metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2.2.2-Cryptand)potassium tetra­kis­(η2-ethyl­ene)cobaltate(−I)

aDepartment of Chemistry, 207 Pleasant Street SE, University of Minnesota, Minneapolis, MN 55455, USA
*Correspondence e-mail: brennessel@chem.rochester.edu

(Received 4 September 2012; accepted 6 September 2012; online 12 September 2012)

The title salt, [K(C18H36N2O6)][Co(C2H4)4], is one of only two known homoleptic ethyl­enemetalates. The cation and anion are well separated, which gives an unperturbed tetra­hedral anion as is expected for a formally Co−I d10 metal center. The considerable elongation of the C=C bonds of the ethyl­ene ligands [average 1.401 (6) Å], relative to that of free ethyl­ene (1.333 Å), is consistent with metal→π* back-bonding models. One arm of the 2.2.2-cryptand (4,7,13,16,21,24-hexa­oxa-1,10-diaza­bicyclo­[8.8.8]hexa­cosa­ne) complexant is disordered and was modeled over two positions with a refined occupancy ratio of 0.559 (2):0.441 (2). In the crystal, the cationic K(2.2.2-cryptand) units are linked via C—H⋯O hydrogen bonds, forming inversion dimers. There are no other significant inter­molecular inter­actions in the crystal structure.

Related literature

For reports on the only other homoleptic ethyl­enemetalate, the ethyl­eneferrate, see: Jonas (1979[Jonas, K. (1979). US Patent No. 4 169 845.], 1981[Jonas, K. (1981). Adv. Organomet. Chem. 19, 97-122.]); Jonas et al. (1979[Jonas, K., Schieferstein, L., Krüger, C. & Tsay, Y.-H. (1979). Angew. Chem. Int. Ed. Engl. 18, 550-551.]); Jonas & Krüger (1980[Jonas, K. & Krüger, C. (1980). Angew. Chem. Int. Ed. Engl. 19, 520-537.]). For reports on the anion of the title complex, but with different cations, see: Jonas (1979[Jonas, K. (1979). US Patent No. 4 169 845.], 1981[Jonas, K. (1981). Adv. Organomet. Chem. 19, 97-122.], 1984[Jonas, K. (1984). Pure Appl. Chem. 56, 63-80.], 1985[Jonas, K. (1985). Angew. Chem. Int. Ed. Engl. 24, 295-311.]); Jonas et al. (1979[Jonas, K., Schieferstein, L., Krüger, C. & Tsay, Y.-H. (1979). Angew. Chem. Int. Ed. Engl. 18, 550-551.]); Jonas & Krüger (1980[Jonas, K. & Krüger, C. (1980). Angew. Chem. Int. Ed. Engl. 19, 520-537.]). For the initial report of this anion synthesized from cobalt(II) bromide, see: Brennessel et al. (2006[Brennessel, W. W., Young, V. G. Jr & Ellis, J. E. (2006). Angew. Chem. Int. Ed. 45, 7268-7271.]). For neutral and cationic structurally characterized homoleptic ethyl­ene transition metal complexes, see for [Pt0]: Howard et al. (1983[Howard, J. A. K., Spencer, J. L. & Mason, S. A. (1983). Proc. R. Soc. London Ser. A, 386, 145-161.]); for [Cu+]: Santiso-Quiñones et al. (2007[Santiso-Quiñones, G., Reisinger, A., Slattery, J. & Krossing, I. (2007). Chem. Commun. pp. 5046-5048.]); for [Ag+]: Reisinger et al. (2009[Reisinger, A., Trapp, N., Knapp, C., Himmel, D., Breher, F., Rüegger, H. & Krossing, I. (2009). Chem. Eur. J. 15, 9505-9520.]); for [Au+]: Dias et al. (2008[Dias, H. V. R., Fianchini, M., Cundari, T. R. & Campana, C. F. (2008). Angew. Chem. Int. Ed. 47, 556-559.]). For details of the preparation and purification of reagents and solvents, and for descriptions of the equipment and techniques, see: Brennessel (2009[Brennessel, W. W. (2009). Doctoral thesis, University of Minnesota, Minneapolis, MN, USA.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the bond-length of ethyl­ene gas, see: Lide (2003[Lide, D. R. (2003). CRC Handbook of Chemistry and Physics, 83rd ed. Boca Raton, FL: CRC Press.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C18H36N2O6)][Co(C2H4)4]

  • Mr = 586.73

  • Orthorhombic, P b c n

  • a = 25.836 (3) Å

  • b = 10.4820 (12) Å

  • c = 22.544 (3) Å

  • V = 6105.4 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 173 K

  • 0.50 × 0.24 × 0.16 mm

Data collection
  • Siemens SMART CCD Platform diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.709, Tmax = 0.891

  • 45000 measured reflections

  • 7010 independent reflections

  • 4825 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.073

  • S = 1.02

  • 7010 reflections

  • 414 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24A⋯O5i 0.99 2.59 3.326 (6) 131
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The reductive synthesis of the anion from cobaltocene (CoCp2) with alkali metals has been reported previously in a patent (Jonas, 1979) and in review articles (Jonas & Krüger, 1980; Jonas, Schieferstein et al., 1979; Jonas, 1981, 1984, 1985). Herein we report on the first structure of the title anion and the reductive synthesis from cobalt(II) bromide using potassium naphthalene as the reducing agent. Because the advantages of having cyclopentadienide (Cp-) as a support ligand in the reduction from CoCp2 (Jonas & Krüger, 1980; see discussion on page 533) were not available in our synthesis, we had to be certain that ethylene gas was present in excess, to assist naphthalene in supporting the metal center in its various oxidation states from +2 to -1. This was achieved with low temperatures, specifically 195 K, at which point ethylene appeared to be "infinitely" soluble in THF. Even at the very cold, but slightly warmer, temperature of 213 K, ethylene appeared to have finite solubility. The other interesting point in the synthesis was that naphthalene would (re)coordinate to cobalt when THF was removed under reduced pressure. Therefore the isolation of the final product required that additional ethylene gas be reintroduced to the diethyl ether slurry to displace any (re)coordinated naphthalene. It was easy to determine when the naphthalene was fully displaced because the slurry lost all trace of red and became pale yellow to off-white. Details on the isolated red naphthalenecobaltates(–I) can be found elsewhere (Brennessel et al., 2006, Brennessel, 2009).

A search of the Cambridge Structural Database (CSD, Version 5.33, update No. 4, August 2012; Allen, 2002), indicated the presence of 629 structures containing an ethylene ligand, but only 29 are with first row transition metals containing at least two ethylene ligands.

The molecular structure of the title anion is illustrated in Fig. 1, and the title K+2.2.2-cryptand cationic unit in Fig. 2. The recently reported anion [Co(η2-C2H4)2(η4-C10H8)]-, bis(ethylene)naphthalenecobaltate(–I), which occurs twice independently as part of a triple salt (Brennessel et al., 2006), has bond lengths that are statistically identical (1.410 (8) Å, avg) to those of the title complex (1.401 (6) Å, avg). The isoelectronic iron structure, [Li(tmeda)]2[Fe(η2-C2H4)4], has been determined with two unique C–C distances of 1.410 and 1.433 Å (Jonas, Schieferstein et al., 1979); relative to that of free ethylene = 1.333 Å (Lide, 2003). No standard uncertainties were reported, but they are likely to be somewhat large (R1 = 7.8%). Also, the ethylene ligands have an asymmetry due to different contact distances with the lithium cations. If we take the average C–C bond length of the iron structure at face value, 1.42 Å, then it appears to be slightly longer that of the title complex, 1.401 (6) Å, which would be consistent with a more reduced metal center. All other structurally characterized homoleptic ethylene transition metal compounds are either neutral: Pt (Howard et al., 1983); or cationic: Cu+ (Santiso-Quiñones et al., 2007), Ag+ (Reisinger et al., 2009), and Au+ (Dias et al., 2008).

In the crystal, the cationic K+2.2.2-cryptand units are linked via a pair of C-H···O hydrogen bonds to form inversion dimers (Table 1). There are no other significant intermolecular interactions in the crystal structure.

Related literature top

For reports on the only other homoleptic ethylenemetalate, the ethyleneferrate, see: Jonas (1979, 1981); Jonas et al. (1979); Jonas & Krüger (1980). For reports on the anion of the title complex, but with different cations, see: Jonas (1979, 1981, 1984, 1985); Jonas et al. (1979); Jonas & Krüger (1980). For the initial report of this anion synthesized from cobalt(II) bromide, see: Brennessel et al. (2006). For neutral and cationic structurally characterized homoleptic ethylene transition metal complexes, see for [Pt0]: Howard et al. (1983); for [Cu+]: Santiso-Quiñones et al. (2007); for [Ag+]: Reisinger et al. (2009); for [Au+]: Dias et al. (2008). For details of the preparation and purification of reagents and solvents, and for descriptions of the equipment and techniques, see: Brennessel (2009). For a description of the Cambridge Structural Database, see: Allen (2002). For the bond-length of ethylene gas, see: Lide (2003).

Experimental top

Details on the preparation and purification of reagents and solvents, and descriptions of the equipment and techniques can be found elsewhere (Brennessel, 2009). Note that the following synthetic procedure results in a salt for which the potassium cation is complexed by 18-crown-6. Unfortunately single crystals that were grown of this complex resulted in very poor quality data (see below), and thus a different potassium complexant was incorporated for this study. To obtain the title complex the 2.2.2-cryptand salt, an aliquot of the yellow filtrate prior to the addition of 18-crown-6, was transferred to a flask containing excess 2.2.2-cryptand. Light yellow needles of the title complex were then grown from a pentane-layered THF solution at 273 K.

Argon was removed in vacuo from a flask containing deep green potassium naphthalene, K[C10H8], (13.7 mmol) in THF (50 ml, 195 K) and from a second flask containing bright blue anhydrous CoBr2 (1.000 g, 4.57 mmol) also in THF (50 ml, 195 K), and replaced with ethylene. At this low temperature ethylene is extremely ("infinitely") soluble and the flask system would develop a slight vacuum whenever the valve to the ethylene tank was closed. After ca. 15 psi of gas were drawn from the tank, both the tank and the flasks were closed off and argon was reintroduced to the line. Using argon pressure (a Hg bubbler was attached to the flask system to keep the pressure near 1 atm), the CoBr2 solution was transferred to the reducing agent via cannula, producing a pale yellow solution, which was then warmed slowly to room temperature (with the system open to the Hg bubbler!). The solution was filtered to remove KBr. 18-crown-6 (1.208 g, 4.57 mmol) in THF (20 ml) was added to the yellow filtrate. The solvent was removed in vacuo, which caused the solution to turn reddish as some naphthalene (re)coordinated to some of the product (see below). Et2O (75 ml) was added and argon was once again replaced with ethylene, at which point the slurry lost its red color and became nearly colorless. The lines to the flasks were freed of ethylene and replaced with argon (the flask was not evacuated to avoid possible re-coordination of naphthalene). The slurry was filtered, and the product was washed with Et2O (20 ml) and dried in vacuo, yielding an off-white solid (1.796 g, 83%). Although the product contained paramagnetic impurities which caused severe broadening of NMR spectral peaks, the material was sufficiently pure by this synthetic method for use in subsequent reactions. Pale yellow blocks of the18-crown-6 salt, which were grown from a pentane-layered THF solution at 273 K, were not suitable for a single-crystal X-ray experiment. The anion was badly disordered over a crystallographic twofold axis and no satisfactory model was obtained, thus the reason for the aliquot that was extracted for use with 2.2.2-cryptand to produce crystals of the title salt (see above). Crystal data for the 18-crown-6 salt: Monoclinic, C2/c; Cell constants (Å, °): a = 15.498 (5), b = 14.768 (5), c = 10.744 (4), B = 94.253 (4); V = 2452.2 (14) Å3; Z = 4; T = 173 (2) K; 2161 reflections (1813 for [I > 2σ(I)]).

Refinement top

One arm of the 2.2.2-cryptand complexant (atoms O5,O6,C21-C26 & O5',O6',C21'-C26') was modeled as disordered over two positions with a refined occupancy ratio of 0.559 (2):0.441 (2). Corresponding bond lengths and angles in the two orientations of the cryptand arm disorder were restrained to be similar. Anisotropic displacement parameters for spatially close atoms from the two orientations were constrained to be equivalent. H atoms on the ethylene ligands were located in a difference Fourier map and were freely refined. All other H atoms were placed geometrically and treated as riding atoms: C-H = 0.99 Å with Uiso(H) = 1.2Ueq(C).

Structure description top

The reductive synthesis of the anion from cobaltocene (CoCp2) with alkali metals has been reported previously in a patent (Jonas, 1979) and in review articles (Jonas & Krüger, 1980; Jonas, Schieferstein et al., 1979; Jonas, 1981, 1984, 1985). Herein we report on the first structure of the title anion and the reductive synthesis from cobalt(II) bromide using potassium naphthalene as the reducing agent. Because the advantages of having cyclopentadienide (Cp-) as a support ligand in the reduction from CoCp2 (Jonas & Krüger, 1980; see discussion on page 533) were not available in our synthesis, we had to be certain that ethylene gas was present in excess, to assist naphthalene in supporting the metal center in its various oxidation states from +2 to -1. This was achieved with low temperatures, specifically 195 K, at which point ethylene appeared to be "infinitely" soluble in THF. Even at the very cold, but slightly warmer, temperature of 213 K, ethylene appeared to have finite solubility. The other interesting point in the synthesis was that naphthalene would (re)coordinate to cobalt when THF was removed under reduced pressure. Therefore the isolation of the final product required that additional ethylene gas be reintroduced to the diethyl ether slurry to displace any (re)coordinated naphthalene. It was easy to determine when the naphthalene was fully displaced because the slurry lost all trace of red and became pale yellow to off-white. Details on the isolated red naphthalenecobaltates(–I) can be found elsewhere (Brennessel et al., 2006, Brennessel, 2009).

A search of the Cambridge Structural Database (CSD, Version 5.33, update No. 4, August 2012; Allen, 2002), indicated the presence of 629 structures containing an ethylene ligand, but only 29 are with first row transition metals containing at least two ethylene ligands.

The molecular structure of the title anion is illustrated in Fig. 1, and the title K+2.2.2-cryptand cationic unit in Fig. 2. The recently reported anion [Co(η2-C2H4)2(η4-C10H8)]-, bis(ethylene)naphthalenecobaltate(–I), which occurs twice independently as part of a triple salt (Brennessel et al., 2006), has bond lengths that are statistically identical (1.410 (8) Å, avg) to those of the title complex (1.401 (6) Å, avg). The isoelectronic iron structure, [Li(tmeda)]2[Fe(η2-C2H4)4], has been determined with two unique C–C distances of 1.410 and 1.433 Å (Jonas, Schieferstein et al., 1979); relative to that of free ethylene = 1.333 Å (Lide, 2003). No standard uncertainties were reported, but they are likely to be somewhat large (R1 = 7.8%). Also, the ethylene ligands have an asymmetry due to different contact distances with the lithium cations. If we take the average C–C bond length of the iron structure at face value, 1.42 Å, then it appears to be slightly longer that of the title complex, 1.401 (6) Å, which would be consistent with a more reduced metal center. All other structurally characterized homoleptic ethylene transition metal compounds are either neutral: Pt (Howard et al., 1983); or cationic: Cu+ (Santiso-Quiñones et al., 2007), Ag+ (Reisinger et al., 2009), and Au+ (Dias et al., 2008).

In the crystal, the cationic K+2.2.2-cryptand units are linked via a pair of C-H···O hydrogen bonds to form inversion dimers (Table 1). There are no other significant intermolecular interactions in the crystal structure.

For reports on the only other homoleptic ethylenemetalate, the ethyleneferrate, see: Jonas (1979, 1981); Jonas et al. (1979); Jonas & Krüger (1980). For reports on the anion of the title complex, but with different cations, see: Jonas (1979, 1981, 1984, 1985); Jonas et al. (1979); Jonas & Krüger (1980). For the initial report of this anion synthesized from cobalt(II) bromide, see: Brennessel et al. (2006). For neutral and cationic structurally characterized homoleptic ethylene transition metal complexes, see for [Pt0]: Howard et al. (1983); for [Cu+]: Santiso-Quiñones et al. (2007); for [Ag+]: Reisinger et al. (2009); for [Au+]: Dias et al. (2008). For details of the preparation and purification of reagents and solvents, and for descriptions of the equipment and techniques, see: Brennessel (2009). For a description of the Cambridge Structural Database, see: Allen (2002). For the bond-length of ethylene gas, see: Lide (2003).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title anion, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of the title cationic K+2.2.2-cryptand unit, showing the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. Only the major fragment of the disordered arm of the 2.2.2-cryptand complexant is shown.
(4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)potassium tetrakis(η2-ethylene)cobaltate(-I) top
Crystal data top
[K(C18H36N2O6)][Co(C2H4)4]F(000) = 2528
Mr = 586.73Dx = 1.277 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 3744 reflections
a = 25.836 (3) Åθ = 2.3–27.4°
b = 10.4820 (12) ŵ = 0.74 mm1
c = 22.544 (3) ÅT = 173 K
V = 6105.4 (12) Å3Needle, light yellow
Z = 80.50 × 0.24 × 0.16 mm
Data collection top
Siemens SMART CCD Platform
diffractometer
7010 independent reflections
Radiation source: normal-focus sealed tube4825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2633
Tmin = 0.709, Tmax = 0.891k = 1313
45000 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0242P)2 + 2.9795P]
where P = (Fo2 + 2Fc2)/3
7010 reflections(Δ/σ)max = 0.001
414 parametersΔρmax = 0.31 e Å3
16 restraintsΔρmin = 0.31 e Å3
Crystal data top
[K(C18H36N2O6)][Co(C2H4)4]V = 6105.4 (12) Å3
Mr = 586.73Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 25.836 (3) ŵ = 0.74 mm1
b = 10.4820 (12) ÅT = 173 K
c = 22.544 (3) Å0.50 × 0.24 × 0.16 mm
Data collection top
Siemens SMART CCD Platform
diffractometer
7010 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4825 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.891Rint = 0.056
45000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03516 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.31 e Å3
7010 reflectionsΔρmin = 0.31 e Å3
414 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.371067 (10)0.52565 (3)0.455752 (11)0.02568 (7)
C10.40825 (9)0.6890 (2)0.43378 (11)0.0369 (5)
H1A0.3861 (8)0.750 (2)0.4136 (9)0.033 (6)*
H1B0.4258 (8)0.725 (2)0.4690 (9)0.042 (6)*
C20.43103 (9)0.5863 (2)0.40416 (11)0.0368 (5)
H2A0.4231 (8)0.574 (2)0.3623 (10)0.042 (6)*
H2B0.4641 (8)0.553 (2)0.4181 (9)0.039 (6)*
C30.38604 (9)0.3426 (2)0.43062 (10)0.0350 (5)
H3A0.3803 (8)0.330 (2)0.3862 (10)0.044 (6)*
H3B0.4191 (8)0.316 (2)0.4458 (9)0.035 (6)*
H4B0.3467 (9)0.321 (2)0.5106 (10)0.050 (7)*
C40.34319 (9)0.3457 (2)0.46850 (11)0.0376 (5)
H4A0.3074 (9)0.333 (2)0.4523 (10)0.051 (7)*
C50.31747 (8)0.5552 (2)0.39157 (10)0.0351 (5)
H5A0.3026 (8)0.476 (2)0.3784 (9)0.037 (6)*
H5B0.3302 (9)0.615 (2)0.3607 (10)0.051 (7)*
C60.29971 (8)0.6068 (2)0.44527 (9)0.0347 (5)
H6A0.2733 (9)0.562 (2)0.4666 (10)0.048 (7)*
H6B0.2998 (8)0.701 (2)0.4511 (9)0.043 (6)*
C70.36906 (10)0.5658 (3)0.54443 (10)0.0417 (5)
H7A0.3434 (9)0.513 (2)0.5645 (10)0.047 (7)*
H7B0.3685 (9)0.656 (3)0.5526 (10)0.057 (7)*
C80.41614 (10)0.5080 (3)0.52897 (9)0.0402 (5)
H8A0.4221 (9)0.417 (2)0.5389 (10)0.051 (7)*
H8B0.4488 (9)0.559 (2)0.5242 (10)0.050 (7)*
K10.382354 (15)0.89809 (4)0.672690 (17)0.02532 (10)
N10.30312 (6)0.72674 (15)0.72648 (7)0.0258 (4)
C90.26926 (8)0.67901 (19)0.67875 (9)0.0322 (5)
H9A0.23890.63660.69690.039*
H9B0.28840.61400.65560.039*
C100.25047 (8)0.7816 (2)0.63696 (9)0.0349 (5)
H10A0.22650.74450.60740.042*
H10B0.23170.84830.65940.042*
O10.29389 (5)0.83542 (13)0.60803 (6)0.0318 (3)
C110.27992 (8)0.9181 (2)0.56039 (9)0.0347 (5)
H11A0.26430.99730.57620.042*
H11B0.25410.87580.53450.042*
C120.32733 (8)0.9491 (2)0.52562 (9)0.0352 (5)
H12A0.34360.86950.51110.042*
H12B0.31801.00190.49080.042*
O20.36279 (5)1.01677 (13)0.56228 (6)0.0322 (3)
C130.40865 (8)1.0484 (2)0.53034 (9)0.0377 (5)
H13A0.39951.09270.49300.045*
H13B0.42780.96970.52020.045*
C140.44192 (9)1.1334 (2)0.56788 (9)0.0381 (5)
H14A0.47071.16630.54330.046*
H14B0.42111.20740.58100.046*
C150.27290 (8)0.7955 (2)0.77164 (9)0.0329 (5)
H15A0.25490.73240.79690.039*
H15B0.24610.84730.75140.039*
C160.30469 (8)0.8818 (2)0.81075 (8)0.0322 (5)
H16A0.28260.91850.84230.039*
H16B0.33280.83240.82980.039*
O30.32619 (5)0.98158 (12)0.77543 (5)0.0280 (3)
C170.35132 (7)1.07411 (19)0.81130 (8)0.0289 (4)
H17A0.37931.03310.83450.035*
H17B0.32621.11170.83950.035*
C180.37352 (7)1.17667 (18)0.77276 (9)0.0305 (4)
H18A0.34571.21540.74850.037*
H18B0.38891.24440.79780.037*
O40.41232 (5)1.12393 (12)0.73491 (6)0.0272 (3)
C190.43554 (8)1.22063 (19)0.69949 (9)0.0319 (5)
H19A0.44831.29030.72530.038*
H19B0.40951.25670.67200.038*
C200.47980 (8)1.16543 (19)0.66462 (9)0.0308 (5)
H20A0.49811.23550.64400.037*
H20B0.50461.12550.69250.037*
C210.3328 (5)0.6257 (11)0.7567 (7)0.0261 (18)0.559 (2)
H21A0.30820.55860.76920.031*0.559 (2)
H21B0.34810.66270.79310.031*0.559 (2)
C220.3756 (5)0.5629 (14)0.7221 (6)0.0234 (17)0.559 (2)
H22A0.38930.48890.74440.028*0.559 (2)
H22B0.36210.53180.68360.028*0.559 (2)
O50.4154 (2)0.6533 (7)0.7125 (2)0.0263 (9)0.559 (2)
C230.4579 (3)0.5979 (8)0.6814 (4)0.0259 (15)0.559 (2)
H23A0.44690.57230.64110.031*0.559 (2)
H23B0.47020.52100.70260.031*0.559 (2)
C240.50011 (14)0.6945 (3)0.67784 (17)0.0326 (7)0.559 (2)
H24A0.50980.72230.71830.039*0.559 (2)
H24B0.53100.65590.65900.039*0.559 (2)
O60.48329 (11)0.8030 (3)0.64367 (13)0.0277 (5)0.559 (2)
C250.5242 (4)0.8941 (10)0.6412 (3)0.0303 (16)0.559 (2)
H25A0.55660.85260.62790.036*0.559 (2)
H25B0.53010.93130.68100.036*0.559 (2)
C260.5087 (5)0.9973 (14)0.5980 (6)0.0299 (16)0.559 (2)
H26A0.53821.05620.59190.036*0.559 (2)
H26B0.50000.95840.55930.036*0.559 (2)
C21'0.3271 (7)0.6114 (14)0.7518 (9)0.0261 (18)0.441 (2)
H21C0.30000.54640.75860.031*0.441 (2)
H21D0.34260.63290.79070.031*0.441 (2)
C22'0.3683 (6)0.5561 (19)0.7124 (8)0.0234 (17)0.441 (2)
H22C0.38630.48630.73350.028*0.441 (2)
H22D0.35200.51990.67630.028*0.441 (2)
O5'0.4041 (3)0.6504 (10)0.6961 (3)0.0263 (9)0.441 (2)
C23'0.4495 (4)0.6008 (11)0.6690 (6)0.0259 (15)0.441 (2)
H23C0.43980.53270.64070.031*0.441 (2)
H23D0.47210.56260.69980.031*0.441 (2)
C24'0.47835 (18)0.7025 (4)0.6372 (2)0.0326 (7)0.441 (2)
H24C0.51240.66980.62410.039*0.441 (2)
H24D0.45870.72970.60160.039*0.441 (2)
O6'0.48526 (15)0.8071 (4)0.67589 (16)0.0277 (5)0.441 (2)
C25'0.5240 (6)0.8960 (13)0.6595 (5)0.0303 (16)0.441 (2)
H25C0.55530.84870.64710.036*0.441 (2)
H25D0.53320.94780.69470.036*0.441 (2)
C26'0.5084 (7)0.9842 (18)0.6102 (8)0.0299 (16)0.441 (2)
H26C0.53861.03810.60030.036*0.441 (2)
H26D0.50060.93150.57490.036*0.441 (2)
N20.46366 (6)1.06963 (15)0.62048 (7)0.0283 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02499 (13)0.02911 (14)0.02294 (12)0.00124 (12)0.00108 (11)0.00137 (11)
C10.0348 (12)0.0341 (13)0.0419 (12)0.0013 (11)0.0019 (10)0.0056 (11)
C20.0314 (12)0.0367 (13)0.0424 (13)0.0013 (10)0.0076 (10)0.0070 (11)
C30.0348 (12)0.0317 (12)0.0386 (12)0.0033 (10)0.0024 (10)0.0023 (10)
C40.0380 (13)0.0319 (12)0.0427 (13)0.0046 (10)0.0082 (11)0.0028 (10)
C50.0298 (11)0.0423 (14)0.0331 (12)0.0044 (10)0.0051 (9)0.0006 (11)
C60.0283 (11)0.0412 (14)0.0344 (12)0.0045 (10)0.0009 (9)0.0004 (10)
C70.0523 (14)0.0483 (15)0.0246 (10)0.0059 (13)0.0019 (11)0.0014 (11)
C80.0454 (14)0.0433 (15)0.0319 (11)0.0078 (12)0.0087 (10)0.0016 (10)
K10.0239 (2)0.0239 (2)0.0281 (2)0.00110 (17)0.00141 (16)0.00295 (17)
N10.0244 (8)0.0249 (9)0.0281 (8)0.0032 (7)0.0024 (7)0.0000 (7)
C90.0293 (11)0.0307 (11)0.0367 (11)0.0084 (9)0.0001 (9)0.0017 (9)
C100.0254 (10)0.0391 (13)0.0402 (11)0.0048 (9)0.0034 (10)0.0004 (10)
O10.0244 (7)0.0400 (8)0.0309 (7)0.0002 (6)0.0043 (6)0.0062 (6)
C110.0318 (11)0.0420 (13)0.0303 (10)0.0057 (10)0.0093 (9)0.0019 (9)
C120.0359 (12)0.0434 (13)0.0262 (10)0.0025 (10)0.0062 (9)0.0028 (9)
O20.0347 (8)0.0374 (8)0.0245 (6)0.0034 (7)0.0014 (6)0.0010 (6)
C130.0437 (13)0.0424 (14)0.0270 (11)0.0052 (11)0.0047 (9)0.0082 (9)
C140.0444 (13)0.0348 (13)0.0352 (11)0.0078 (10)0.0070 (10)0.0105 (10)
C150.0259 (10)0.0334 (12)0.0394 (12)0.0047 (9)0.0096 (9)0.0046 (10)
C160.0326 (11)0.0352 (12)0.0289 (10)0.0037 (9)0.0082 (8)0.0031 (9)
O30.0297 (7)0.0270 (7)0.0272 (7)0.0049 (6)0.0025 (5)0.0044 (6)
C170.0247 (10)0.0312 (11)0.0307 (10)0.0008 (9)0.0022 (8)0.0103 (9)
C180.0255 (10)0.0263 (10)0.0398 (11)0.0014 (9)0.0052 (9)0.0118 (9)
O40.0243 (7)0.0221 (7)0.0353 (7)0.0012 (6)0.0064 (6)0.0043 (6)
C190.0334 (11)0.0215 (10)0.0409 (12)0.0031 (9)0.0044 (9)0.0011 (9)
C200.0298 (11)0.0245 (11)0.0382 (11)0.0070 (9)0.0062 (9)0.0023 (9)
C210.030 (3)0.021 (2)0.027 (2)0.012 (2)0.0007 (19)0.002 (2)
C220.028 (3)0.0190 (16)0.023 (4)0.0051 (18)0.010 (3)0.001 (2)
O50.022 (2)0.0204 (8)0.037 (3)0.0026 (17)0.0008 (16)0.002 (2)
C230.025 (3)0.0245 (11)0.028 (4)0.0080 (16)0.007 (2)0.0018 (18)
C240.0266 (16)0.0325 (16)0.0387 (18)0.0046 (13)0.0004 (12)0.0030 (15)
O60.0253 (9)0.0248 (9)0.0328 (15)0.0002 (7)0.0010 (15)0.0038 (15)
C250.0225 (11)0.0288 (12)0.040 (5)0.0003 (10)0.009 (3)0.010 (3)
C260.0272 (11)0.032 (3)0.030 (5)0.0075 (15)0.014 (2)0.002 (3)
C21'0.030 (3)0.021 (2)0.027 (2)0.012 (2)0.0007 (19)0.002 (2)
C22'0.028 (3)0.0190 (16)0.023 (4)0.0051 (18)0.010 (3)0.001 (2)
O5'0.022 (2)0.0204 (8)0.037 (3)0.0026 (17)0.0008 (16)0.002 (2)
C23'0.025 (3)0.0245 (11)0.028 (4)0.0080 (16)0.007 (2)0.0018 (18)
C24'0.0266 (16)0.0325 (16)0.0387 (18)0.0046 (13)0.0004 (12)0.0030 (15)
O6'0.0253 (9)0.0248 (9)0.0328 (15)0.0002 (7)0.0010 (15)0.0038 (15)
C25'0.0225 (11)0.0288 (12)0.040 (5)0.0003 (10)0.009 (3)0.010 (3)
C26'0.0272 (11)0.032 (3)0.030 (5)0.0075 (15)0.014 (2)0.002 (3)
N20.0277 (9)0.0243 (9)0.0329 (9)0.0019 (7)0.0063 (7)0.0009 (7)
Geometric parameters (Å, º) top
Co1—C12.025 (2)C14—H14B0.9900
Co1—C52.027 (2)C15—C161.506 (3)
Co1—C82.029 (2)C15—H15A0.9900
Co1—C32.038 (2)C15—H15B0.9900
Co1—C22.039 (2)C16—O31.427 (2)
Co1—C42.039 (2)C16—H16A0.9900
Co1—C72.044 (2)C16—H16B0.9900
Co1—C62.044 (2)O3—C171.420 (2)
C1—C21.397 (3)C17—C181.497 (3)
C1—H1A0.97 (2)C17—H17A0.9900
C1—H1B0.99 (2)C17—H17B0.9900
C2—H2A0.98 (2)C18—O41.428 (2)
C2—H2B0.97 (2)C18—H18A0.9900
C3—C41.399 (3)C18—H18B0.9900
C3—H3A1.02 (2)O4—C191.423 (2)
C3—H3B0.96 (2)C19—C201.503 (3)
C4—H4B0.99 (2)C19—H19A0.9900
C4—H4A1.00 (2)C19—H19B0.9900
C5—C61.403 (3)C20—N21.474 (2)
C5—H5A0.96 (2)C20—H20A0.9900
C5—H5B1.00 (2)C20—H20B0.9900
C6—H6A0.96 (2)C21—C221.504 (9)
C6—H6B0.99 (2)C21—H21A0.9900
C7—C81.403 (3)C21—H21B0.9900
C7—H7A0.97 (2)C22—O51.417 (8)
C7—H7B0.96 (3)C22—H22A0.9900
C8—H8A0.99 (2)C22—H22B0.9900
C8—H8B1.01 (2)O5—C231.425 (8)
K1—O5'2.709 (10)C23—C241.491 (8)
K1—O12.7893 (13)C23—H23A0.9900
K1—O6'2.825 (4)C23—H23B0.9900
K1—O22.8282 (14)C24—O61.441 (4)
K1—O52.849 (7)C24—H24A0.9900
K1—O42.8586 (13)C24—H24B0.9900
K1—O62.867 (3)O6—C251.425 (8)
K1—O32.8700 (13)C25—C261.509 (8)
K1—N12.9811 (16)C25—H25A0.9900
K1—N23.0052 (16)C25—H25B0.9900
K1—C24'3.316 (5)C26—N21.479 (3)
N1—C151.472 (2)C26—H26A0.9900
N1—C21'1.474 (3)C26—H26B0.9900
N1—C211.474 (3)C21'—C22'1.502 (11)
N1—C91.474 (2)C21'—H21C0.9900
C9—C101.510 (3)C21'—H21D0.9900
C9—H9A0.9900C22'—O5'1.404 (11)
C9—H9B0.9900C22'—H22C0.9900
C10—O11.415 (2)C22'—H22D0.9900
C10—H10A0.9900O5'—C23'1.420 (10)
C10—H10B0.9900C23'—C24'1.486 (10)
O1—C111.427 (2)C23'—H23C0.9900
C11—C121.490 (3)C23'—H23D0.9900
C11—H11A0.9900C24'—O6'1.413 (6)
C11—H11B0.9900C24'—H24C0.9900
C12—O21.423 (2)C24'—H24D0.9900
C12—H12A0.9900O6'—C25'1.416 (10)
C12—H12B0.9900C25'—C26'1.500 (11)
O2—C131.426 (2)C25'—H25C0.9900
C13—C141.499 (3)C25'—H25D0.9900
C13—H13A0.9900C26'—N21.479 (3)
C13—H13B0.9900C26'—H26C0.9900
C14—N21.473 (3)C26'—H26D0.9900
C14—H14A0.9900
C1—Co1—C591.15 (10)O2—C12—C11109.41 (16)
C1—Co1—C890.22 (11)O2—C12—H12A109.8
C5—Co1—C8170.81 (9)C11—C12—H12A109.8
C1—Co1—C3129.66 (9)O2—C12—H12B109.8
C5—Co1—C394.31 (10)C11—C12—H12B109.8
C8—Co1—C391.80 (10)H12A—C12—H12B108.2
C1—Co1—C240.20 (9)C12—O2—C13110.95 (15)
C5—Co1—C293.68 (10)C12—O2—K1114.01 (11)
C8—Co1—C293.23 (10)C13—O2—K1113.47 (11)
C3—Co1—C289.48 (9)O2—C13—C14109.25 (16)
C1—Co1—C4169.78 (9)O2—C13—H13A109.8
C5—Co1—C490.04 (10)C14—C13—H13A109.8
C8—Co1—C490.22 (11)O2—C13—H13B109.8
C3—Co1—C440.13 (9)C14—C13—H13B109.8
C2—Co1—C4129.59 (9)H13A—C13—H13B108.3
C1—Co1—C794.43 (11)N2—C14—C13113.81 (17)
C5—Co1—C7130.51 (9)N2—C14—H14A108.8
C8—Co1—C740.31 (9)C13—C14—H14A108.8
C3—Co1—C7118.08 (10)N2—C14—H14B108.8
C2—Co1—C7120.87 (11)C13—C14—H14B108.8
C4—Co1—C792.50 (10)H14A—C14—H14B107.7
C1—Co1—C692.73 (10)N1—C15—C16114.18 (16)
C5—Co1—C640.32 (8)N1—C15—H15A108.7
C8—Co1—C6130.53 (9)C16—C15—H15A108.7
C3—Co1—C6122.07 (10)N1—C15—H15B108.7
C2—Co1—C6119.31 (10)C16—C15—H15B108.7
C4—Co1—C694.74 (10)H15A—C15—H15B107.6
C7—Co1—C690.25 (9)O3—C16—C15109.01 (15)
C2—C1—Co170.43 (13)O3—C16—H16A109.9
C2—C1—H1A122.1 (12)C15—C16—H16A109.9
Co1—C1—H1A113.0 (12)O3—C16—H16B109.9
C2—C1—H1B119.0 (13)C15—C16—H16B109.9
Co1—C1—H1B110.1 (12)H16A—C16—H16B108.3
H1A—C1—H1B113.4 (17)C17—O3—C16111.16 (14)
C1—C2—Co169.37 (12)C17—O3—K1115.90 (10)
C1—C2—H2A118.6 (13)C16—O3—K1115.05 (10)
Co1—C2—H2A110.5 (13)O3—C17—C18109.59 (15)
C1—C2—H2B119.3 (12)O3—C17—H17A109.8
Co1—C2—H2B111.9 (12)C18—C17—H17A109.8
H2A—C2—H2B116.7 (18)O3—C17—H17B109.8
C4—C3—Co169.98 (13)C18—C17—H17B109.8
C4—C3—H3A119.2 (12)H17A—C17—H17B108.2
Co1—C3—H3A111.3 (12)O4—C18—C17109.76 (15)
C4—C3—H3B119.4 (12)O4—C18—H18A109.7
Co1—C3—H3B110.2 (12)C17—C18—H18A109.7
H3A—C3—H3B116.2 (17)O4—C18—H18B109.7
C3—C4—Co169.89 (13)C17—C18—H18B109.7
C3—C4—H4B120.5 (13)H18A—C18—H18B108.2
Co1—C4—H4B110.2 (14)C19—O4—C18110.83 (14)
C3—C4—H4A120.3 (13)C19—O4—K1115.38 (11)
Co1—C4—H4A113.3 (13)C18—O4—K1115.08 (10)
H4B—C4—H4A113.6 (18)O4—C19—C20109.88 (16)
C6—C5—Co170.50 (12)O4—C19—H19A109.7
C6—C5—H5A117.9 (12)C20—C19—H19A109.7
Co1—C5—H5A111.3 (12)O4—C19—H19B109.7
C6—C5—H5B117.8 (13)C20—C19—H19B109.7
Co1—C5—H5B111.7 (13)H19A—C19—H19B108.2
H5A—C5—H5B117.6 (18)N2—C20—C19113.58 (16)
C5—C6—Co169.17 (12)N2—C20—H20A108.8
C5—C6—H6A118.7 (13)C19—C20—H20A108.8
Co1—C6—H6A112.5 (13)N2—C20—H20B108.8
C5—C6—H6B119.7 (12)C19—C20—H20B108.8
Co1—C6—H6B113.3 (12)H20A—C20—H20B107.7
H6A—C6—H6B114.7 (18)N1—C21—C22117.2 (11)
C8—C7—Co169.27 (13)N1—C21—H21A108.0
C8—C7—H7A117.6 (13)C22—C21—H21A108.0
Co1—C7—H7A110.8 (13)N1—C21—H21B108.0
C8—C7—H7B118.9 (15)C22—C21—H21B108.0
Co1—C7—H7B113.0 (14)H21A—C21—H21B107.2
H7A—C7—H7B117 (2)O5—C22—C21108.7 (11)
C7—C8—Co170.42 (13)O5—C22—H22A110.0
C7—C8—H8A119.6 (13)C21—C22—H22A110.0
Co1—C8—H8A111.1 (13)O5—C22—H22B110.0
C7—C8—H8B121.6 (13)C21—C22—H22B110.0
Co1—C8—H8B110.3 (13)H22A—C22—H22B108.3
H8A—C8—H8B114.0 (19)C22—O5—C23111.2 (8)
O5'—K1—O192.66 (13)C22—O5—K1115.6 (7)
O5'—K1—O6'58.41 (18)C23—O5—K1116.3 (5)
O1—K1—O6'134.83 (8)O5—C23—C24108.2 (7)
O5'—K1—O2129.08 (15)O5—C23—H23A110.1
O1—K1—O259.82 (4)C24—C23—H23A110.1
O6'—K1—O2109.82 (8)O5—C23—H23B110.1
O5'—K1—O59.30 (18)C24—C23—H23B110.1
O1—K1—O5101.45 (10)H23A—C23—H23B108.4
O6'—K1—O553.54 (14)O6—C24—C23110.1 (4)
O2—K1—O5136.63 (12)O6—C24—H24A109.6
O5'—K1—O4129.93 (12)C23—C24—H24A109.6
O1—K1—O4132.33 (4)O6—C24—H24B109.6
O6'—K1—O490.69 (8)C23—C24—H24B109.6
O2—K1—O496.66 (4)H24A—C24—H24B108.1
O5—K1—O4120.65 (10)C25—O6—C24109.1 (5)
O5'—K1—O661.47 (19)C25—O6—K1116.7 (5)
O1—K1—O6122.97 (7)C24—O6—K1115.2 (2)
O6'—K1—O614.70 (6)O6—C25—C26108.1 (10)
O2—K1—O696.58 (6)O6—C25—H25A110.1
O5—K1—O659.07 (14)C26—C25—H25A110.1
O4—K1—O698.83 (6)O6—C25—H25B110.1
O5'—K1—O3103.89 (19)C26—C25—H25B110.1
O1—K1—O394.55 (4)H25A—C25—H25B108.4
O6'—K1—O3123.92 (8)N2—C26—C25110.7 (8)
O2—K1—O3119.06 (4)N2—C26—H26A109.5
O5—K1—O399.91 (13)C25—C26—H26A109.5
O4—K1—O359.22 (4)N2—C26—H26B109.5
O6—K1—O3138.59 (6)C25—C26—H26B109.5
O5'—K1—N159.06 (18)H26A—C26—H26B108.1
O1—K1—N160.53 (4)N1—C21'—C22'112.7 (15)
O6'—K1—N1115.63 (8)N1—C21'—H21C109.1
O2—K1—N1120.02 (4)C22'—C21'—H21C109.1
O5—K1—N162.32 (13)N1—C21'—H21D109.1
O4—K1—N1119.03 (4)C22'—C21'—H21D109.1
O6—K1—N1120.53 (7)H21C—C21'—H21D107.8
O3—K1—N160.55 (4)O5'—C22'—C21'110.5 (14)
O5'—K1—N2120.31 (18)O5'—C22'—H22C109.6
O1—K1—N2120.60 (4)C21'—C22'—H22C109.6
O6'—K1—N263.52 (8)O5'—C22'—H22D109.6
O2—K1—N261.12 (4)C21'—C22'—H22D109.6
O5—K1—N2116.90 (13)H22C—C22'—H22D108.1
O4—K1—N260.49 (4)C22'—O5'—C23'113.6 (11)
O6—K1—N258.86 (7)C22'—O5'—K1126.1 (10)
O3—K1—N2119.15 (4)C23'—O5'—K1116.0 (6)
N1—K1—N2178.86 (5)O5'—C23'—C24'111.0 (9)
O5'—K1—C24'45.5 (2)O5'—C23'—H23C109.4
O1—K1—C24'109.94 (9)C24'—C23'—H23C109.4
O6'—K1—C24'25.00 (11)O5'—C23'—H23D109.4
O2—K1—C24'101.13 (9)C24'—C23'—H23D109.4
O5—K1—C24'45.17 (16)H23C—C23'—H23D108.0
O4—K1—C24'115.34 (9)O6'—C24'—C23'108.8 (6)
O6—K1—C24'18.15 (9)O6'—C24'—K157.7 (2)
O3—K1—C24'139.61 (9)C23'—C24'—K187.2 (5)
N1—K1—C24'103.85 (9)O6'—C24'—H24C109.9
N2—K1—C24'75.67 (9)C23'—C24'—H24C109.9
C15—N1—C21'110.9 (8)K1—C24'—H24C162.1
C15—N1—C21108.0 (6)O6'—C24'—H24D109.9
C15—N1—C9110.88 (15)C23'—C24'—H24D109.9
C21'—N1—C9104.7 (10)K1—C24'—H24D68.5
C21—N1—C9113.7 (7)H24C—C24'—H24D108.3
C15—N1—K1110.52 (11)C24'—O6'—C25'116.0 (6)
C21'—N1—K1111.3 (7)C24'—O6'—K197.3 (3)
C21—N1—K1105.3 (6)C25'—O6'—K1115.8 (7)
C9—N1—K1108.37 (11)O6'—C25'—C26'114.2 (13)
N1—C9—C10113.87 (16)O6'—C25'—H25C108.7
N1—C9—H9A108.8C26'—C25'—H25C108.7
C10—C9—H9A108.8O6'—C25'—H25D108.7
N1—C9—H9B108.8C26'—C25'—H25D108.7
C10—C9—H9B108.8H25C—C25'—H25D107.6
H9A—C9—H9B107.7N2—C26'—C25'117.8 (11)
O1—C10—C9108.46 (16)N2—C26'—H26C107.9
O1—C10—H10A110.0C25'—C26'—H26C107.9
C9—C10—H10A110.0N2—C26'—H26D107.9
O1—C10—H10B110.0C25'—C26'—H26D107.9
C9—C10—H10B110.0H26C—C26'—H26D107.2
H10A—C10—H10B108.4C14—N2—C20110.02 (16)
C10—O1—C11112.87 (15)C14—N2—C26104.9 (5)
C10—O1—K1120.18 (11)C20—N2—C26111.0 (8)
C11—O1—K1117.25 (11)C14—N2—C26'116.5 (7)
O1—C11—C12108.69 (16)C20—N2—C26'107.3 (11)
O1—C11—H11A110.0C14—N2—K1108.69 (11)
C12—C11—H11A110.0C20—N2—K1109.94 (11)
O1—C11—H11B110.0C26—N2—K1112.2 (6)
C12—C11—H11B110.0C26'—N2—K1104.2 (8)
H11A—C11—H11B108.3
C5—Co1—C1—C294.34 (15)O6—K1—O4—C18160.64 (13)
C8—Co1—C1—C294.75 (16)O3—K1—O4—C1818.37 (11)
C3—Co1—C1—C22.2 (2)N1—K1—O4—C1828.25 (13)
C4—Co1—C1—C22.3 (6)N2—K1—O4—C18152.94 (13)
C7—Co1—C1—C2134.88 (16)C24'—K1—O4—C18152.70 (14)
C6—Co1—C1—C2134.65 (15)C18—O4—C19—C20174.28 (16)
C5—Co1—C2—C187.43 (16)K1—O4—C19—C2052.68 (18)
C8—Co1—C2—C186.51 (16)O4—C19—C20—N265.2 (2)
C3—Co1—C2—C1178.28 (16)C15—N1—C21—C22166.3 (9)
C4—Co1—C2—C1179.46 (15)C9—N1—C21—C2270.3 (12)
C7—Co1—C2—C155.39 (18)K1—N1—C21—C2248.2 (13)
C6—Co1—C2—C154.58 (18)N1—C21—C22—O567.7 (15)
C1—Co1—C3—C4179.97 (15)C21—C22—O5—C23178.2 (9)
C5—Co1—C3—C484.93 (16)C21—C22—O5—K146.3 (11)
C8—Co1—C3—C488.20 (16)O5'—K1—O5—C2250.1 (19)
C2—Co1—C3—C4178.58 (16)O1—K1—O5—C2230.7 (7)
C7—Co1—C3—C456.20 (18)O6'—K1—O5—C22168.8 (7)
C6—Co1—C3—C453.70 (18)O2—K1—O5—C2288.5 (7)
C1—Co1—C4—C30.1 (6)O4—K1—O5—C22126.0 (6)
C5—Co1—C4—C396.65 (15)O6—K1—O5—C22152.4 (7)
C8—Co1—C4—C392.54 (15)O3—K1—O5—C2266.0 (6)
C2—Co1—C4—C31.8 (2)N1—K1—O5—C2217.0 (6)
C7—Co1—C4—C3132.79 (15)N2—K1—O5—C22164.0 (6)
C6—Co1—C4—C3136.74 (15)C24'—K1—O5—C22137.5 (7)
C1—Co1—C5—C692.86 (16)O5'—K1—O5—C2383 (2)
C8—Co1—C5—C65.7 (7)O1—K1—O5—C23102.5 (4)
C3—Co1—C5—C6137.23 (15)O6'—K1—O5—C2335.7 (4)
C2—Co1—C5—C6133.02 (16)O2—K1—O5—C2344.6 (5)
C4—Co1—C5—C697.29 (16)O4—K1—O5—C23100.8 (4)
C7—Co1—C5—C64.0 (2)O6—K1—O5—C2319.3 (4)
C1—Co1—C6—C588.57 (16)O3—K1—O5—C23160.8 (4)
C8—Co1—C6—C5178.81 (16)N1—K1—O5—C23150.2 (5)
C3—Co1—C6—C553.05 (18)N2—K1—O5—C2330.8 (5)
C2—Co1—C6—C556.79 (18)C24'—K1—O5—C234.4 (4)
C4—Co1—C6—C584.46 (16)C22—O5—C23—C24174.9 (7)
C7—Co1—C6—C5176.99 (16)K1—O5—C23—C2450.0 (6)
C1—Co1—C7—C885.10 (17)O5—C23—C24—O663.4 (6)
C5—Co1—C7—C8179.58 (16)C23—C24—O6—C25179.7 (6)
C3—Co1—C7—C854.97 (19)C23—C24—O6—K146.1 (5)
C2—Co1—C7—C852.91 (19)O5'—K1—O6—C25155.0 (4)
C4—Co1—C7—C887.38 (17)O1—K1—O6—C25131.8 (4)
C6—Co1—C7—C8177.86 (17)O6'—K1—O6—C2581.1 (6)
C1—Co1—C8—C796.59 (17)O2—K1—O6—C2573.7 (4)
C5—Co1—C8—C72.0 (8)O5—K1—O6—C25144.7 (4)
C3—Co1—C8—C7133.72 (17)O4—K1—O6—C2524.1 (4)
C2—Co1—C8—C7136.70 (17)O3—K1—O6—C2576.8 (4)
C4—Co1—C8—C793.61 (17)N1—K1—O6—C25155.5 (4)
C6—Co1—C8—C72.8 (2)N2—K1—O6—C2523.3 (4)
O5'—K1—N1—C15141.1 (2)C24'—K1—O6—C25179.5 (5)
O1—K1—N1—C15105.27 (13)O5'—K1—O6—C2425.0 (3)
O6'—K1—N1—C15125.90 (14)O1—K1—O6—C2498.2 (2)
O2—K1—N1—C1598.74 (12)O6'—K1—O6—C2448.8 (4)
O5—K1—N1—C15131.10 (17)O2—K1—O6—C24156.3 (2)
O4—K1—N1—C1519.55 (13)O5—K1—O6—C2414.7 (2)
O6—K1—N1—C15141.63 (13)O4—K1—O6—C24105.9 (2)
O3—K1—N1—C159.80 (11)O3—K1—O6—C2453.2 (3)
N2—K1—N1—C1584 (2)N1—K1—O6—C2425.6 (3)
C24'—K1—N1—C15149.41 (14)N2—K1—O6—C24153.3 (3)
O5'—K1—N1—C21'17.4 (10)C24'—K1—O6—C2450.5 (3)
O1—K1—N1—C21'131.0 (10)C24—O6—C25—C26171.8 (7)
O6'—K1—N1—C21'2.2 (10)K1—O6—C25—C2655.4 (7)
O2—K1—N1—C21'137.6 (10)O6—C25—C26—N265.9 (15)
O5—K1—N1—C21'7.4 (10)C15—N1—C21'—C22'166.0 (11)
O4—K1—N1—C21'104.1 (10)C9—N1—C21'—C22'74.3 (15)
O6—K1—N1—C21'17.9 (10)K1—N1—C21'—C22'42.5 (17)
O3—K1—N1—C21'113.9 (10)N1—C21'—C22'—O5'52 (2)
N2—K1—N1—C21'39 (3)C21'—C22'—O5'—C23'168.0 (13)
C24'—K1—N1—C21'25.7 (10)C21'—C22'—O5'—K136.6 (17)
O5'—K1—N1—C2124.8 (7)O1—K1—O5'—C22'42.3 (10)
O1—K1—N1—C21138.4 (7)O6'—K1—O5'—C22'174.6 (10)
O6'—K1—N1—C219.6 (7)O2—K1—O5'—C22'94.6 (10)
O2—K1—N1—C21144.9 (7)O5—K1—O5'—C22'119 (2)
O5—K1—N1—C2114.8 (7)O4—K1—O5'—C22'114.4 (10)
O4—K1—N1—C2196.8 (7)O6—K1—O5'—C22'168.8 (10)
O6—K1—N1—C2125.3 (7)O3—K1—O5'—C22'53.1 (10)
O3—K1—N1—C21106.5 (7)N1—K1—O5'—C22'10.7 (10)
N2—K1—N1—C2132 (2)N2—K1—O5'—C22'170.4 (10)
C24'—K1—N1—C2133.1 (7)C24'—K1—O5'—C22'157.9 (10)
O5'—K1—N1—C997.22 (19)O1—K1—O5'—C23'112.6 (6)
O1—K1—N1—C916.42 (11)O6'—K1—O5'—C23'30.5 (6)
O6'—K1—N1—C9112.41 (14)O2—K1—O5'—C23'60.2 (7)
O2—K1—N1—C922.94 (13)O5—K1—O5'—C23'86 (2)
O5—K1—N1—C9107.22 (17)O4—K1—O5'—C23'90.8 (7)
O4—K1—N1—C9141.23 (11)O6—K1—O5'—C23'13.9 (6)
O6—K1—N1—C996.68 (13)O3—K1—O5'—C23'152.1 (6)
O3—K1—N1—C9131.49 (13)N1—K1—O5'—C23'165.6 (7)
N2—K1—N1—C9154 (2)N2—K1—O5'—C23'15.5 (7)
C24'—K1—N1—C988.90 (14)C24'—K1—O5'—C23'3.1 (6)
C15—N1—C9—C1074.3 (2)C22'—O5'—C23'—C24'163.2 (10)
C21'—N1—C9—C10166.1 (8)K1—O5'—C23'—C24'5.2 (10)
C21—N1—C9—C10163.9 (6)O5'—C23'—C24'—O6'50.6 (9)
K1—N1—C9—C1047.21 (18)O5'—C23'—C24'—K13.9 (8)
N1—C9—C10—O162.7 (2)O5'—K1—C24'—O6'111.7 (3)
C9—C10—O1—C11170.04 (16)O1—K1—C24'—O6'175.0 (2)
C9—C10—O1—K144.9 (2)O2—K1—C24'—O6'113.3 (2)
O5'—K1—O1—C1067.5 (2)O5—K1—C24'—O6'98.6 (3)
O6'—K1—O1—C10113.59 (17)O4—K1—C24'—O6'10.4 (3)
O2—K1—O1—C10157.85 (15)O6—K1—C24'—O6'36.3 (3)
O5—K1—O1—C1064.40 (19)O3—K1—C24'—O6'61.1 (3)
O4—K1—O1—C1088.23 (14)N1—K1—C24'—O6'121.7 (2)
O6—K1—O1—C10124.81 (15)N2—K1—C24'—O6'57.2 (2)
O3—K1—O1—C1036.68 (14)O5'—K1—C24'—C23'2.6 (5)
N1—K1—O1—C1015.61 (13)O1—K1—C24'—C23'70.7 (5)
N2—K1—O1—C10164.61 (13)O6'—K1—C24'—C23'114.3 (6)
C24'—K1—O1—C10110.63 (16)O2—K1—C24'—C23'132.4 (5)
O5'—K1—O1—C11148.9 (2)O5—K1—C24'—C23'15.7 (5)
O6'—K1—O1—C11102.79 (16)O4—K1—C24'—C23'124.7 (5)
O2—K1—O1—C1114.23 (12)O6—K1—C24'—C23'150.6 (7)
O5—K1—O1—C11151.98 (18)O3—K1—C24'—C23'53.2 (5)
O4—K1—O1—C1155.39 (14)N1—K1—C24'—C23'7.4 (5)
O6—K1—O1—C1191.56 (14)N2—K1—C24'—C23'171.6 (5)
O3—K1—O1—C11106.94 (12)C23'—C24'—O6'—C25'162.5 (9)
N1—K1—O1—C11159.24 (14)K1—C24'—O6'—C25'123.5 (8)
N2—K1—O1—C1120.99 (14)C23'—C24'—O6'—K174.0 (6)
C24'—K1—O1—C11105.75 (15)O5'—K1—O6'—C24'51.1 (3)
C10—O1—C11—C12168.94 (17)O1—K1—O6'—C24'6.6 (3)
K1—O1—C11—C1244.87 (19)O2—K1—O6'—C24'73.3 (3)
O1—C11—C12—O263.1 (2)O5—K1—O6'—C24'60.7 (3)
C11—C12—O2—C13179.82 (17)O4—K1—O6'—C24'170.6 (2)
C11—C12—O2—K150.57 (19)O6—K1—O6'—C24'46.7 (4)
O5'—K1—O2—C1246.6 (2)O3—K1—O6'—C24'136.8 (2)
O1—K1—O2—C1219.64 (12)N1—K1—O6'—C24'66.4 (3)
O6'—K1—O2—C12111.45 (14)N2—K1—O6'—C24'114.4 (3)
O5—K1—O2—C1254.0 (2)O5'—K1—O6'—C25'174.7 (6)
O4—K1—O2—C12155.39 (12)O1—K1—O6'—C25'117.0 (5)
O6—K1—O2—C12104.87 (13)O2—K1—O6'—C25'50.3 (5)
O3—K1—O2—C1297.02 (12)O5—K1—O6'—C25'175.7 (5)
N1—K1—O2—C1226.21 (13)O4—K1—O6'—C25'47.0 (5)
N2—K1—O2—C12153.72 (13)O6—K1—O6'—C25'76.9 (6)
C24'—K1—O2—C1287.09 (15)O3—K1—O6'—C25'99.6 (5)
O5'—K1—O2—C1381.8 (2)N1—K1—O6'—C25'170.0 (5)
O1—K1—O2—C13147.97 (13)N2—K1—O6'—C25'9.1 (5)
O6'—K1—O2—C1316.88 (15)C24'—K1—O6'—C25'123.6 (6)
O5—K1—O2—C1374.3 (2)C24'—O6'—C25'—C26'76.4 (14)
O4—K1—O2—C1376.27 (13)K1—O6'—C25'—C26'36.8 (13)
O6—K1—O2—C1323.46 (14)O6'—C25'—C26'—N262 (2)
O3—K1—O2—C13134.64 (12)C13—C14—N2—C20160.38 (17)
N1—K1—O2—C13154.55 (12)C13—C14—N2—C2680.2 (8)
N2—K1—O2—C1325.38 (12)C13—C14—N2—C26'77.3 (12)
C24'—K1—O2—C1341.25 (15)C13—C14—N2—K140.0 (2)
C12—O2—C13—C14172.92 (17)C19—C20—N2—C1477.9 (2)
K1—O2—C13—C1457.19 (19)C19—C20—N2—C26166.5 (5)
O2—C13—C14—N267.6 (2)C19—C20—N2—C26'154.5 (6)
C21'—N1—C15—C1682.6 (9)C19—C20—N2—K141.77 (19)
C21—N1—C15—C1673.3 (7)C25—C26—N2—C14161.0 (10)
C9—N1—C15—C16161.52 (17)C25—C26—N2—C2080.2 (13)
K1—N1—C15—C1641.33 (19)C25—C26—N2—K143.2 (15)
N1—C15—C16—O364.8 (2)C25'—C26'—N2—C14166.7 (14)
C15—C16—O3—C17172.92 (15)C25'—C26'—N2—C2070 (2)
C15—C16—O3—K152.83 (18)C25'—C26'—N2—K147 (2)
O5'—K1—O3—C17113.19 (17)O5'—K1—N2—C14128.55 (19)
O1—K1—O3—C17152.93 (12)O1—K1—N2—C1414.46 (14)
O6'—K1—O3—C1752.14 (15)O6'—K1—N2—C14142.81 (15)
O2—K1—O3—C1795.13 (12)O2—K1—N2—C147.78 (11)
O5—K1—O3—C17104.59 (15)O5—K1—N2—C14138.41 (16)
O4—K1—O3—C1715.30 (11)O4—K1—N2—C14109.89 (13)
O6—K1—O3—C1750.80 (16)O6—K1—N2—C14126.87 (14)
N1—K1—O3—C17154.78 (13)O3—K1—N2—C14101.34 (12)
N2—K1—O3—C1723.96 (13)N1—K1—N2—C14175 (25)
C24'—K1—O3—C1778.64 (18)C24'—K1—N2—C14119.41 (15)
O5'—K1—O3—C1618.86 (18)O5'—K1—N2—C20110.98 (19)
O1—K1—O3—C1675.01 (12)O1—K1—N2—C20134.93 (11)
O6'—K1—O3—C1679.91 (15)O6'—K1—N2—C2096.72 (14)
O2—K1—O3—C16132.81 (11)O2—K1—N2—C20128.26 (13)
O5—K1—O3—C1627.46 (15)O5—K1—N2—C20101.12 (16)
O4—K1—O3—C16147.35 (13)O4—K1—N2—C2010.59 (11)
O6—K1—O3—C1681.25 (15)O6—K1—N2—C20112.65 (14)
N1—K1—O3—C1622.73 (11)O3—K1—N2—C2019.13 (13)
N2—K1—O3—C16156.01 (11)N1—K1—N2—C2055 (2)
C24'—K1—O3—C1653.42 (18)C24'—K1—N2—C20120.12 (15)
C16—O3—C17—C18179.74 (15)O5'—K1—N2—C2613.0 (8)
K1—O3—C17—C1845.90 (17)O1—K1—N2—C26101.1 (8)
O3—C17—C18—O463.4 (2)O6'—K1—N2—C2627.3 (8)
C17—C18—O4—C19177.62 (16)O2—K1—N2—C26107.7 (8)
C17—C18—O4—K149.20 (18)O5—K1—N2—C2622.9 (8)
O5'—K1—O4—C19128.3 (3)O4—K1—N2—C26134.6 (8)
O1—K1—O4—C1984.10 (12)O6—K1—N2—C2611.4 (8)
O6'—K1—O4—C1980.62 (14)O3—K1—N2—C26143.1 (8)
O2—K1—O4—C1929.43 (12)N1—K1—N2—C2669 (2)
O5—K1—O4—C19127.49 (19)C24'—K1—N2—C263.9 (8)
O6—K1—O4—C1968.32 (13)O5'—K1—N2—C26'3.7 (10)
O3—K1—O4—C19149.41 (13)O1—K1—N2—C26'110.4 (10)
N1—K1—O4—C19159.29 (11)O6'—K1—N2—C26'18.0 (10)
N2—K1—O4—C1921.90 (11)O2—K1—N2—C26'117.1 (10)
C24'—K1—O4—C1976.26 (15)O5—K1—N2—C26'13.6 (10)
O5'—K1—O4—C18100.7 (3)O4—K1—N2—C26'125.3 (10)
O1—K1—O4—C1846.94 (13)O6—K1—N2—C26'2.0 (10)
O6'—K1—O4—C18148.34 (14)O3—K1—N2—C26'133.8 (10)
O2—K1—O4—C18101.61 (12)N1—K1—N2—C26'60 (3)
O5—K1—O4—C18101.47 (19)C24'—K1—N2—C26'5.4 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24A···O5i0.992.593.326 (6)131
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[K(C18H36N2O6)][Co(C2H4)4]
Mr586.73
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)173
a, b, c (Å)25.836 (3), 10.4820 (12), 22.544 (3)
V3)6105.4 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.50 × 0.24 × 0.16
Data collection
DiffractometerSiemens SMART CCD Platform
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.709, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
45000, 7010, 4825
Rint0.056
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.073, 1.02
No. of reflections7010
No. of parameters414
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24A···O5i0.992.593.326 (6)131
Symmetry code: (i) x+1, y, z+3/2.
 

Acknowledgements

This research was supported by the US National Science Foundation and the donors of the Petroleum Research Fund, administered by the American Chemical Society.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrennessel, W. W. (2009). Doctoral thesis, University of Minnesota, Minneapolis, MN, USA.  Google Scholar
First citationBrennessel, W. W., Young, V. G. Jr & Ellis, J. E. (2006). Angew. Chem. Int. Ed. 45, 7268–7271.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDias, H. V. R., Fianchini, M., Cundari, T. R. & Campana, C. F. (2008). Angew. Chem. Int. Ed. 47, 556–559.  Web of Science CSD CrossRef CAS Google Scholar
First citationHoward, J. A. K., Spencer, J. L. & Mason, S. A. (1983). Proc. R. Soc. London Ser. A, 386, 145–161.  CrossRef CAS Google Scholar
First citationJonas, K. (1979). US Patent No. 4 169 845.  Google Scholar
First citationJonas, K. (1981). Adv. Organomet. Chem. 19, 97–122.  CrossRef CAS Google Scholar
First citationJonas, K. (1984). Pure Appl. Chem. 56, 63–80.  CrossRef CAS Web of Science Google Scholar
First citationJonas, K. (1985). Angew. Chem. Int. Ed. Engl. 24, 295–311.  CrossRef Web of Science Google Scholar
First citationJonas, K. & Krüger, C. (1980). Angew. Chem. Int. Ed. Engl. 19, 520–537.  CrossRef Web of Science Google Scholar
First citationJonas, K., Schieferstein, L., Krüger, C. & Tsay, Y.-H. (1979). Angew. Chem. Int. Ed. Engl. 18, 550–551.  CSD CrossRef Web of Science Google Scholar
First citationLide, D. R. (2003). CRC Handbook of Chemistry and Physics, 83rd ed. Boca Raton, FL: CRC Press.  Google Scholar
First citationReisinger, A., Trapp, N., Knapp, C., Himmel, D., Breher, F., Rüegger, H. & Krossing, I. (2009). Chem. Eur. J. 15, 9505–9520.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSantiso-Quiñones, G., Reisinger, A., Slattery, J. & Krossing, I. (2007). Chem. Commun. pp. 5046–5048.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds