metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,4′,6,6′-Tetra­chloro-2,2′-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methanylyl­­idene)]diphenolato}dioxidomolyb­denum(VI)

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, IR of IRAN, and bDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznán, Poland
*Correspondence e-mail: h.kargar@pnu.ac.ir

(Received 4 September 2012; accepted 4 September 2012; online 8 September 2012)

The asymmetric unit of the title compound, [Mo(C19H16Cl4N2O2)O2], comprises two independent mol­ecules (A and B). The geometry around the MoVI atom is distorted octa­hedral in each complex mol­ecule, supported by two oxide O atoms and the N2O2 donor atoms of the coordinating ligand. The dihedral angle between the benzene rings is 74.96 (11) Å for mol­ecule A and 76.05 (11) Å for mol­ecule B. In the crystal, the B mol­ecules are linked by pairs of C—H⋯Cl hydrogen bonds, forming inversion dimers. The crystal structure is further stabilized by C—H⋯π inter­actions. An inter­esting feature of the crystal structure is a Cl⋯Cl contact [3.3748 (18) Å], which is shorter than the sum of the van der Waals radii of Cl atoms (3.50 Å).

Related literature

For the importance of molybdenum in molybdoenzymes and in coordination chemistry and catalysis, see, for example: Majumdar & Sarkar (2011[Majumdar, A. & Sarkar, S. (2011). Coord. Chem. Rev. 255, 1039-1054.]); Enemark et al. (2004[Enemark, J. H., Cooney, J. J. A., Wang, J.-J. & Holm, R. H. (2004). Chem. Rev. 104, 1175-1200.]); Mancka & Plass (2007[Mancka, M. & Plass, W. (2007). Inorg. Chem. Commun. 10, 677-680.]). For background to Schiff base ligands, their complexes with MoO2, and related structures, see, for example: Kia & Fun (2009[Kia, R. & Fun, H.-K. (2009). Acta Cryst. E65, m192-m193.]); Kargar & Kia (2011[Kargar, H. & Kia, R. (2011). Acta Cryst. E67, m1348.]); Abbasi et al. (2008[Abbasi, A., Sheikhshoaie, I., Saghaei, A. & Monadi, N. (2008). Acta Cryst. E64, m1036.]); Monadi et al. (2009[Monadi, N., Sheikhshoaie, I., Rezaeifard, A. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1124-m1125.]). For standard values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C19H16Cl4N2O2)O2]

  • Mr = 574.08

  • Monoclinic, P 21 /c

  • a = 12.840 (5) Å

  • b = 15.457 (5) Å

  • c = 22.173 (5) Å

  • β = 102.397 (5)°

  • V = 4298 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 9.84 mm−1

  • T = 296 K

  • 0.42 × 0.21 × 0.11 mm

Data collection
  • Agilent Super Nova Atlas CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.104, Tmax = 0.411

  • 67900 measured reflections

  • 8626 independent reflections

  • 8373 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.079

  • S = 1.07

  • 8626 reflections

  • 541 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C20–C25 ring in mol­ecule B and Cg2 is the centroid of the C12–C17 ring in mol­ecule A.

D—H⋯A D—H H⋯A DA D—H⋯A
C38—H38B⋯Cl8i 0.96 2.82 3.767 (3) 168
C10—H10BCg1ii 0.97 2.66 3.433 (3) 136
C27—H27ACg2iii 0.97 2.55 3.363 (3) 141
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The element molybdenum is unique among metals due to its varied roles, for instance in the form of bio-catalysts as found in the enzymatic reactions in several natural molybdoproteins (Majumdar & Sarkar, 2011). The coordination chemistry of molybdenum(VI) has attracted considerable attention due to its biological importance (Enemark et al., 2004) and to their application in various catalytic oxidation reactions (Mancka & Plass, 2007). In continuation of our work on the crystal structure of Schiff base ligands from different substituted salicylaldehyde and amines and their complexes (Kargar & Kia, 2011; Kia & Fun, 2009) we synthesized and determined the X-ray structure of the title compound.

The asymmetric unit of the title compound comprises two crystallographically independent molecules, A and B, as shown in Fig. 1. Each MoVI centre is coordinated by two oxide O-atoms and by two O and two N atoms of the tetradentate Schiff base ligand in a distorted octahedral configuration. The dihedral angles between the benzene rings in the the two compounds are 74.96 (11) for rings C1-C6 and C12-C17 in A, and 76.05 (11) Å for rings C20-C25 and C31-C36 in B. The bond lengths and angles are within the normal ranges (Allen et al., 1987), and are comparable to those reported for similar structures (Abbasi et al., 2008; Monadi et al., 2009). The Mo1—N1 and Mo2—N3 bond lengths [2.3347 (17) and 2.3391 (17) Å, respectively] are trans to the terminal oxo groups and are significantly longer than the Mo1—N2 and Mo2—N4 bond lengths [2.1547 (18) and 2.1621 (18) Å, respectively]. This can be attributed to the strong trans effect of the oxo group.

In the crystal, the B molecules are linked by a pair of C-H···Cl hydrogen bonds to form inversion dimers (Table 1 and Fig. 2). The crystal structure is further stabilized by intermolecular C—H···π interactions (Table 1). An interesting feature of the crystal structure is a Cl4···Cl4i contact [3.3748 (18) Å; symmetry code: (i)-x, -y, -z+1; see Fig.3], which is shorter than the sum of the van der Waals radii of Cl atoms [3.50 Å; Bondi 1964].

Related literature top

For the importance of molybdenum in molybdoenzymes and in coordination chemistry and catalysis, see, for example: Majumdar & Sarkar (2011); Enemark et al. (2004); Mancka & Plass (2007). For background to Schiff base ligands, their complexes with MoO2, and related structures, see, for example: Kia & Fun (2009); Kargar & Kia (2011); Abbasi et al. (2008); Monadi et al. (2009). For standard values of bond lengths, see: Allen et al. (1987). For van der Waals radii, see: Bondi (1964).

Experimental top

The title dioxidomolybdenum (VI) complex was prepared by mixing MoO2(acac)2 with the ligand bis(3,5-dichlorosalicylidene)-2,2-dime thyl-1,3-propandiamine, in a 1:1 molar ratio using 50 ml of methanol as solvent, followed by refluxing the solution for 2 h. The small reddish crystals that formed were filtered off and recrystallized from acetonitrile.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3 H-atoms, respectively, with Uiso (H) = k × Ueq(C), where k = 1.2 for CH, CH2 and 1.5 for CH3.

Structure description top

The element molybdenum is unique among metals due to its varied roles, for instance in the form of bio-catalysts as found in the enzymatic reactions in several natural molybdoproteins (Majumdar & Sarkar, 2011). The coordination chemistry of molybdenum(VI) has attracted considerable attention due to its biological importance (Enemark et al., 2004) and to their application in various catalytic oxidation reactions (Mancka & Plass, 2007). In continuation of our work on the crystal structure of Schiff base ligands from different substituted salicylaldehyde and amines and their complexes (Kargar & Kia, 2011; Kia & Fun, 2009) we synthesized and determined the X-ray structure of the title compound.

The asymmetric unit of the title compound comprises two crystallographically independent molecules, A and B, as shown in Fig. 1. Each MoVI centre is coordinated by two oxide O-atoms and by two O and two N atoms of the tetradentate Schiff base ligand in a distorted octahedral configuration. The dihedral angles between the benzene rings in the the two compounds are 74.96 (11) for rings C1-C6 and C12-C17 in A, and 76.05 (11) Å for rings C20-C25 and C31-C36 in B. The bond lengths and angles are within the normal ranges (Allen et al., 1987), and are comparable to those reported for similar structures (Abbasi et al., 2008; Monadi et al., 2009). The Mo1—N1 and Mo2—N3 bond lengths [2.3347 (17) and 2.3391 (17) Å, respectively] are trans to the terminal oxo groups and are significantly longer than the Mo1—N2 and Mo2—N4 bond lengths [2.1547 (18) and 2.1621 (18) Å, respectively]. This can be attributed to the strong trans effect of the oxo group.

In the crystal, the B molecules are linked by a pair of C-H···Cl hydrogen bonds to form inversion dimers (Table 1 and Fig. 2). The crystal structure is further stabilized by intermolecular C—H···π interactions (Table 1). An interesting feature of the crystal structure is a Cl4···Cl4i contact [3.3748 (18) Å; symmetry code: (i)-x, -y, -z+1; see Fig.3], which is shorter than the sum of the van der Waals radii of Cl atoms [3.50 Å; Bondi 1964].

For the importance of molybdenum in molybdoenzymes and in coordination chemistry and catalysis, see, for example: Majumdar & Sarkar (2011); Enemark et al. (2004); Mancka & Plass (2007). For background to Schiff base ligands, their complexes with MoO2, and related structures, see, for example: Kia & Fun (2009); Kargar & Kia (2011); Abbasi et al. (2008); Monadi et al. (2009). For standard values of bond lengths, see: Allen et al. (1987). For van der Waals radii, see: Bondi (1964).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom numbering. Displacement ellipsoids are drawn at the 40% probability level.The H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A partial view along the a axis of the crystal packing of the title complex, showing the linking of B molecules through intermolecular C—H···Cl interactions (dashed lines; only the H atoms involved in these interactions are shown; see Table 1 for details).
[Figure 3] Fig. 3. A partial view along the a axis of the crystal packing of the title complex showing the linking of the molecules through intermolecular Cl···Cl interactions (dashed lines). Only the Cl atoms involved in these interactions are shown.
{4,4',6,6'-Tetrachloro-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethanylylidene)]diphenolato}dioxidomolybdenum(VI) top
Crystal data top
[Mo(C19H16Cl4N2O2)O2]F(000) = 2288
Mr = 574.08Dx = 1.774 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 5865 reflections
a = 12.840 (5) Åθ = 2.6–65.9°
b = 15.457 (5) ŵ = 9.84 mm1
c = 22.173 (5) ÅT = 296 K
β = 102.397 (5)°Block, red
V = 4298 (2) Å30.42 × 0.21 × 0.11 mm
Z = 8
Data collection top
Agilent Super Nova Atlas CCD area-detector
diffractometer
8626 independent reflections
Radiation source: fine-focus sealed tube8373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 73.8°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1515
Tmin = 0.104, Tmax = 0.411k = 1719
67900 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0456P)2 + 2.3531P]
where P = (Fo2 + 2Fc2)/3
8626 reflections(Δ/σ)max = 0.004
541 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Mo(C19H16Cl4N2O2)O2]V = 4298 (2) Å3
Mr = 574.08Z = 8
Monoclinic, P21/cCu Kα radiation
a = 12.840 (5) ŵ = 9.84 mm1
b = 15.457 (5) ÅT = 296 K
c = 22.173 (5) Å0.42 × 0.21 × 0.11 mm
β = 102.397 (5)°
Data collection top
Agilent Super Nova Atlas CCD area-detector
diffractometer
8626 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
8373 reflections with I > 2σ(I)
Tmin = 0.104, Tmax = 0.411Rint = 0.049
67900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.07Δρmax = 0.69 e Å3
8626 reflectionsΔρmin = 0.71 e Å3
541 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17569 (16)0.08382 (12)0.85123 (9)0.0310 (4)
C20.16664 (17)0.16416 (13)0.82008 (10)0.0346 (4)
C30.14813 (18)0.23973 (14)0.84863 (11)0.0410 (5)
H3A0.14600.29220.82790.049*
C40.13259 (19)0.23703 (14)0.90906 (11)0.0413 (5)
C50.13148 (19)0.15964 (14)0.93932 (10)0.0400 (5)
H5A0.11620.15830.97840.048*
C60.15359 (17)0.08231 (13)0.91094 (10)0.0337 (4)
C70.13849 (17)0.00005 (14)0.93867 (9)0.0346 (4)
H7A0.09800.00050.96880.041*
C80.13229 (18)0.15290 (14)0.94477 (9)0.0346 (4)
H8A0.19010.19220.96160.042*
H8B0.09510.13950.97730.042*
C90.05465 (17)0.19803 (13)0.89144 (9)0.0341 (4)
C100.11182 (17)0.23127 (13)0.84194 (9)0.0337 (4)
H10A0.06010.26090.81040.040*
H10B0.16480.27350.86080.040*
C110.14200 (16)0.16007 (13)0.75311 (9)0.0309 (4)
H11A0.08760.19550.73220.037*
C120.19467 (16)0.10359 (13)0.71609 (9)0.0302 (4)
C130.14309 (17)0.08803 (14)0.65515 (10)0.0360 (4)
H13A0.07710.11310.63920.043*
C140.19003 (19)0.03533 (16)0.61842 (10)0.0419 (5)
C150.28885 (19)0.00147 (15)0.64065 (10)0.0412 (5)
H15A0.31960.03730.61560.049*
C160.34122 (17)0.01586 (14)0.70061 (10)0.0356 (4)
C170.29588 (16)0.06813 (13)0.73944 (9)0.0305 (4)
C180.0123 (2)0.27872 (17)0.91895 (12)0.0546 (6)
H18A0.03660.30890.88710.082*
H18B0.07080.31610.93620.082*
H18C0.02380.26150.95070.082*
C190.03728 (18)0.13821 (17)0.86320 (12)0.0464 (5)
H19A0.08460.16760.83010.070*
H19B0.07550.12210.89420.070*
H19C0.00970.08720.84740.070*
C200.79437 (16)0.11005 (13)0.73736 (9)0.0311 (4)
C210.84134 (17)0.05532 (14)0.70059 (10)0.0365 (4)
C220.7898 (2)0.03316 (15)0.64125 (10)0.0420 (5)
H22A0.82170.00430.61780.050*
C230.6901 (2)0.06753 (16)0.61735 (10)0.0433 (5)
C240.64186 (18)0.12314 (15)0.65155 (10)0.0381 (5)
H24A0.57570.14720.63430.046*
C250.69258 (16)0.14329 (13)0.71208 (9)0.0320 (4)
C260.63802 (16)0.20147 (13)0.74708 (9)0.0325 (4)
H26A0.58360.23590.72490.039*
C270.60340 (17)0.27598 (13)0.83301 (9)0.0344 (4)
H27A0.65490.31970.85120.041*
H27B0.55190.30350.80020.041*
C280.54491 (17)0.24485 (14)0.88253 (9)0.0355 (4)
C290.62282 (18)0.20500 (14)0.93808 (9)0.0376 (4)
H29A0.58520.19360.97080.045*
H29B0.67920.24620.95360.045*
C300.63214 (17)0.05162 (15)0.93682 (9)0.0353 (4)
H30A0.58980.05390.96600.042*
C310.64975 (16)0.03220 (14)0.91217 (10)0.0351 (4)
C320.62645 (18)0.10783 (16)0.94214 (10)0.0416 (5)
H32A0.60870.10440.98060.050*
C330.63006 (19)0.18659 (15)0.91419 (12)0.0456 (5)
C340.64964 (19)0.19296 (15)0.85511 (11)0.0436 (5)
H34A0.64960.24680.83630.052*
C350.66914 (17)0.11924 (14)0.82456 (10)0.0364 (4)
C360.67446 (15)0.03693 (13)0.85286 (9)0.0317 (4)
C380.4984 (2)0.32662 (17)0.90572 (12)0.0532 (6)
H38A0.44920.35330.87210.080*
H38B0.46190.31140.93770.080*
H38C0.55510.36630.92180.080*
C370.45606 (18)0.18178 (17)0.85567 (11)0.0463 (5)
H37A0.40860.20820.82120.070*
H37B0.48630.13040.84210.070*
H37C0.41730.16690.88670.070*
Cl10.18472 (5)0.16526 (4)0.74514 (2)0.04789 (13)
Cl20.11438 (6)0.33336 (4)0.94560 (3)0.05803 (16)
Cl30.46752 (5)0.02498 (5)0.72795 (3)0.05550 (16)
Cl40.12400 (7)0.01570 (6)0.54286 (3)0.0760 (2)
Cl50.96740 (5)0.01532 (5)0.73031 (3)0.05583 (15)
Cl60.62383 (7)0.03848 (6)0.54341 (3)0.0740 (2)
Cl70.69243 (5)0.12454 (4)0.75088 (3)0.04899 (14)
Cl80.60902 (7)0.28117 (4)0.95216 (4)0.06755 (19)
Mo10.299788 (11)0.081572 (10)0.872639 (6)0.02889 (6)
Mo20.794884 (11)0.129710 (10)0.869804 (6)0.02901 (6)
N10.16496 (13)0.16445 (10)0.81190 (7)0.0292 (3)
N20.17682 (14)0.07280 (11)0.92494 (7)0.0306 (3)
N30.65943 (13)0.20844 (10)0.80556 (7)0.0302 (3)
N40.67046 (14)0.12383 (11)0.92171 (8)0.0328 (4)
O10.20034 (11)0.01417 (9)0.82432 (6)0.0321 (3)
O20.35171 (11)0.08671 (10)0.79643 (6)0.0345 (3)
O30.37760 (13)0.00636 (11)0.91758 (7)0.0426 (3)
O40.34222 (13)0.17771 (11)0.90720 (7)0.0438 (4)
O50.84832 (11)0.13193 (10)0.79391 (7)0.0349 (3)
O60.69758 (11)0.03127 (9)0.82394 (6)0.0334 (3)
O70.83513 (13)0.22723 (10)0.90255 (7)0.0438 (4)
O80.87368 (12)0.05671 (10)0.91652 (7)0.0399 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0297 (9)0.0297 (9)0.0318 (10)0.0012 (7)0.0024 (8)0.0012 (7)
C20.0362 (10)0.0337 (10)0.0331 (10)0.0008 (8)0.0056 (8)0.0025 (8)
C30.0444 (12)0.0312 (10)0.0472 (12)0.0033 (9)0.0089 (10)0.0030 (9)
C40.0442 (12)0.0318 (10)0.0483 (12)0.0044 (9)0.0106 (10)0.0072 (9)
C50.0479 (12)0.0362 (11)0.0386 (11)0.0040 (9)0.0150 (9)0.0054 (9)
C60.0367 (10)0.0306 (10)0.0340 (10)0.0015 (8)0.0082 (8)0.0021 (8)
C70.0402 (11)0.0374 (10)0.0264 (9)0.0009 (8)0.0080 (8)0.0007 (8)
C80.0441 (11)0.0333 (10)0.0277 (9)0.0003 (8)0.0103 (8)0.0050 (8)
C90.0398 (11)0.0323 (10)0.0320 (10)0.0034 (8)0.0118 (8)0.0016 (8)
C100.0410 (11)0.0273 (9)0.0344 (10)0.0025 (8)0.0116 (8)0.0004 (7)
C110.0315 (9)0.0309 (9)0.0302 (9)0.0000 (7)0.0064 (7)0.0037 (7)
C120.0323 (9)0.0309 (9)0.0284 (9)0.0039 (8)0.0084 (7)0.0009 (7)
C130.0353 (10)0.0399 (11)0.0309 (10)0.0010 (8)0.0031 (8)0.0004 (8)
C140.0478 (12)0.0462 (12)0.0305 (10)0.0037 (10)0.0056 (9)0.0080 (9)
C150.0488 (12)0.0396 (11)0.0370 (11)0.0020 (9)0.0133 (9)0.0060 (9)
C160.0367 (10)0.0344 (10)0.0370 (10)0.0014 (8)0.0110 (8)0.0028 (8)
C170.0317 (9)0.0318 (9)0.0287 (9)0.0046 (8)0.0082 (7)0.0028 (7)
C180.0760 (18)0.0450 (13)0.0497 (14)0.0188 (12)0.0286 (13)0.0016 (11)
C190.0382 (12)0.0511 (13)0.0502 (13)0.0033 (10)0.0096 (10)0.0049 (10)
C200.0328 (10)0.0323 (9)0.0290 (9)0.0049 (8)0.0080 (8)0.0032 (7)
C210.0386 (11)0.0360 (10)0.0366 (10)0.0023 (8)0.0118 (9)0.0039 (8)
C220.0535 (13)0.0401 (11)0.0350 (11)0.0023 (10)0.0152 (10)0.0007 (9)
C230.0523 (13)0.0499 (13)0.0271 (10)0.0042 (10)0.0072 (9)0.0008 (9)
C240.0373 (11)0.0462 (12)0.0295 (10)0.0012 (9)0.0040 (8)0.0059 (8)
C250.0333 (10)0.0348 (10)0.0284 (9)0.0027 (8)0.0078 (8)0.0035 (8)
C260.0307 (9)0.0353 (10)0.0309 (9)0.0013 (8)0.0055 (8)0.0064 (8)
C270.0395 (11)0.0303 (9)0.0336 (10)0.0044 (8)0.0087 (8)0.0032 (8)
C280.0385 (11)0.0383 (10)0.0311 (10)0.0057 (8)0.0103 (8)0.0004 (8)
C290.0447 (11)0.0409 (11)0.0271 (9)0.0057 (9)0.0077 (8)0.0014 (8)
C300.0370 (10)0.0431 (11)0.0255 (9)0.0003 (9)0.0063 (8)0.0041 (8)
C310.0346 (10)0.0356 (10)0.0338 (10)0.0030 (8)0.0043 (8)0.0045 (8)
C320.0417 (11)0.0458 (12)0.0375 (11)0.0069 (10)0.0089 (9)0.0110 (9)
C330.0451 (12)0.0380 (11)0.0512 (13)0.0072 (9)0.0049 (10)0.0136 (10)
C340.0456 (12)0.0335 (11)0.0489 (13)0.0050 (9)0.0041 (10)0.0013 (9)
C350.0365 (11)0.0362 (10)0.0340 (10)0.0018 (8)0.0019 (8)0.0002 (8)
C360.0304 (9)0.0330 (10)0.0289 (9)0.0026 (7)0.0002 (7)0.0039 (8)
C380.0687 (16)0.0512 (14)0.0424 (13)0.0226 (12)0.0181 (12)0.0013 (10)
C370.0374 (11)0.0546 (14)0.0461 (12)0.0021 (10)0.0071 (9)0.0067 (11)
Cl10.0667 (4)0.0424 (3)0.0350 (3)0.0004 (2)0.0116 (2)0.0073 (2)
Cl20.0819 (4)0.0338 (3)0.0620 (4)0.0099 (3)0.0235 (3)0.0082 (2)
Cl30.0450 (3)0.0685 (4)0.0535 (3)0.0216 (3)0.0118 (3)0.0018 (3)
Cl40.0759 (5)0.1024 (6)0.0406 (3)0.0152 (4)0.0076 (3)0.0307 (4)
Cl50.0453 (3)0.0663 (4)0.0554 (3)0.0197 (3)0.0098 (3)0.0007 (3)
Cl60.0823 (5)0.0978 (6)0.0345 (3)0.0080 (4)0.0035 (3)0.0180 (3)
Cl70.0658 (4)0.0432 (3)0.0377 (3)0.0011 (2)0.0105 (2)0.0072 (2)
Cl80.0860 (5)0.0460 (3)0.0697 (4)0.0152 (3)0.0148 (4)0.0221 (3)
Mo10.02827 (9)0.03244 (9)0.02461 (9)0.00161 (5)0.00267 (6)0.00068 (5)
Mo20.02898 (9)0.03137 (9)0.02493 (9)0.00155 (5)0.00191 (6)0.00017 (5)
N10.0310 (8)0.0272 (8)0.0301 (8)0.0017 (6)0.0082 (6)0.0002 (6)
N20.0367 (9)0.0304 (8)0.0238 (8)0.0002 (6)0.0044 (6)0.0016 (6)
N30.0315 (8)0.0292 (8)0.0301 (8)0.0013 (6)0.0071 (6)0.0024 (6)
N40.0357 (9)0.0368 (9)0.0245 (8)0.0019 (7)0.0030 (7)0.0010 (6)
O10.0389 (7)0.0301 (7)0.0269 (6)0.0051 (6)0.0060 (5)0.0003 (5)
O20.0287 (7)0.0453 (8)0.0292 (7)0.0027 (6)0.0056 (5)0.0006 (6)
O30.0407 (8)0.0527 (9)0.0323 (7)0.0086 (7)0.0031 (6)0.0048 (7)
O40.0448 (9)0.0439 (8)0.0407 (8)0.0096 (7)0.0044 (7)0.0090 (7)
O50.0291 (7)0.0444 (8)0.0305 (7)0.0035 (6)0.0050 (6)0.0004 (6)
O60.0392 (7)0.0331 (7)0.0264 (6)0.0071 (6)0.0040 (5)0.0011 (5)
O70.0459 (9)0.0393 (8)0.0430 (8)0.0063 (7)0.0021 (7)0.0051 (7)
O80.0409 (8)0.0456 (8)0.0307 (7)0.0071 (7)0.0020 (6)0.0024 (6)
Geometric parameters (Å, º) top
C1—O11.302 (2)C22—H22A0.9300
C1—C61.413 (3)C23—C241.378 (3)
C1—C21.414 (3)C23—Cl61.736 (2)
C2—C31.373 (3)C24—C251.395 (3)
C2—Cl11.727 (2)C24—H24A0.9300
C3—C41.397 (3)C25—C261.461 (3)
C3—H3A0.9300C26—N31.271 (3)
C4—C51.373 (3)C26—H26A0.9300
C4—Cl21.735 (2)C27—N31.472 (3)
C5—C61.408 (3)C27—C281.535 (3)
C5—H5A0.9300C27—H27A0.9700
C6—C71.443 (3)C27—H27B0.9700
C7—N21.291 (3)C28—C371.522 (3)
C7—H7A0.9300C28—C381.533 (3)
C8—N21.470 (3)C28—C291.539 (3)
C8—C91.540 (3)C29—N41.475 (3)
C8—H8A0.9700C29—H29A0.9700
C8—H8B0.9700C29—H29B0.9700
C9—C191.524 (3)C30—N41.293 (3)
C9—C101.534 (3)C30—C311.443 (3)
C9—C181.538 (3)C30—H30A0.9300
C10—N11.473 (2)C31—C321.408 (3)
C10—H10A0.9700C31—C361.419 (3)
C10—H10B0.9700C32—C331.371 (4)
C11—N11.275 (3)C32—H32A0.9300
C11—C121.460 (3)C33—C341.389 (4)
C11—H11A0.9300C33—Cl81.737 (2)
C12—C131.392 (3)C34—C351.376 (3)
C12—C171.403 (3)C34—H34A0.9300
C13—C141.379 (3)C35—C361.414 (3)
C13—H13A0.9300C35—Cl71.725 (2)
C14—C151.381 (3)C36—O61.301 (2)
C14—Cl41.734 (2)C38—H38A0.9600
C15—C161.381 (3)C38—H38B0.9600
C15—H15A0.9300C38—H38C0.9600
C16—C171.396 (3)C37—H37A0.9600
C16—Cl31.724 (2)C37—H37B0.9600
C17—O21.343 (2)C37—H37C0.9600
C18—H18A0.9600Mo1—O41.7068 (16)
C18—H18B0.9600Mo1—O31.7075 (16)
C18—H18C0.9600Mo1—O21.9467 (15)
C19—H19A0.9600Mo1—O12.0931 (14)
C19—H19B0.9600Mo1—N22.1547 (18)
C19—H19C0.9600Mo1—N12.3347 (17)
C20—O51.339 (2)Mo2—O71.7045 (16)
C20—C211.398 (3)Mo2—O81.7088 (15)
C20—C251.404 (3)Mo2—O51.9493 (15)
C21—C221.383 (3)Mo2—O62.0893 (14)
C21—Cl51.726 (2)Mo2—N42.1621 (18)
C22—C231.383 (3)Mo2—N32.3391 (17)
O1—C1—C6122.22 (18)C28—C27—H27A108.4
O1—C1—C2120.33 (18)N3—C27—H27B108.4
C6—C1—C2117.41 (18)C28—C27—H27B108.4
C3—C2—C1121.8 (2)H27A—C27—H27B107.5
C3—C2—Cl1120.50 (17)C37—C28—C38110.3 (2)
C1—C2—Cl1117.70 (16)C37—C28—C27111.21 (18)
C2—C3—C4119.4 (2)C38—C28—C27105.49 (18)
C2—C3—H3A120.3C37—C28—C29111.15 (19)
C4—C3—H3A120.3C38—C28—C29107.14 (18)
C5—C4—C3120.9 (2)C27—C28—C29111.36 (18)
C5—C4—Cl2120.20 (18)N4—C29—C28112.10 (16)
C3—C4—Cl2118.92 (17)N4—C29—H29A109.2
C4—C5—C6119.8 (2)C28—C29—H29A109.2
C4—C5—H5A120.1N4—C29—H29B109.2
C6—C5—H5A120.1C28—C29—H29B109.2
C5—C6—C1120.35 (19)H29A—C29—H29B107.9
C5—C6—C7119.94 (19)N4—C30—C31125.29 (19)
C1—C6—C7119.09 (18)N4—C30—H30A117.4
N2—C7—C6125.10 (19)C31—C30—H30A117.4
N2—C7—H7A117.4C32—C31—C36120.5 (2)
C6—C7—H7A117.4C32—C31—C30120.0 (2)
N2—C8—C9112.39 (16)C36—C31—C30118.80 (18)
N2—C8—H8A109.1C33—C32—C31119.5 (2)
C9—C8—H8A109.1C33—C32—H32A120.2
N2—C8—H8B109.1C31—C32—H32A120.2
C9—C8—H8B109.1C32—C33—C34121.3 (2)
H8A—C8—H8B107.9C32—C33—Cl8120.28 (19)
C19—C9—C10110.89 (18)C34—C33—Cl8118.42 (19)
C19—C9—C18110.3 (2)C35—C34—C33119.6 (2)
C10—C9—C18106.04 (18)C35—C34—H34A120.2
C19—C9—C8110.93 (18)C33—C34—H34A120.2
C10—C9—C8111.76 (17)C34—C35—C36121.6 (2)
C18—C9—C8106.77 (18)C34—C35—Cl7120.93 (18)
N1—C10—C9115.33 (16)C36—C35—Cl7117.48 (16)
N1—C10—H10A108.4O6—C36—C35120.32 (18)
C9—C10—H10A108.4O6—C36—C31122.35 (18)
N1—C10—H10B108.4C35—C36—C31117.29 (18)
C9—C10—H10B108.4C28—C38—H38A109.5
H10A—C10—H10B107.5C28—C38—H38B109.5
N1—C11—C12124.97 (18)H38A—C38—H38B109.5
N1—C11—H11A117.5C28—C38—H38C109.5
C12—C11—H11A117.5H38A—C38—H38C109.5
C13—C12—C17120.04 (18)H38B—C38—H38C109.5
C13—C12—C11117.89 (18)C28—C37—H37A109.5
C17—C12—C11122.03 (18)C28—C37—H37B109.5
C14—C13—C12119.9 (2)H37A—C37—H37B109.5
C14—C13—H13A120.1C28—C37—H37C109.5
C12—C13—H13A120.1H37A—C37—H37C109.5
C13—C14—C15121.1 (2)H37B—C37—H37C109.5
C13—C14—Cl4119.27 (18)O4—Mo1—O3103.91 (8)
C15—C14—Cl4119.58 (17)O4—Mo1—O2102.62 (7)
C16—C15—C14118.9 (2)O3—Mo1—O2105.53 (7)
C16—C15—H15A120.5O4—Mo1—O1161.13 (7)
C14—C15—H15A120.5O3—Mo1—O191.92 (8)
C15—C16—C17121.6 (2)O2—Mo1—O182.50 (6)
C15—C16—Cl3119.61 (17)O4—Mo1—N290.76 (7)
C17—C16—Cl3118.72 (16)O3—Mo1—N292.73 (7)
O2—C17—C16119.67 (18)O2—Mo1—N2153.75 (6)
O2—C17—C12121.91 (18)O1—Mo1—N278.11 (6)
C16—C17—C12118.33 (18)O4—Mo1—N184.66 (7)
C9—C18—H18A109.5O3—Mo1—N1168.18 (7)
C9—C18—H18B109.5O2—Mo1—N180.02 (6)
H18A—C18—H18B109.5O1—Mo1—N178.31 (6)
C9—C18—H18C109.5N2—Mo1—N178.86 (6)
H18A—C18—H18C109.5O7—Mo2—O8103.88 (8)
H18B—C18—H18C109.5O7—Mo2—O5102.80 (7)
C9—C19—H19A109.5O8—Mo2—O5105.23 (7)
C9—C19—H19B109.5O7—Mo2—O6161.15 (7)
H19A—C19—H19B109.5O8—Mo2—O691.63 (7)
C9—C19—H19C109.5O5—Mo2—O682.94 (6)
H19A—C19—H19C109.5O7—Mo2—N490.08 (7)
H19B—C19—H19C109.5O8—Mo2—N493.36 (7)
O5—C20—C21119.83 (19)O5—Mo2—N4153.84 (6)
O5—C20—C25122.10 (18)O6—Mo2—N478.20 (6)
C21—C20—C25118.01 (19)O7—Mo2—N385.25 (7)
C22—C21—C20121.8 (2)O8—Mo2—N3168.18 (7)
C22—C21—Cl5119.51 (17)O5—Mo2—N379.55 (6)
C20—C21—Cl5118.73 (17)O6—Mo2—N378.10 (6)
C23—C22—C21119.0 (2)N4—Mo2—N378.94 (6)
C23—C22—H22A120.5C11—N1—C10118.13 (17)
C21—C22—H22A120.5C11—N1—Mo1122.73 (13)
C24—C23—C22121.2 (2)C10—N1—Mo1118.80 (12)
C24—C23—Cl6119.62 (19)C7—N2—C8118.14 (18)
C22—C23—Cl6119.22 (18)C7—N2—Mo1122.83 (14)
C23—C24—C25119.8 (2)C8—N2—Mo1119.01 (13)
C23—C24—H24A120.1C26—N3—C27117.66 (17)
C25—C24—H24A120.1C26—N3—Mo2123.15 (14)
C24—C25—C20120.29 (19)C27—N3—Mo2118.86 (12)
C24—C25—C26118.05 (19)C30—N4—C29118.01 (18)
C20—C25—C26121.63 (18)C30—N4—Mo2122.70 (15)
N3—C26—C25124.80 (18)C29—N4—Mo2119.22 (13)
N3—C26—H26A117.6C1—O1—Mo1122.11 (12)
C25—C26—H26A117.6C17—O2—Mo1126.50 (12)
N3—C27—C28115.55 (16)C20—O5—Mo2126.63 (12)
N3—C27—H27A108.4C36—O6—Mo2121.74 (12)
O1—C1—C2—C3175.4 (2)C12—C11—N1—C10173.77 (18)
C6—C1—C2—C36.7 (3)C12—C11—N1—Mo10.5 (3)
O1—C1—C2—Cl12.2 (3)C9—C10—N1—C11126.2 (2)
C6—C1—C2—Cl1175.74 (15)C9—C10—N1—Mo160.2 (2)
C1—C2—C3—C43.2 (3)O4—Mo1—N1—C11129.88 (16)
Cl1—C2—C3—C4179.30 (18)O3—Mo1—N1—C1193.0 (3)
C2—C3—C4—C52.5 (4)O2—Mo1—N1—C1126.04 (15)
C2—C3—C4—Cl2177.56 (18)O1—Mo1—N1—C1158.29 (15)
C3—C4—C5—C64.5 (4)N2—Mo1—N1—C11138.29 (16)
Cl2—C4—C5—C6175.64 (18)O4—Mo1—N1—C1043.37 (14)
C4—C5—C6—C10.7 (3)O3—Mo1—N1—C1093.7 (3)
C4—C5—C6—C7171.6 (2)O2—Mo1—N1—C10147.21 (14)
O1—C1—C6—C5177.4 (2)O1—Mo1—N1—C10128.47 (14)
C2—C1—C6—C54.7 (3)N2—Mo1—N1—C1048.47 (13)
O1—C1—C6—C711.6 (3)C6—C7—N2—C8164.3 (2)
C2—C1—C6—C7166.30 (19)C6—C7—N2—Mo114.2 (3)
C5—C6—C7—N2164.3 (2)C9—C8—N2—C7102.7 (2)
C1—C6—C7—N224.7 (3)C9—C8—N2—Mo175.8 (2)
N2—C8—C9—C1958.3 (2)O4—Mo1—N2—C7152.81 (17)
N2—C8—C9—C1066.0 (2)O3—Mo1—N2—C748.85 (17)
N2—C8—C9—C18178.51 (19)O2—Mo1—N2—C785.8 (2)
C19—C9—C10—N164.0 (2)O1—Mo1—N2—C742.54 (16)
C18—C9—C10—N1176.33 (19)N1—Mo1—N2—C7122.78 (17)
C8—C9—C10—N160.4 (2)O4—Mo1—N2—C828.72 (15)
N1—C11—C12—C13162.51 (19)O3—Mo1—N2—C8132.69 (15)
N1—C11—C12—C1719.9 (3)O2—Mo1—N2—C892.67 (19)
C17—C12—C13—C142.2 (3)O1—Mo1—N2—C8135.92 (15)
C11—C12—C13—C14179.79 (19)N1—Mo1—N2—C855.69 (14)
C12—C13—C14—C151.1 (3)C25—C26—N3—C27174.48 (18)
C12—C13—C14—Cl4179.31 (17)C25—C26—N3—Mo21.1 (3)
C13—C14—C15—C160.6 (4)C28—C27—N3—C26126.1 (2)
Cl4—C14—C15—C16178.99 (18)C28—C27—N3—Mo260.2 (2)
C14—C15—C16—C171.2 (3)O7—Mo2—N3—C26129.83 (17)
C14—C15—C16—Cl3176.71 (18)O8—Mo2—N3—C2689.1 (3)
C15—C16—C17—O2176.79 (19)O5—Mo2—N3—C2625.86 (16)
Cl3—C16—C17—O21.2 (3)O6—Mo2—N3—C2659.05 (16)
C15—C16—C17—C120.2 (3)N4—Mo2—N3—C26139.16 (17)
Cl3—C16—C17—C12177.76 (15)O7—Mo2—N3—C2743.50 (14)
C13—C12—C17—O2175.00 (18)O8—Mo2—N3—C2797.5 (3)
C11—C12—C17—O22.5 (3)O5—Mo2—N3—C27147.47 (14)
C13—C12—C17—C161.5 (3)O6—Mo2—N3—C27127.63 (14)
C11—C12—C17—C16179.01 (18)N4—Mo2—N3—C2747.51 (13)
O5—C20—C21—C22178.03 (19)C31—C30—N4—C29164.04 (19)
C25—C20—C21—C220.7 (3)C31—C30—N4—Mo212.8 (3)
O5—C20—C21—Cl51.5 (3)C28—C29—N4—C30101.2 (2)
C25—C20—C21—Cl5178.87 (15)C28—C29—N4—Mo275.8 (2)
C20—C21—C22—C231.3 (3)O7—Mo2—N4—C30152.99 (17)
Cl5—C21—C22—C23178.23 (18)O8—Mo2—N4—C3049.08 (17)
C21—C22—C23—C240.1 (4)O5—Mo2—N4—C3086.7 (2)
C21—C22—C23—Cl6178.85 (18)O6—Mo2—N4—C3041.89 (16)
C22—C23—C24—C252.1 (3)N3—Mo2—N4—C30121.87 (17)
Cl6—C23—C24—C25176.87 (17)O7—Mo2—N4—C2930.24 (15)
C23—C24—C25—C202.7 (3)O8—Mo2—N4—C29134.14 (15)
C23—C24—C25—C26179.1 (2)O5—Mo2—N4—C2990.1 (2)
O5—C20—C25—C24175.97 (18)O6—Mo2—N4—C29134.89 (15)
C21—C20—C25—C241.3 (3)N3—Mo2—N4—C2954.90 (14)
O5—C20—C25—C262.2 (3)C6—C1—O1—Mo139.7 (3)
C21—C20—C25—C26179.52 (18)C2—C1—O1—Mo1142.49 (16)
C24—C25—C26—N3161.2 (2)O4—Mo1—O1—C1110.6 (2)
C20—C25—C26—N320.6 (3)O3—Mo1—O1—C136.71 (15)
N3—C27—C28—C3763.1 (2)O2—Mo1—O1—C1142.12 (15)
N3—C27—C28—C38177.35 (19)N2—Mo1—O1—C155.68 (15)
N3—C27—C28—C2961.5 (2)N1—Mo1—O1—C1136.58 (15)
C37—C28—C29—N457.7 (2)C16—C17—O2—Mo1133.78 (16)
C38—C28—C29—N4178.25 (19)C12—C17—O2—Mo149.8 (2)
C27—C28—C29—N466.9 (2)O4—Mo1—O2—C17132.81 (16)
N4—C30—C31—C32164.6 (2)O3—Mo1—O2—C17118.66 (16)
N4—C30—C31—C3625.2 (3)O1—Mo1—O2—C1728.74 (16)
C36—C31—C32—C331.4 (3)N2—Mo1—O2—C1713.8 (2)
C30—C31—C32—C33171.5 (2)N1—Mo1—O2—C1750.63 (16)
C31—C32—C33—C344.1 (4)C21—C20—O5—Mo2132.65 (17)
C31—C32—C33—Cl8176.35 (18)C25—C20—O5—Mo250.1 (3)
C32—C33—C34—C352.1 (4)O7—Mo2—O5—C20133.49 (16)
Cl8—C33—C34—C35178.43 (18)O8—Mo2—O5—C20118.05 (17)
C33—C34—C35—C362.8 (3)O6—Mo2—O5—C2028.27 (16)
C33—C34—C35—Cl7179.34 (18)N4—Mo2—O5—C2015.7 (3)
C34—C35—C36—O6177.0 (2)N3—Mo2—O5—C2050.86 (16)
Cl7—C35—C36—O60.9 (3)C35—C36—O6—Mo2141.28 (16)
C34—C35—C36—C315.3 (3)C31—C36—O6—Mo241.2 (2)
Cl7—C35—C36—C31176.78 (15)O7—Mo2—O6—C36108.9 (2)
C32—C31—C36—O6179.22 (19)O8—Mo2—O6—C3636.78 (16)
C30—C31—C36—O610.6 (3)O5—Mo2—O6—C36141.92 (16)
C32—C31—C36—C353.2 (3)N4—Mo2—O6—C3656.31 (15)
C30—C31—C36—C35167.01 (19)N3—Mo2—O6—C36137.32 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C20–C25 ring in molecule B and Cg2 is the centroid of the C12–C17 ring in molecule A.
D—H···AD—HH···AD···AD—H···A
C38—H38B···Cl8i0.962.823.767 (3)168
C10—H10B···Cg1ii0.972.663.433 (3)136
C27—H27A···Cg2iii0.972.553.363 (3)141
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Mo(C19H16Cl4N2O2)O2]
Mr574.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.840 (5), 15.457 (5), 22.173 (5)
β (°) 102.397 (5)
V3)4298 (2)
Z8
Radiation typeCu Kα
µ (mm1)9.84
Crystal size (mm)0.42 × 0.21 × 0.11
Data collection
DiffractometerAgilent Super Nova Atlas CCD area-detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.104, 0.411
No. of measured, independent and
observed [I > 2σ(I)] reflections
67900, 8626, 8373
Rint0.049
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.079, 1.07
No. of reflections8626
No. of parameters541
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.71

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C20–C25 ring in molecule B and Cg2 is the centroid of the C12–C17 ring in molecule A.
D—H···AD—HH···AD···AD—H···A
C38—H38B···Cl8i0.962.823.767 (3)168
C10—H10B···Cg1ii0.972.663.433 (3)136
C27—H27A···Cg2iii0.972.553.363 (3)141
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

HK thanks PNU for financial support. MK thanks Adam Mickiewicz University for the use of the diffractometer facility.

References

First citationAbbasi, A., Sheikhshoaie, I., Saghaei, A. & Monadi, N. (2008). Acta Cryst. E64, m1036.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationEnemark, J. H., Cooney, J. J. A., Wang, J.-J. & Holm, R. H. (2004). Chem. Rev. 104, 1175–1200.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKargar, H. & Kia, R. (2011). Acta Cryst. E67, m1348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R. & Fun, H.-K. (2009). Acta Cryst. E65, m192–m193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMajumdar, A. & Sarkar, S. (2011). Coord. Chem. Rev. 255, 1039–1054.  Web of Science CrossRef CAS Google Scholar
First citationMancka, M. & Plass, W. (2007). Inorg. Chem. Commun. 10, 677–680.  Web of Science CSD CrossRef CAS Google Scholar
First citationMonadi, N., Sheikhshoaie, I., Rezaeifard, A. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1124–m1125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds