organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,8R,15S,19R)-17-Benzyl-17-aza­penta­cyclo­[6.6.5.02,7.09,14.015,19]nona­deca-2(7),3,5,9(14),10,12-hexa­ene chloro­form monosolvate

aLaboratoire Hétérochimie Fondamentale et Appliquée, UMR CNRS 5069, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France, and bUniversité de Toulouse, UPS, Institut de Chimie de Toulouse FR2599, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
*Correspondence e-mail: gomez@chimie.ups-tlse.fr

(Received 26 July 2012; accepted 3 September 2012; online 8 September 2012)

In the title compound, C25H23N·CHCl3, the dihydro­anthracene unit is bent with a dihedral angle between the benzene rings of 57.82 (8)°. The N atom of the pyrrolidine heterocycle, which has an envelope conformation with the N atom as the flap, exhibits a pronounced pyramidalization [Σ(C—N—C) = 328.07°], indicating an accentuated N-donor character. In the crystal, this behaviour is evident by the C—H⋯N hydrogen bond involving a solvent mol­ecule and the N atom. The absolute configuration at the C-atom fused positions of the pyrrolidine group were crystallographically confirmed to be S and R.

Related literature

For catalytic applications of 9,10-dihydro­anthracene-succinimides and their related pyrrolidine derivatives, see: Sasaoka et al. (2006[Sasaoka, A., Uddin, Md. I., Shimomoto, A., Ichikawa, Y., Shiro, M. & Kotsuki, H. (2006). Tetrahedron Asymmetry, 17, 2963-2969.]); Sanhes et al. (2009[Sanhes, D., Gual, A., Castillón, S., Claver, C., Gómez, M. & Teuma, E. (2009). Tetrahedron Asymmetry, 20, 1009-1014.], 2010[Sanhes, D., Raluy, E., Retory, S., Saffon, N., Teuma, E. & Gómez, M. (2010). Dalton Trans. 39, 9719-9726.]). For the synthesis of these ligands, see: Sanhes et al. (2008[Sanhes, D., Favier, I., Saffon, N., Teuma, E. & Gómez, M. (2008). Tetrahedron Lett. 49, 6720-6723.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23N·CHCl3

  • Mr = 456.81

  • Monoclinic, P 21

  • a = 8.6455 (2) Å

  • b = 10.7338 (3) Å

  • c = 12.3310 (3) Å

  • β = 99.055 (1)°

  • V = 1130.04 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 193 K

  • 0.80 × 0.70 × 0.40 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.730, Tmax = 0.850

  • 19688 measured reflections

  • 6678 independent reflections

  • 6147 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.04

  • 6678 reflections

  • 271 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3057 Friedel pairs

  • Flack parameter: −0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯N1 1.00 2.36 3.320 (2) 161

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

9,10-Dihydroanthracene-succinimides are target molecules for pharmaceutical and medical uses (Sanhes et al., 2008), and their related pyrrolidines have also found applications as organocatalysts (Sasaoka et al., 2006; Sanhes et al., 2009; 2010). The synthesis of these compounds is mainly based on thermal-promoted Diels-Alder cycloadditions (for the succinimide derivatives), followed by chemical reduction to give the corresponding heterocyclic amines [Sanhes et al., 2008]. From a structural point of view, a large number of 9,10-dihydroanthracene-succinimides have been analyzed by X-ray single-crystal diffraction. A search of the Cambridge Structural Database gave 67 hits (CSD, version 5.33, update No. 4, August 2012; Allen, 2002), however, no crystallographic data is available for the corresponding non-substituted pyrrolidine ligand. Herein, we report on the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The 9,10-dihydroanthracenyl is bent with a dihedral angle between the benzene rings of 57.82 (8)°. The pyrrolidine heterocycle has an envelope conformation with atom N1 as the flap. It is displaced from the mean plane of the four C-atoms, C15—C18 [maximum deviation = 0.0025 (15) Å] by 0.6313 (14) Å. This mean plane forms a dihedral angle of 50.78 (10)° with the C20—C25 benzyl ring. In contrast to analogous dicarboximide compounds, a pronounced pyramidalization of the atom N1 is observed with Σ C—N1—C = 328.07°, which signifies an accentuated N-donor character.

In the crystal, this N-donor behaviour is evident by the C—H···N intermolecular hydrogen bond involving a chloroform solvate molecule (Table 1 and Fig. 2).

The absolute configuration of atoms C15 and C16 was crystallographically confirmed to be S and R, respectively (Fig. 1).

Related literature top

For catalytic applications of 9,10-dihydroanthracene-succinimides and their related pyrrolidine derivatives, see: Sasaoka et al. (2006); Sanhes et al. (2009, 2010). For the synthesis of these ligands, see: Sanhes et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound was prepared by the reduction of the corresponding 9,10-dihydroanthracene-succinimide following the reported procedure (Sanhes et al., 2008). To a solution of the succinimide (920 mg, 2.52 mmol) in 50 ml of THF at 273 K, LiAlH4 (1.43 g, 37.7 mmol) was added in small portions and the mixture was then refluxed for 72 h. The reaction mixture was cooled to 273 K, then diethylether (30 ml) and an aqueous saturated solution of Na2SO4 were sequentially added. The precipitate that formed was filtered off and the filtrate washed three times with water. The combined organic layers were dried over anhydrous Na2SO4, filtered and the solvent evaporated under vacuum. Crystals of the title compound were obtained by slow evaporation of a solution in CHCl3. The title compound was characterized by high-resolution mass spectrometry (CI, dichloromethane): calc. mass 338.19; found: 338.19 (for C25H23N). Further spectroscopic data for the title compound is available in the archived CIF.

Refinement top

All the H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å (aromatic), 0.99 Å (methylene) and 1.00 Å (methine,) with Uiso(H) = 1.2Ueq(C).

Structure description top

9,10-Dihydroanthracene-succinimides are target molecules for pharmaceutical and medical uses (Sanhes et al., 2008), and their related pyrrolidines have also found applications as organocatalysts (Sasaoka et al., 2006; Sanhes et al., 2009; 2010). The synthesis of these compounds is mainly based on thermal-promoted Diels-Alder cycloadditions (for the succinimide derivatives), followed by chemical reduction to give the corresponding heterocyclic amines [Sanhes et al., 2008]. From a structural point of view, a large number of 9,10-dihydroanthracene-succinimides have been analyzed by X-ray single-crystal diffraction. A search of the Cambridge Structural Database gave 67 hits (CSD, version 5.33, update No. 4, August 2012; Allen, 2002), however, no crystallographic data is available for the corresponding non-substituted pyrrolidine ligand. Herein, we report on the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The 9,10-dihydroanthracenyl is bent with a dihedral angle between the benzene rings of 57.82 (8)°. The pyrrolidine heterocycle has an envelope conformation with atom N1 as the flap. It is displaced from the mean plane of the four C-atoms, C15—C18 [maximum deviation = 0.0025 (15) Å] by 0.6313 (14) Å. This mean plane forms a dihedral angle of 50.78 (10)° with the C20—C25 benzyl ring. In contrast to analogous dicarboximide compounds, a pronounced pyramidalization of the atom N1 is observed with Σ C—N1—C = 328.07°, which signifies an accentuated N-donor character.

In the crystal, this N-donor behaviour is evident by the C—H···N intermolecular hydrogen bond involving a chloroform solvate molecule (Table 1 and Fig. 2).

The absolute configuration of atoms C15 and C16 was crystallographically confirmed to be S and R, respectively (Fig. 1).

For catalytic applications of 9,10-dihydroanthracene-succinimides and their related pyrrolidine derivatives, see: Sasaoka et al. (2006); Sanhes et al. (2009, 2010). For the synthesis of these ligands, see: Sanhes et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level. The solvent molecule has been omitted for clarity.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound, showing the C—H···N hydrogen bond (dashed line) involving the solvent molecule. H atoms not involved in hydrogen bonding have been omitted for clarity.
(I) top
Crystal data top
C25H23N·CHCl3F(000) = 476
Mr = 456.81Dx = 1.343 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9897 reflections
a = 8.6455 (2) Åθ = 2.4–34.7°
b = 10.7338 (3) ŵ = 0.42 mm1
c = 12.3310 (3) ÅT = 193 K
β = 99.055 (1)°Block, colourless
V = 1130.04 (5) Å30.80 × 0.70 × 0.40 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
6678 independent reflections
Radiation source: fine-focus sealed tube6147 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 30.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1212
Tmin = 0.730, Tmax = 0.850k = 1515
19688 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.2655P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6678 reflectionsΔρmax = 0.59 e Å3
271 parametersΔρmin = 0.54 e Å3
1 restraintAbsolute structure: Flack (1983), 3057 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C25H23N·CHCl3V = 1130.04 (5) Å3
Mr = 456.81Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.6455 (2) ŵ = 0.42 mm1
b = 10.7338 (3) ÅT = 193 K
c = 12.3310 (3) Å0.80 × 0.70 × 0.40 mm
β = 99.055 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
6678 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
6147 reflections with I > 2σ(I)
Tmin = 0.730, Tmax = 0.850Rint = 0.021
19688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.59 e Å3
S = 1.04Δρmin = 0.54 e Å3
6678 reflectionsAbsolute structure: Flack (1983), 3057 Friedel pairs
271 parametersAbsolute structure parameter: 0.01 (5)
1 restraint
Special details top

Experimental. Spectroscopic data for the title compound: 1H NMR (300 MHz in CDCl3): 7.31 – 7.34 (m, 7H, Harom), 7.24 – 7.27 (m, 2H, Harom), 7.14 – 7.19 (m, 4H, Harom), 4.20 (s, 2H, H9,10), 3.31 (s, 2H, H19), 2.87 (m, 2H, H17 or H18), 2.78 (m, 2H, H15,16), 1.90 (m, 2H, H17 or H18) 13C NMR (75 MHz in CDCl3): 143.9, 141.8 (C11,12,13,14), 128.8, 128.1, 125.8, 125.7, 125.6, 123.6 (CH arom), 60.0 (C19), 57.0 (C17,18), 47.3 (C9,10), 44.3 (C15,16).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.39289 (16)0.52587 (12)0.43293 (11)0.0266 (2)
C10.1444 (2)0.50798 (18)0.04276 (14)0.0345 (3)
H10.14920.59210.06590.041*
C20.0421 (2)0.4244 (2)0.10382 (15)0.0429 (4)
H20.02270.45160.16890.051*
C30.0345 (2)0.3016 (2)0.06997 (17)0.0435 (4)
H30.03640.24560.11170.052*
C40.1298 (2)0.25967 (18)0.02461 (15)0.0352 (3)
H40.12500.17540.04730.042*
C50.6395 (2)0.28010 (16)0.18645 (14)0.0326 (3)
H50.63550.19630.21070.039*
C60.7800 (2)0.33116 (18)0.16495 (15)0.0376 (4)
H60.87220.28160.17470.045*
C70.7867 (2)0.45386 (19)0.12935 (15)0.0365 (4)
H70.88290.48710.11430.044*
C80.65237 (19)0.52818 (16)0.11575 (13)0.0309 (3)
H80.65690.61220.09220.037*
C90.35679 (17)0.54536 (13)0.12701 (12)0.0255 (3)
H90.36340.63250.09950.031*
C100.34340 (18)0.31443 (14)0.19041 (13)0.0265 (3)
H100.33980.22460.21140.032*
C110.23268 (18)0.34320 (14)0.08567 (13)0.0280 (3)
C120.50511 (18)0.35394 (14)0.17174 (12)0.0260 (3)
C130.51215 (17)0.47792 (14)0.13708 (12)0.0253 (3)
C140.23907 (18)0.46747 (14)0.05191 (12)0.0268 (3)
C150.30194 (18)0.54093 (13)0.24191 (12)0.0250 (3)
H150.19580.57970.23590.030*
C160.29201 (17)0.40197 (13)0.27884 (12)0.0253 (3)
H160.18160.38220.28750.030*
C170.39598 (19)0.39743 (14)0.39155 (13)0.0285 (3)
H17A0.35340.33840.44100.034*
H17B0.50410.37200.38460.034*
C180.4115 (2)0.60275 (14)0.33636 (12)0.0293 (3)
H18A0.52130.60140.32260.035*
H18B0.38010.69010.34670.035*
C190.5165 (2)0.55150 (17)0.52496 (13)0.0337 (3)
H19A0.51950.64230.53910.040*
H19B0.61820.52760.50380.040*
C200.49863 (19)0.48467 (14)0.63052 (12)0.0272 (3)
C210.3573 (2)0.43277 (17)0.64887 (14)0.0325 (3)
H210.26880.43450.59250.039*
C220.3457 (2)0.37825 (18)0.75005 (16)0.0387 (4)
H220.24950.34180.76160.046*
C230.4726 (3)0.37670 (18)0.83363 (14)0.0390 (4)
H230.46300.34120.90280.047*
C240.6135 (2)0.42704 (18)0.81587 (14)0.0385 (4)
H240.70130.42590.87290.046*
C250.6271 (2)0.47953 (16)0.71431 (14)0.0325 (3)
H250.72500.51220.70210.039*
C260.0596 (2)0.65871 (19)0.47279 (19)0.0438 (4)
H260.15960.61070.47820.053*
Cl10.07721 (8)0.59279 (8)0.36846 (6)0.06723 (19)
Cl20.09629 (12)0.81306 (8)0.44019 (12)0.1005 (3)
Cl30.00976 (9)0.64798 (9)0.59955 (6)0.0731 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0317 (6)0.0213 (5)0.0280 (6)0.0020 (4)0.0080 (5)0.0010 (4)
C10.0287 (7)0.0446 (9)0.0315 (7)0.0070 (6)0.0083 (6)0.0030 (6)
C20.0287 (8)0.0663 (13)0.0335 (8)0.0056 (8)0.0043 (6)0.0026 (8)
C30.0276 (8)0.0604 (12)0.0430 (9)0.0087 (8)0.0075 (7)0.0170 (9)
C40.0303 (7)0.0368 (8)0.0410 (8)0.0070 (6)0.0141 (6)0.0106 (7)
C50.0333 (8)0.0304 (7)0.0349 (8)0.0073 (6)0.0079 (6)0.0003 (6)
C60.0291 (7)0.0446 (10)0.0398 (8)0.0083 (7)0.0077 (6)0.0056 (7)
C70.0257 (7)0.0491 (10)0.0363 (8)0.0037 (7)0.0101 (6)0.0060 (7)
C80.0308 (7)0.0327 (7)0.0310 (7)0.0064 (6)0.0108 (6)0.0013 (6)
C90.0279 (6)0.0207 (6)0.0290 (6)0.0007 (5)0.0079 (5)0.0030 (5)
C100.0295 (7)0.0187 (5)0.0331 (7)0.0007 (5)0.0103 (5)0.0002 (5)
C110.0252 (6)0.0293 (7)0.0312 (7)0.0017 (5)0.0096 (5)0.0039 (5)
C120.0279 (6)0.0237 (6)0.0276 (6)0.0000 (5)0.0083 (5)0.0017 (5)
C130.0251 (6)0.0253 (6)0.0262 (6)0.0002 (5)0.0066 (5)0.0003 (5)
C140.0246 (6)0.0277 (6)0.0297 (7)0.0023 (5)0.0088 (5)0.0001 (5)
C150.0291 (6)0.0192 (5)0.0280 (6)0.0014 (5)0.0091 (5)0.0030 (5)
C160.0282 (6)0.0202 (6)0.0292 (6)0.0012 (5)0.0096 (5)0.0020 (5)
C170.0352 (7)0.0224 (6)0.0295 (7)0.0027 (5)0.0095 (6)0.0034 (5)
C180.0388 (8)0.0210 (6)0.0292 (6)0.0031 (6)0.0095 (6)0.0013 (5)
C190.0354 (8)0.0343 (8)0.0316 (7)0.0085 (6)0.0057 (6)0.0019 (6)
C200.0295 (7)0.0255 (6)0.0271 (6)0.0002 (5)0.0063 (5)0.0032 (5)
C210.0289 (7)0.0366 (8)0.0330 (7)0.0001 (6)0.0084 (6)0.0002 (6)
C220.0403 (9)0.0402 (9)0.0401 (9)0.0023 (7)0.0201 (7)0.0001 (7)
C230.0529 (10)0.0375 (9)0.0296 (8)0.0037 (7)0.0155 (7)0.0003 (6)
C240.0427 (9)0.0405 (9)0.0310 (8)0.0037 (7)0.0014 (7)0.0054 (7)
C250.0309 (7)0.0332 (7)0.0332 (7)0.0026 (6)0.0043 (6)0.0054 (6)
C260.0380 (9)0.0372 (9)0.0568 (11)0.0008 (7)0.0096 (8)0.0027 (8)
Cl10.0523 (3)0.0910 (5)0.0566 (3)0.0100 (3)0.0033 (2)0.0085 (3)
Cl20.0901 (6)0.0433 (3)0.1741 (10)0.0087 (4)0.0397 (6)0.0149 (5)
Cl30.0745 (4)0.0909 (5)0.0582 (3)0.0120 (4)0.0239 (3)0.0231 (3)
Geometric parameters (Å, º) top
N1—C191.457 (2)C11—C141.401 (2)
N1—C171.4718 (19)C12—C131.402 (2)
N1—C181.4782 (19)C15—C181.532 (2)
C1—C141.386 (2)C15—C161.5659 (19)
C1—C21.395 (3)C15—H151.0000
C1—H10.9500C16—C171.533 (2)
C2—C31.386 (3)C16—H161.0000
C2—H20.9500C17—H17A0.9900
C3—C41.393 (3)C17—H17B0.9900
C3—H30.9500C18—H18A0.9900
C4—C111.397 (2)C18—H18B0.9900
C4—H40.9500C19—C201.515 (2)
C5—C121.394 (2)C19—H19A0.9900
C5—C61.396 (3)C19—H19B0.9900
C5—H50.9500C20—C211.393 (2)
C6—C71.392 (3)C20—C251.394 (2)
C6—H60.9500C21—C221.396 (2)
C7—C81.397 (3)C21—H210.9500
C7—H70.9500C22—C231.382 (3)
C8—C131.389 (2)C22—H220.9500
C8—H80.9500C23—C241.382 (3)
C9—C131.514 (2)C23—H230.9500
C9—C141.515 (2)C24—C251.395 (3)
C9—C151.564 (2)C24—H240.9500
C9—H91.0000C25—H250.9500
C10—C121.513 (2)C26—Cl21.746 (2)
C10—C111.513 (2)C26—Cl11.754 (2)
C10—C161.556 (2)C26—Cl31.764 (2)
C10—H101.0000C26—H261.0000
C19—N1—C17113.31 (13)C9—C15—C16109.31 (11)
C19—N1—C18111.26 (12)C18—C15—H15109.0
C17—N1—C18103.50 (11)C9—C15—H15109.0
C14—C1—C2119.54 (18)C16—C15—H15109.0
C14—C1—H1120.2C17—C16—C10115.14 (12)
C2—C1—H1120.2C17—C16—C15104.06 (12)
C3—C2—C1120.33 (17)C10—C16—C15109.67 (11)
C3—C2—H2119.8C17—C16—H16109.3
C1—C2—H2119.8C10—C16—H16109.3
C2—C3—C4120.64 (17)C15—C16—H16109.3
C2—C3—H3119.7N1—C17—C16104.15 (12)
C4—C3—H3119.7N1—C17—H17A110.9
C3—C4—C11119.10 (18)C16—C17—H17A110.9
C3—C4—H4120.4N1—C17—H17B110.9
C11—C4—H4120.4C16—C17—H17B110.9
C12—C5—C6118.98 (15)H17A—C17—H17B108.9
C12—C5—H5120.5N1—C18—C15103.77 (12)
C6—C5—H5120.5N1—C18—H18A111.0
C7—C6—C5120.79 (16)C15—C18—H18A111.0
C7—C6—H6119.6N1—C18—H18B111.0
C5—C6—H6119.6C15—C18—H18B111.0
C6—C7—C8120.20 (16)H18A—C18—H18B109.0
C6—C7—H7119.9N1—C19—C20114.73 (13)
C8—C7—H7119.9N1—C19—H19A108.6
C13—C8—C7119.28 (16)C20—C19—H19A108.6
C13—C8—H8120.4N1—C19—H19B108.6
C7—C8—H8120.4C20—C19—H19B108.6
C13—C9—C14106.76 (12)H19A—C19—H19B107.6
C13—C9—C15107.63 (12)C21—C20—C25118.72 (15)
C14—C9—C15105.46 (12)C21—C20—C19122.63 (14)
C13—C9—H9112.2C25—C20—C19118.59 (14)
C14—C9—H9112.2C20—C21—C22120.06 (16)
C15—C9—H9112.2C20—C21—H21120.0
C12—C10—C11106.76 (12)C22—C21—H21120.0
C12—C10—C16108.06 (12)C23—C22—C21120.75 (17)
C11—C10—C16105.24 (12)C23—C22—H22119.6
C12—C10—H10112.1C21—C22—H22119.6
C11—C10—H10112.1C24—C23—C22119.57 (16)
C16—C10—H10112.1C24—C23—H23120.2
C4—C11—C14120.17 (15)C22—C23—H23120.2
C4—C11—C10126.34 (15)C23—C24—C25120.07 (16)
C14—C11—C10113.49 (13)C23—C24—H24120.0
C5—C12—C13120.26 (14)C25—C24—H24120.0
C5—C12—C10126.29 (14)C20—C25—C24120.78 (16)
C13—C12—C10113.45 (13)C20—C25—H25119.6
C8—C13—C12120.49 (14)C24—C25—H25119.6
C8—C13—C9126.03 (14)Cl2—C26—Cl1109.88 (13)
C12—C13—C9113.48 (13)Cl2—C26—Cl3111.44 (12)
C1—C14—C11120.22 (15)Cl1—C26—Cl3109.86 (12)
C1—C14—C9126.33 (15)Cl2—C26—H26108.5
C11—C14—C9113.45 (13)Cl1—C26—H26108.5
C18—C15—C9115.86 (12)Cl3—C26—H26108.5
C18—C15—C16104.31 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···N11.002.363.320 (2)161

Experimental details

Crystal data
Chemical formulaC25H23N·CHCl3
Mr456.81
Crystal system, space groupMonoclinic, P21
Temperature (K)193
a, b, c (Å)8.6455 (2), 10.7338 (3), 12.3310 (3)
β (°) 99.055 (1)
V3)1130.04 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.80 × 0.70 × 0.40
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.730, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
19688, 6678, 6147
Rint0.021
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.04
No. of reflections6678
No. of parameters271
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.54
Absolute structureFlack (1983), 3057 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26···N11.002.363.320 (2)161
 

Acknowledgements

This work was financially supported by the Centre National de la Recherche Scientifique (CNRS) and by Université Paul Sabatier. IB is grateful to the Ministère de l'Enseignement Supérieur et de la Recherche for a PhD grant.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSanhes, D., Favier, I., Saffon, N., Teuma, E. & Gómez, M. (2008). Tetrahedron Lett. 49, 6720–6723.  Web of Science CSD CrossRef CAS Google Scholar
First citationSanhes, D., Gual, A., Castillón, S., Claver, C., Gómez, M. & Teuma, E. (2009). Tetrahedron Asymmetry, 20, 1009–1014.  Web of Science CSD CrossRef CAS Google Scholar
First citationSanhes, D., Raluy, E., Retory, S., Saffon, N., Teuma, E. & Gómez, M. (2010). Dalton Trans. 39, 9719–9726.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSasaoka, A., Uddin, Md. I., Shimomoto, A., Ichikawa, Y., Shiro, M. & Kotsuki, H. (2006). Tetrahedron Asymmetry, 17, 2963–2969.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds