A0.9500C19—H19A0.9500
C2—C31.386 (14)C20—C211.413 (15)
C2—H2A0.9500C20—H20A0.9500
C3—C41.358 (14)C21—C221.382 (16)
C3—H3A0.9500C21—H21A0.9500
C4—C51.339 (13)C22—H22A0.9500
N4—Cu1—N3119.2 (4)N3—C7—C8122.0 (10)
N4—Cu1—N2125.5 (3)N3—C7—C6114.4 (9)
N3—Cu1—N280.4 (3)C8—C7—C6123.5 (10)
N4—Cu1—I1105.3 (3)C7—C8—C9120.7 (11)
N3—Cu1—I1112.1 (2)C7—C8—H8A119.6
N2—Cu1—I1112.9 (2)C9—C8—H8A119.6
N1—Cu2—N6i126.9 (3)C10—C9—C8118.5 (11)
N1—Cu2—N5i113.9 (3)C10—C9—H9A120.8
N6i—Cu2—N5i79.8 (3)C8—C9—H9A120.8
N1—Cu2—I2109.9 (2)C9—C10—C11118.2 (11)
N6i—Cu2—I2106.7 (2)C9—C10—H10A120.9
N5i—Cu2—I2117.3 (2)C11—C10—H10A120.9
C5—N1—C1118.5 (9)N3—C11—C10124.3 (11)
C5—N1—Cu2121.7 (7)N3—C11—H11A117.8
C1—N1—Cu2119.7 (7)C10—C11—H11A117.8
C6—N2—C4122.4 (9)N4—C12—C13123.7 (11)
C6—N2—Cu1111.2 (7)N4—C12—H12A118.2
C4—N2—Cu1126.4 (6)C13—C12—H12A118.2
C11—N3—C7116.3 (9)C14—C13—C12119.0 (10)
C11—N3—Cu1131.4 (8)C14—C13—H13A120.5
C7—N3—Cu1112.3 (7)C12—C13—H13A120.5
C12—N4—C16116.4 (9)C13—C14—C15118.5 (10)
C12—N4—Cu1122.0 (8)C13—C14—H14A120.8
C16—N4—Cu1120.5 (6)C15—C14—H14A120.8
C17—N5—C15121.6 (9)C16—C15—C14119.4 (11)
C17—N5—Cu2ii111.3 (7)C16—C15—N5114.6 (9)
C15—N5—Cu2ii126.8 (6)C14—C15—N5125.9 (9)
C22—N6—C18117.7 (9)N4—C16—C15122.9 (9)
C22—N6—Cu2ii128.6 (7)N4—C16—H16A118.5
C18—N6—Cu2ii113.1 (7)C15—C16—H16A118.5
N1—C1—C2121.3 (10)N5—C17—C18121.6 (10)
N1—C1—H1A119.3N5—C17—H17A119.2
C2—C1—H1A119.3C18—C17—H17A119.2
C1—C2—C3118.2 (10)N6—C18—C19121.5 (10)
C1—C2—H2A120.9N6—C18—C17113.8 (9)
C3—C2—H2A120.9C19—C18—C17124.7 (10)
C4—C3—C2119.5 (10)C20—C19—C18121.5 (11)
C4—C3—H3A120.2C20—C19—H19A119.3
C2—C3—H3A120.2C18—C19—H19A119.3
C5—C4—C3120.5 (10)C19—C20—C21116.8 (11)
C5—C4—N2124.3 (9)C19—C20—H20A121.6
C3—C4—N2115.2 (9)C21—C20—H20A121.6
C4—C5—N1121.8 (9)C22—C21—C20120.1 (11)
C4—C5—H5A119.1C22—C21—H21A119.9
N1—C5—H5A119.1C20—C21—H21A119.9
N2—C6—C7121.3 (9)N6—C22—C21122.4 (11)
N2—C6—H6A119.4N6—C22—H22A118.8
C7—C6—H6A119.4C21—C22—H22A118.8
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x+5/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22A···I1iii0.953.033.789 (12)138
C20—H20A···I1iv0.953.144.025 (12)156
C17—H17A···I2v0.953.164.011 (11)149
Symmetry codes: (iii) x, y1, z; (iv) x+3, y1, z+1; (v) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CuI(C11H9N3)]·0.5C2H3N
Mr394.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)7.1800 (2), 13.2303 (7), 27.9383 (13)
β (°) 90.741 (3)
V3)2653.7 (2)
Z8
Radiation typeMo Kα
µ (mm1)3.96
Crystal size (mm)0.17 × 0.12 × 0.10
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.569, 0.733
No. of measured, independent and
observed [I > 2σ(I)] reflections
19063, 4676, 2627
Rint0.104
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.178, 1.02
No. of reflections4676
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.39, 1.24

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22A···I1i0.953.033.789 (12)138
C20—H20A···I1ii0.953.144.025 (12)156
C17—H17A···I2iii0.953.164.011 (11)149
Symmetry codes: (i) x, y1, z; (ii) x+3, y1, z+1; (iii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Islamic Azad University, University Research Councils for partial support of this work. The crystal structure analysis was carried out by Dr A. J. Lough of the Department of Chemistry of the University of Toronto, Canada.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205–1210.  Web of Science CSD CrossRef CAS Google Scholar
First citationFei, B. L., Sun, W. Y., Yu, K. B. & Tang, W. X. (2000). J. Chem. Soc. Dalton Trans. pp. 805–811.  Web of Science CSD CrossRef Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds