organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-5-methyl-1,2-benzoxazole 2-oxide

aDepartment of Physics, Kunthavai Naachiar Government Arts College (w) (Autonomous), Thanjavur-7, India, and bR & D Department, Suven Life Sciences Ltd, Hyderabad-55, Andhra Pradesh, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

(Received 2 September 2012; accepted 7 September 2012; online 19 September 2012)

In the title compound, C15H13NO2, the isoxazole unit and the attached benzene ring are almost coplanar, making a dihedral angle of 1.42 (8)°. The benzyl ring is inclined to the isoxazole ring by 74.19 (8)° and is in a +sc conformation with respect to the benzisoxazole unit. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules, forming zigzag chains propagating along the b axis. There are also ππ inter­actions present involving the isoxazole and benzyl rings [centroid–centroid distance = 3.5209 (10) Å], and C—H⋯π inter­actions involving the benzene ring of the benzoisoxazole unit and the methyl­ene bridging group.

Related literature

For the anti-epileptic, anti­spasmodic and anti­fungal properties of benzoxazole derivatives, see: Jian et al. (2007[Jian, F.-F., Yi, W., Wang, L.-M. & Wang, J. (2007). Acta Cryst. E63, o3887.]). For their anti­tuberculer activity, see: Vinšová et al. (2007[Vinšová, J., Marek, J., Vančo, J. & Csöllei, J. (2007). Acta Cryst. E63, o2802-o2803.]). For other biological activties of isoxazoles and benzisoxazole derivatives, see: Veera Reddy et al. (2011[Veera Reddy, A., Laxminarasimhulu, G., Uday, B. R. S. & Pramod, K. (2011). Indian J. Chem. Sect. B, 50, 119-125.]). For details of the synthesis, see: Veera Reddy et al. (2011[Veera Reddy, A., Laxminarasimhulu, G., Uday, B. R. S. & Pramod, K. (2011). Indian J. Chem. Sect. B, 50, 119-125.]). For the related structure 5-chloro-3-methyl-1,2-benzisoxazole-2-oxide, see: Ghari & Viterbo (1982[Ghari, G. & Viterbo, D. (1982). Acta Cryst. B38, 323-325.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO2

  • Mr = 239.26

  • Monoclinic, P 21 /n

  • a = 6.4527 (2) Å

  • b = 11.2213 (4) Å

  • c = 16.9371 (7) Å

  • β = 100.002 (2)°

  • V = 1207.74 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.983

  • 13491 measured reflections

  • 3512 independent reflections

  • 2113 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.172

  • S = 1.06

  • 3512 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.49 3.154 (2) 128
C8—H8BCg2ii 0.97 3.00 3.6800 (16) 129
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Isoxazoles and benzisoxazoles are important classes of nitrogen-oxygen containing heterocycles. They have extensive biological applications and are useful intermediates in medicinal chemistry (Veera Reddy et al., 2011). The benzoxazole skeleton is an essential structural unit of several antibacterial, anticancer and anti-HIV-1 agents. The antituberculotic activity of several benzoxazole derivatives have been reported (Vinšová et al., 2007). Some benzoxazoles exhibit high fluorescence and are used as optical whitening agents, photoluminesents and active components in dye lasers. Benzoxazole derivatives show antiepileptic, antispasmodic and antifungal properties (Jian et al., 2007). 3-substituted 1,2-benzisoxazole derivatives are emerging as potential antipsychotic compounds, antiseizure agents and are also used to block the repetitive firing of voltage-sensitive sodium channels and so reduce voltage-sensitive T-type calcium currents (Veera Reddy et al., 2011).

The molecular structure of the title functionalized 1,2-benzisoxazole compound is illustrated in Fig. 1. It contains three planar rings, namely, a methyl substituted benzene ring A = C2—C7, an isoxazole ring B =C1/C7/C6/O1/N1 and the benzyl ring C = C9—C14. The dihedral angles between rings A/B and B/C are 1.42 (8)° and 74.19 (8)°, respectively.

The bond lengths and angles in the title compound are in good agreement with the expected values and are comparable with the corresponding values reported for 5-chloro-3-methyl-1,2-benzisoxazole-2-oxide (Ghari & Viterbo, 1982).

In the crystal, molecules are linked via C—H···O hydrogen bonds leading to the formation of zigzag chains propagating along the a axis direction (Tabel 1 and Fig. 2). Molecules are also linked via C—H···π (Table 1) and π···π interactions. The latter involve the isoxazole (B = Cg1) and benzyl rings (C = Cg3) [Cg1···Cg3i = 3.5209 (10) Å; symmetry code: (i) -x + 1.5, y - 1/2, -z + 1/2].

Related literature top

For the anti-epileptic, antispasmodic and antifungal properties of benzoxazole derivatives, see: Jian et al. (2007). For their antituberculer activity, see: Vinšová et al. (2007). For other biological activties of isoxazoles and benzisoxazole derivatives, see: Veera Reddy et al. (2011). For details of the synthesis, see: Veera Reddy et al. (2011). For the related structure 5-chloro-3-methyl-1,2-benzisoxazole-2-oxide, see: Ghari & Viterbo (1982).

Experimental top

The compound was synthesized by the published method (Veera Reddy et al., 2011)

Refinement top

All the H atoms were positioned geometrically and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H atoms and = 1.2 for other H atoms.

Structure description top

Isoxazoles and benzisoxazoles are important classes of nitrogen-oxygen containing heterocycles. They have extensive biological applications and are useful intermediates in medicinal chemistry (Veera Reddy et al., 2011). The benzoxazole skeleton is an essential structural unit of several antibacterial, anticancer and anti-HIV-1 agents. The antituberculotic activity of several benzoxazole derivatives have been reported (Vinšová et al., 2007). Some benzoxazoles exhibit high fluorescence and are used as optical whitening agents, photoluminesents and active components in dye lasers. Benzoxazole derivatives show antiepileptic, antispasmodic and antifungal properties (Jian et al., 2007). 3-substituted 1,2-benzisoxazole derivatives are emerging as potential antipsychotic compounds, antiseizure agents and are also used to block the repetitive firing of voltage-sensitive sodium channels and so reduce voltage-sensitive T-type calcium currents (Veera Reddy et al., 2011).

The molecular structure of the title functionalized 1,2-benzisoxazole compound is illustrated in Fig. 1. It contains three planar rings, namely, a methyl substituted benzene ring A = C2—C7, an isoxazole ring B =C1/C7/C6/O1/N1 and the benzyl ring C = C9—C14. The dihedral angles between rings A/B and B/C are 1.42 (8)° and 74.19 (8)°, respectively.

The bond lengths and angles in the title compound are in good agreement with the expected values and are comparable with the corresponding values reported for 5-chloro-3-methyl-1,2-benzisoxazole-2-oxide (Ghari & Viterbo, 1982).

In the crystal, molecules are linked via C—H···O hydrogen bonds leading to the formation of zigzag chains propagating along the a axis direction (Tabel 1 and Fig. 2). Molecules are also linked via C—H···π (Table 1) and π···π interactions. The latter involve the isoxazole (B = Cg1) and benzyl rings (C = Cg3) [Cg1···Cg3i = 3.5209 (10) Å; symmetry code: (i) -x + 1.5, y - 1/2, -z + 1/2].

For the anti-epileptic, antispasmodic and antifungal properties of benzoxazole derivatives, see: Jian et al. (2007). For their antituberculer activity, see: Vinšová et al. (2007). For other biological activties of isoxazoles and benzisoxazole derivatives, see: Veera Reddy et al. (2011). For details of the synthesis, see: Veera Reddy et al. (2011). For the related structure 5-chloro-3-methyl-1,2-benzisoxazole-2-oxide, see: Ghari & Viterbo (1982).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The intermolecular C—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).
3-Benzyl-5-methyl-1,2-benzoxazole 2-oxide top
Crystal data top
C15H13NO2F(000) = 504
Mr = 239.26Dx = 1.316 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 13955 reflections
a = 6.4527 (2) Åθ = 1.2–30.1°
b = 11.2213 (4) ŵ = 0.09 mm1
c = 16.9371 (7) ÅT = 293 K
β = 100.002 (2)°Block, colourless
V = 1207.74 (8) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3512 independent reflections
Radiation source: fine-focus sealed tube2113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scanθmax = 30.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 98
Tmin = 0.974, Tmax = 0.983k = 1513
13491 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0836P)2 + 0.1125P]
where P = (Fo2 + 2Fc2)/3
3512 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H13NO2V = 1207.74 (8) Å3
Mr = 239.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.4527 (2) ŵ = 0.09 mm1
b = 11.2213 (4) ÅT = 293 K
c = 16.9371 (7) Å0.30 × 0.20 × 0.20 mm
β = 100.002 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3512 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2113 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.983Rint = 0.026
13491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
3512 reflectionsΔρmin = 0.20 e Å3
163 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28937 (17)0.48425 (11)0.21034 (8)0.0760 (5)
O20.3491 (2)0.63946 (12)0.29866 (9)0.0979 (6)
N10.4211 (2)0.58198 (13)0.24703 (9)0.0682 (5)
C10.5941 (2)0.58880 (13)0.21630 (9)0.0532 (5)
C20.7187 (2)0.46425 (12)0.10447 (8)0.0508 (4)
C30.6602 (3)0.37116 (13)0.05213 (9)0.0577 (5)
C40.4707 (3)0.31228 (14)0.05425 (11)0.0688 (6)
C50.3391 (3)0.34234 (15)0.10596 (12)0.0728 (6)
C60.3994 (2)0.43709 (14)0.15601 (10)0.0590 (5)
C70.5868 (2)0.49807 (12)0.15712 (9)0.0485 (4)
C80.7549 (2)0.68132 (13)0.24347 (9)0.0574 (5)
C90.7396 (2)0.78613 (12)0.18692 (8)0.0492 (4)
C100.5636 (2)0.85898 (13)0.17589 (9)0.0578 (5)
C110.5506 (3)0.95583 (15)0.12500 (11)0.0685 (6)
C120.7117 (3)0.98059 (16)0.08532 (11)0.0753 (7)
C130.8872 (3)0.90974 (17)0.09595 (11)0.0747 (7)
C140.9005 (2)0.81256 (15)0.14674 (10)0.0615 (5)
C150.7953 (3)0.33322 (18)0.00672 (11)0.0800 (7)
H20.845200.504000.104500.0610*
H40.432300.249700.018700.0830*
H50.215000.300800.107300.0870*
H8A0.893800.646100.248200.0690*
H8B0.738000.709200.296200.0690*
H100.453300.842500.203000.0690*
H110.431701.004200.117800.0820*
H120.702701.045700.050900.0900*
H130.997400.927000.069000.0900*
H141.020000.764700.153700.0740*
H15A0.729500.267900.038100.1200*
H15B0.930500.308700.021600.1200*
H15C0.812500.398700.041500.1200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0529 (6)0.0788 (8)0.1006 (10)0.0032 (6)0.0250 (6)0.0178 (7)
O20.0986 (10)0.0965 (10)0.1127 (11)0.0202 (8)0.0581 (9)0.0021 (9)
N10.0641 (8)0.0666 (9)0.0788 (9)0.0092 (7)0.0262 (7)0.0079 (7)
C10.0519 (8)0.0538 (8)0.0546 (8)0.0049 (6)0.0116 (6)0.0101 (6)
C20.0481 (7)0.0505 (8)0.0512 (8)0.0029 (6)0.0018 (6)0.0074 (6)
C30.0650 (9)0.0501 (8)0.0521 (8)0.0031 (7)0.0065 (7)0.0055 (6)
C40.0748 (11)0.0507 (9)0.0710 (11)0.0063 (8)0.0148 (9)0.0047 (8)
C50.0573 (9)0.0597 (10)0.0930 (13)0.0181 (8)0.0100 (9)0.0202 (9)
C60.0467 (7)0.0582 (9)0.0708 (10)0.0024 (7)0.0062 (7)0.0187 (7)
C70.0439 (7)0.0472 (7)0.0524 (8)0.0022 (6)0.0025 (6)0.0115 (6)
C80.0628 (8)0.0557 (8)0.0516 (8)0.0011 (7)0.0040 (6)0.0009 (6)
C90.0541 (7)0.0468 (7)0.0451 (7)0.0011 (6)0.0041 (6)0.0098 (6)
C100.0552 (8)0.0563 (9)0.0607 (9)0.0023 (7)0.0065 (7)0.0086 (7)
C110.0730 (10)0.0533 (9)0.0724 (11)0.0085 (8)0.0059 (9)0.0047 (8)
C120.0993 (14)0.0570 (10)0.0650 (11)0.0094 (10)0.0017 (10)0.0035 (8)
C130.0853 (12)0.0712 (11)0.0713 (11)0.0149 (10)0.0242 (9)0.0008 (9)
C140.0574 (8)0.0609 (9)0.0676 (10)0.0022 (7)0.0149 (7)0.0056 (7)
C150.0952 (13)0.0782 (11)0.0626 (11)0.0089 (10)0.0024 (9)0.0121 (9)
Geometric parameters (Å, º) top
O1—N11.4587 (19)C11—C121.361 (3)
O1—C61.363 (2)C12—C131.370 (3)
O2—N11.240 (2)C13—C141.382 (3)
N1—C11.3133 (19)C2—H20.9300
C1—C71.424 (2)C4—H40.9300
C1—C81.483 (2)C5—H50.9300
C2—C31.380 (2)C8—H8A0.9700
C2—C71.3883 (19)C8—H8B0.9700
C3—C41.396 (3)C10—H100.9300
C3—C151.496 (3)C11—H110.9300
C4—C51.364 (3)C12—H120.9300
C5—C61.373 (2)C13—H130.9300
C6—C71.3867 (19)C14—H140.9300
C8—C91.509 (2)C15—H15A0.9600
C9—C101.3854 (19)C15—H15B0.9600
C9—C141.3691 (19)C15—H15C0.9600
C10—C111.381 (2)
N1—O1—C6104.25 (11)C3—C2—H2120.00
O1—N1—O2115.44 (12)C7—C2—H2120.00
O1—N1—C1110.34 (13)C3—C4—H4118.00
O2—N1—C1134.23 (15)C5—C4—H4118.00
N1—C1—C7108.11 (13)C4—C5—H5122.00
N1—C1—C8120.98 (13)C6—C5—H5122.00
C7—C1—C8130.90 (12)C1—C8—H8A109.00
C3—C2—C7119.33 (14)C1—C8—H8B109.00
C2—C3—C4119.02 (15)C9—C8—H8A109.00
C2—C3—C15121.18 (16)C9—C8—H8B109.00
C4—C3—C15119.81 (15)H8A—C8—H8B108.00
C3—C4—C5123.05 (16)C9—C10—H10120.00
C4—C5—C6116.53 (16)C11—C10—H10120.00
O1—C6—C5126.33 (14)C10—C11—H11120.00
O1—C6—C7110.76 (13)C12—C11—H11120.00
C5—C6—C7122.91 (15)C11—C12—H12120.00
C1—C7—C2134.32 (13)C13—C12—H12120.00
C1—C7—C6106.53 (12)C12—C13—H13120.00
C2—C7—C6119.13 (13)C14—C13—H13120.00
C1—C8—C9112.55 (12)C9—C14—H14120.00
C8—C9—C10120.48 (12)C13—C14—H14120.00
C8—C9—C14120.84 (12)C3—C15—H15A109.00
C10—C9—C14118.67 (13)C3—C15—H15B109.00
C9—C10—C11120.54 (14)C3—C15—H15C110.00
C10—C11—C12120.02 (17)H15A—C15—H15B110.00
C11—C12—C13120.11 (17)H15A—C15—H15C109.00
C12—C13—C14120.02 (17)H15B—C15—H15C110.00
C9—C14—C13120.65 (14)
C6—O1—N1—O2179.19 (14)C2—C3—C4—C50.0 (3)
C6—O1—N1—C10.63 (17)C3—C4—C5—C61.5 (3)
N1—O1—C6—C5179.86 (16)C4—C5—C6—C72.1 (3)
N1—O1—C6—C70.19 (16)C4—C5—C6—O1177.92 (16)
O1—N1—C1—C70.80 (17)O1—C6—C7—C10.26 (17)
O2—N1—C1—C80.1 (3)O1—C6—C7—C2178.71 (13)
O2—N1—C1—C7178.98 (18)C5—C6—C7—C1179.69 (16)
O1—N1—C1—C8179.89 (12)C5—C6—C7—C21.3 (2)
C8—C1—C7—C20.9 (3)C1—C8—C9—C1065.02 (17)
C8—C1—C7—C6179.63 (15)C1—C8—C9—C14116.26 (15)
N1—C1—C8—C999.68 (17)C8—C9—C10—C11179.13 (14)
C7—C1—C8—C979.18 (19)C14—C9—C10—C110.4 (2)
N1—C1—C7—C60.66 (17)C8—C9—C14—C13178.99 (15)
N1—C1—C7—C2178.08 (16)C10—C9—C14—C130.2 (2)
C7—C2—C3—C15178.79 (14)C9—C10—C11—C120.2 (3)
C7—C2—C3—C40.8 (2)C10—C11—C12—C130.2 (3)
C3—C2—C7—C60.2 (2)C11—C12—C13—C140.3 (3)
C3—C2—C7—C1178.40 (16)C12—C13—C14—C90.1 (3)
C15—C3—C4—C5179.66 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.493.154 (2)128
C8—H8B···Cg2ii0.973.003.6800 (16)129
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13NO2
Mr239.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.4527 (2), 11.2213 (4), 16.9371 (7)
β (°) 100.002 (2)
V3)1207.74 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.974, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
13491, 3512, 2113
Rint0.026
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.172, 1.06
No. of reflections3512
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.493.154 (2)128
C8—H8B···Cg2ii0.973.003.6800 (16)129
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility, IIT-Madras, Chennai-36, for the data collection.

References

First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGhari, G. & Viterbo, D. (1982). Acta Cryst. B38, 323–325.  CSD CrossRef IUCr Journals Google Scholar
First citationJian, F.-F., Yi, W., Wang, L.-M. & Wang, J. (2007). Acta Cryst. E63, o3887.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeera Reddy, A., Laxminarasimhulu, G., Uday, B. R. S. & Pramod, K. (2011). Indian J. Chem. Sect. B, 50, 119–125.  Google Scholar
First citationVinšová, J., Marek, J., Vančo, J. & Csöllei, J. (2007). Acta Cryst. E63, o2802–o2803.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds