metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­kis­(di­methyl­formamide)tris­(μ4-terephthalato)trimagnesium]

aDepartment of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
*Correspondence e-mail: srlovelacecameron@ysu.edu

(Received 16 August 2012; accepted 11 September 2012; online 22 September 2012)

The title framework compound, [Mg3(C8H4O4)3(C3H7NO)4]n or [Mg3(bdc)3(DMF)4]n, was obtained as a side product of the solvothermal reaction of magnesium nitrate, terephthalic acid (bdcH2), and 1,3-bis­(4-pyrid­yl)propane in a 1:2:1 ratio in dimethyl­formamide (DMF). The asymmetric unit consists of three MgII cations, three terephthalate anions, and four coordinating DMF mol­ecules. One of the four DMF mol­ecules was refined as disordered over two mutually exclusive positions, with an occupancy rate for the major moiety of 0.923 (4). The three MgII cations possess distorted octa­hedral coordination geometries that form linear Mg trimers. Of the three MgII cations, the central MgII is octa­hedrally coordinated by six different carboxyl­ate O atoms. The terminal MgII cations are bonded to four O atoms of three bdc linkers and to two O atoms of coordinating DMF mol­ecules. The compound has a two-dimensional 36-network structure parallel to (001) that is formed by connection of the Mg trimers as distorted octa­hedral nodes to the bdc ligands as linkers.

Related literature

For background information on Mg- and Zn-bdc metal-organic frameworks, see: Mallick et al. (2011[Mallick, A., Saha, S., Pachfule, P., Roy, S. & Banerjee, R. (2011). Inorg. Chem. 50, 1392-1401.]); Burrows et al. (2005[Burrows, A. D., Cassar, K., Friend, R. M. W., Mahon, M. F., Rigby, S. P. & Warren, J. E. (2005). CrystEngComm, 7, 548-550.]); Edgar et al. (2001[Edgar, M., Mitchell, R., Slawin, A. M. Z., Lightfoot, P. & Wright, P. A. (2001). Chem. Eur. J. 7, 5168-5175.]); Grzesiak et al. (2006[Grzesiak, A. L., Uribe, F. J., Ockwig, N. W., Yaghi, O. M. & Matzger, A. J. (2006). Angew. Chem. Int. Ed. 45, 2553-2556.]); Rood et al. (2006[Rood, J. A., Noll, B. C. & Henderson, K. W. (2006). Main Group Chem. 5, 21-30.]); Davies et al. (2007[Davies, R. P., Less, R. J., Lickiss, P. D. & White, A. J. P. (2007). Dalton Trans. pp. 2528-2535.]); Williams et al. (2005[Williams, C. A., Blake, A. J., Hubberstey, P. & Schroder, M. (2005). Chem. Commun. pp. 5435-5437.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg3(C8H4O4)3(C3H7NO)4]

  • Mr = 857.65

  • Monoclinic, P 21 /c

  • a = 18.158 (2) Å

  • b = 9.5046 (13) Å

  • c = 24.066 (3) Å

  • β = 100.825 (2)°

  • V = 4079.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 100 K

  • 0.34 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.619, Tmax = 0.746

  • 21816 measured reflections

  • 10014 independent reflections

  • 7598 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.149

  • S = 1.12

  • 10014 reflections

  • 574 parameters

  • 33 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND, Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The construction of metal-organic frameworks (MOFs) with light building blocks has been the subject of intense research during the past few years (Mallick et al., 2011). A suitable metal for construction of lightweight frameworks is magnesium. In the present study, the title compound, [Mg3(bdc)3(DMF)4]n, was obtained during part of our investigations into the solvothermal synthesis of lightweight metal organic frameworks. Reaction of magnesium nitrate with terephthalic acid (bdcH2) and 1,3-bis(4-pyridyl)propane (tmdpyr) at 373 K (100 °C) in dimethyl formamide (DMF) yielded the title compound as a minor product along with an unidentified white powder. The crystals of the title compound are sensitive towards solvent loss and decompose rapidly once taken out of solution.

The asymmetric unit of the title framework consists of three magnesium cations, and three anionic bdc units, and four coordinated DMF molecules, respectively (Fig. 1). One of the four DMF molecules was refined as disordered over two mutually exclusive positions with an occupancy ratio of 0.923 (4) to 0.077 (4).

The three magnesium cations in the structure form secondary building units (SBUs) that each possesses a chain of three magnesium ions bridged by six bdc linkers and coordinated by four terminal DMF molecules (Fig. 2). There are two types of magnesium coordination environments in the structure. The terminal ions, Mg1 and Mg3, in the SBU exhibit distorted octahedral geometries. Of the six bonds, four are from O atoms of three different bdc linkers (one bdc linker binds with magnesium in a chelating mode) and the other two are from DMF O atoms. The central ion, Mg2, is also distorted octahedrally coordinated, but it binds to six different carboxylate O atoms (four of them are in bidentate mode and two are in chelation mode). O—Mg—O angles vary between 60.35 (7) and 178.54 (9)°, with the unusually small angle of 60.35 (7)° being associated with the bdc linker in chelation mode. The three distorted octahedral trimeric magnesiums together act as a node that is connected with other nodes through the bdc linkers to give rise to a two-dimensional layered 36-network (Fig. 3). The layers in the structure are stacked atop of one another, with terminal DMF molecules that are projecting into the inter-lamellar space (Fig. 4). The structure is isoreticular to previously reported magnesium and bdc based framework compounds, Mg3(bdc)3(X)4 [X = DMSO, Rood et al., 2006; DMA, Davies et al., 2007] in which the terminal solvent molecules, DMSO and DMA, project in to the inter-lamellar spaces. Similar layered structures have also been reported with zinc-bdc based frameworks (Edgar et al., 2001; Burrows et al., 2005; Williams et al., 2005; Grzesiak et al., 2006).

Related literature top

For background information on Mg- and Zn-bdc metal-organic frameworks, see: Mallick et al. (2011); Burrows et al. (2005); Edgar et al. (2001); Grzesiak et al. (2006); Rood et al. (2006); Davies et al. (2007); Williams et al. (2005).

Experimental top

The compound was synthesized under solvothermal conditions. In a typical synthesis, Mg(NO3)2.6H2O (0.129 g, 1.0 mmol) and terepthalic acid (0.169 g, 2.0 mmol) were dissolved in DMF (5.0 ml). Then, 1,3-bis(4-pyridyl)propane (0.101 g, 1.0 mmol) was added to the reaction mixture and stirred for one hour before transferring the mixture into a glass vial. The final mixture was heated to 373 K for 24 h. The vial was then slowly cooled to room temperature yielding colorless plates of the title compound as a minor product along with an unidentified white powder. Crystals are sensitive towards solvent loss and decompose rapidly once taken out of solution.

Refinement top

Reflections 1 1 0, 0 1 1 and 1 0 2 were partially obstructed by the beam stop and were omitted from the refinement.

One of the DMF molecules was refined as disordered over two mutually exclusive positions. The minor moiety was restrained to have a similar geometry as the major moiety, the overlapping O and N atoms were each constrained to have ADPs identical to that in the major moiety, and the ADPs of the C, N and O atoms of the minor moiety were restrained to be similar to each other. The occupancy ratios for the two moieties refined to 0.923 (4) to 0.077 (4).

Carbon-bound hydrogen atoms were placed in calculated positions with C—H bond distances of 0.95 Å (aromatic H and carbonyl H of DMF) and 0.98 Å (methyl H). Methyl group H atoms were allowed to rotate around the C—C bond to best fit the experimental electron density. Uiso(H) values for all H atoms were constrained to a multiple of Ueq of their respective carrier atom (1.2 times for aromatic and carbonyl H atoms, and 1.5 times for methyl H atoms).

Structure description top

The construction of metal-organic frameworks (MOFs) with light building blocks has been the subject of intense research during the past few years (Mallick et al., 2011). A suitable metal for construction of lightweight frameworks is magnesium. In the present study, the title compound, [Mg3(bdc)3(DMF)4]n, was obtained during part of our investigations into the solvothermal synthesis of lightweight metal organic frameworks. Reaction of magnesium nitrate with terephthalic acid (bdcH2) and 1,3-bis(4-pyridyl)propane (tmdpyr) at 373 K (100 °C) in dimethyl formamide (DMF) yielded the title compound as a minor product along with an unidentified white powder. The crystals of the title compound are sensitive towards solvent loss and decompose rapidly once taken out of solution.

The asymmetric unit of the title framework consists of three magnesium cations, and three anionic bdc units, and four coordinated DMF molecules, respectively (Fig. 1). One of the four DMF molecules was refined as disordered over two mutually exclusive positions with an occupancy ratio of 0.923 (4) to 0.077 (4).

The three magnesium cations in the structure form secondary building units (SBUs) that each possesses a chain of three magnesium ions bridged by six bdc linkers and coordinated by four terminal DMF molecules (Fig. 2). There are two types of magnesium coordination environments in the structure. The terminal ions, Mg1 and Mg3, in the SBU exhibit distorted octahedral geometries. Of the six bonds, four are from O atoms of three different bdc linkers (one bdc linker binds with magnesium in a chelating mode) and the other two are from DMF O atoms. The central ion, Mg2, is also distorted octahedrally coordinated, but it binds to six different carboxylate O atoms (four of them are in bidentate mode and two are in chelation mode). O—Mg—O angles vary between 60.35 (7) and 178.54 (9)°, with the unusually small angle of 60.35 (7)° being associated with the bdc linker in chelation mode. The three distorted octahedral trimeric magnesiums together act as a node that is connected with other nodes through the bdc linkers to give rise to a two-dimensional layered 36-network (Fig. 3). The layers in the structure are stacked atop of one another, with terminal DMF molecules that are projecting into the inter-lamellar space (Fig. 4). The structure is isoreticular to previously reported magnesium and bdc based framework compounds, Mg3(bdc)3(X)4 [X = DMSO, Rood et al., 2006; DMA, Davies et al., 2007] in which the terminal solvent molecules, DMSO and DMA, project in to the inter-lamellar spaces. Similar layered structures have also been reported with zinc-bdc based frameworks (Edgar et al., 2001; Burrows et al., 2005; Williams et al., 2005; Grzesiak et al., 2006).

For background information on Mg- and Zn-bdc metal-organic frameworks, see: Mallick et al. (2011); Burrows et al. (2005); Edgar et al. (2001); Grzesiak et al. (2006); Rood et al. (2006); Davies et al. (2007); Williams et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011) and SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the title framework compound with the atom numbering scheme and 50% probability displacement ellipsoids. Symmetry operators: (i) -x + 1, y + 1/2, -z + 1/2; (ii) -x, y + 1/2, -z + 1/2; (iii) x, y - 1, z.
[Figure 2] Fig. 2. View of one trimeric SBU that acts as a node, possessing bridging carboxylates and terminal DMF molecules. For clarity, only the carboxylate groups of bdc linkers are shown and hydrogen atoms are omitted.
[Figure 3] Fig. 3. View of the two-dimensional 36-net parallel to the [001] direction. Hydrogen atoms are omitted for clarity.
[Figure 4] Fig. 4. View of the arrangement of layers parallel to the [100] direction.
Poly[tetrakis(dimethylformamide)tris(µ4-terephthalato)trimagnesium] top
Crystal data top
[Mg3(C8H4O4)3(C3H7NO)4]F(000) = 1792
Mr = 857.65Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4706 reflections
a = 18.158 (2) Åθ = 2.3–30.2°
b = 9.5046 (13) ŵ = 0.15 mm1
c = 24.066 (3) ÅT = 100 K
β = 100.825 (2)°Plate, colourless
V = 4079.6 (10) Å30.34 × 0.20 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
10014 independent reflections
Radiation source: fine-focus sealed tube7598 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 28.3°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1624
Tmin = 0.619, Tmax = 0.746k = 1212
21816 measured reflectionsl = 3227
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.045P)2 + 5.8483P]
where P = (Fo2 + 2Fc2)/3
10014 reflections(Δ/σ)max < 0.001
574 parametersΔρmax = 0.46 e Å3
33 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Mg3(C8H4O4)3(C3H7NO)4]V = 4079.6 (10) Å3
Mr = 857.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.158 (2) ŵ = 0.15 mm1
b = 9.5046 (13) ÅT = 100 K
c = 24.066 (3) Å0.34 × 0.20 × 0.05 mm
β = 100.825 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
10014 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
7598 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 0.746Rint = 0.039
21816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06633 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.12Δρmax = 0.46 e Å3
10014 reflectionsΔρmin = 0.35 e Å3
574 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg10.20949 (5)0.47092 (9)0.09756 (4)0.00978 (18)
Mg20.25057 (4)0.41016 (9)0.24603 (4)0.00810 (17)
Mg30.28787 (5)0.33064 (9)0.39299 (4)0.00983 (18)
O10.30953 (10)0.3705 (2)0.11070 (8)0.0152 (4)
O20.33782 (10)0.3615 (2)0.20560 (8)0.0146 (4)
O30.67833 (10)0.0492 (2)0.20601 (8)0.0138 (4)
O40.64810 (10)0.0028 (2)0.11299 (8)0.0147 (4)
O50.14333 (10)0.3020 (2)0.10680 (8)0.0138 (4)
O60.17971 (10)0.2685 (2)0.20005 (8)0.0132 (4)
O70.16247 (10)0.0372 (2)0.21503 (8)0.0135 (4)
O80.18736 (9)0.0683 (2)0.12085 (8)0.0134 (4)
O90.26181 (10)0.6786 (2)0.12084 (8)0.0140 (4)
O100.21240 (9)0.55376 (19)0.18163 (7)0.0104 (4)
O110.23514 (10)1.1286 (2)0.36602 (8)0.0135 (4)
O120.28604 (9)1.25894 (19)0.30769 (7)0.0106 (4)
O130.21208 (10)0.4826 (2)0.01346 (8)0.0175 (4)
O140.10924 (10)0.5856 (2)0.07525 (8)0.0169 (4)
O160.28667 (10)0.3291 (2)0.47647 (8)0.0160 (4)
N10.26651 (13)0.6147 (3)0.04601 (10)0.0189 (5)
N20.01117 (12)0.6279 (3)0.08363 (11)0.0204 (5)
N40.24305 (14)0.4812 (3)0.53454 (11)0.0203 (5)
C10.35166 (14)0.3411 (3)0.15737 (12)0.0128 (5)
C20.42644 (14)0.2735 (3)0.15462 (12)0.0143 (5)
C30.44180 (14)0.2137 (3)0.10546 (12)0.0158 (5)
H30.40560.21870.07140.019*
C40.51035 (14)0.1461 (3)0.10581 (11)0.0152 (5)
H40.52030.10420.07220.018*
C50.56423 (14)0.1400 (3)0.15565 (11)0.0135 (5)
C60.54986 (16)0.2045 (4)0.20400 (13)0.0272 (7)
H60.58700.20410.23760.033*
C70.48118 (16)0.2702 (4)0.20368 (13)0.0280 (8)
H70.47160.31320.23720.034*
C80.63647 (13)0.0582 (3)0.15837 (11)0.0116 (5)
C90.13477 (13)0.2544 (3)0.15446 (11)0.0112 (5)
C100.06273 (13)0.1758 (3)0.15667 (11)0.0115 (5)
C110.01302 (14)0.1379 (3)0.10717 (11)0.0141 (5)
H110.02510.15840.07130.017*
C120.05394 (14)0.0702 (3)0.11033 (11)0.0148 (5)
H120.08690.04300.07660.018*
C130.07311 (13)0.0421 (3)0.16273 (11)0.0119 (5)
C140.02315 (15)0.0784 (3)0.21175 (12)0.0196 (6)
H140.03520.05790.24760.024*
C150.04437 (15)0.1445 (3)0.20874 (11)0.0183 (6)
H150.07810.16840.24260.022*
C160.14698 (13)0.0274 (3)0.16669 (11)0.0110 (5)
C170.24114 (13)0.6691 (3)0.16770 (11)0.0108 (5)
C180.24572 (14)0.7919 (3)0.20711 (11)0.0122 (5)
C190.29401 (14)0.9041 (3)0.20265 (12)0.0144 (5)
H190.32510.90170.17500.017*
C200.29669 (14)1.0191 (3)0.23864 (12)0.0140 (5)
H200.32991.09490.23590.017*
C210.25055 (14)1.0230 (3)0.27868 (11)0.0119 (5)
C220.20191 (14)0.9115 (3)0.28294 (11)0.0143 (5)
H220.17040.91440.31030.017*
C230.19968 (15)0.7962 (3)0.24713 (12)0.0146 (5)
H230.16660.72020.25000.018*
C240.25574 (13)1.1429 (3)0.31948 (11)0.0112 (5)
C250.26467 (15)0.5073 (3)0.01164 (11)0.0149 (5)
H250.30620.44470.00560.018*
C260.20341 (19)0.7121 (4)0.05927 (15)0.0313 (8)
H26A0.22230.80770.06250.047*
H26B0.17400.70900.02910.047*
H26C0.17160.68480.09520.047*
C270.32811 (18)0.6340 (4)0.07655 (13)0.0258 (7)
H27A0.30830.63500.11730.039*
H27B0.36390.55650.06750.039*
H27C0.35340.72340.06530.039*
C280.05722 (14)0.5785 (3)0.10208 (12)0.0173 (6)
H280.06720.53490.13820.021*
C290.03021 (19)0.6938 (5)0.02858 (15)0.0386 (9)
H29A0.07370.64600.00610.058*
H29B0.01250.68680.00920.058*
H29C0.04230.79310.03320.058*
C300.07011 (17)0.6193 (4)0.11684 (15)0.0325 (8)
H30A0.11420.57300.09450.049*
H30B0.08370.71430.12710.049*
H30C0.05220.56480.15130.049*
O150.39003 (12)0.2178 (3)0.41379 (13)0.0163 (6)0.923 (4)
C310.43687 (16)0.2254 (4)0.38262 (14)0.0205 (7)0.923 (4)
H310.42230.27360.34770.025*0.923 (4)
N30.50494 (17)0.1726 (3)0.39358 (14)0.0223 (7)0.923 (4)
C320.55482 (19)0.1786 (4)0.35236 (17)0.0331 (9)0.923 (4)
H32A0.60580.20140.37180.050*0.923 (4)
H32B0.53710.25120.32410.050*0.923 (4)
H32C0.55490.08710.33360.050*0.923 (4)
C330.5317 (2)0.0975 (6)0.44580 (19)0.0518 (14)0.923 (4)
H33A0.58220.13040.46240.078*0.923 (4)
H33B0.53320.00350.43800.078*0.923 (4)
H33C0.49780.11490.47230.078*0.923 (4)
O15B0.3792 (13)0.193 (4)0.423 (2)0.0163 (6)0.077 (4)
C31B0.4482 (14)0.211 (4)0.4268 (15)0.021 (4)0.077 (4)
H31B0.47090.28190.45210.026*0.077 (4)
N3B0.4921 (15)0.140 (4)0.3991 (18)0.0223 (7)0.077 (4)
C32B0.461 (2)0.052 (5)0.3498 (16)0.034 (8)0.077 (4)
H32D0.49940.03680.32680.051*0.077 (4)
H32E0.41780.10040.32700.051*0.077 (4)
H32F0.44480.03840.36270.051*0.077 (4)
C33B0.5715 (15)0.168 (5)0.405 (2)0.041 (9)0.077 (4)
H33D0.58940.13040.37170.061*0.077 (4)
H33E0.59880.12300.43910.061*0.077 (4)
H33F0.58010.26980.40700.061*0.077 (4)
C340.23760 (16)0.3682 (3)0.50274 (12)0.0186 (6)
H340.19340.31280.49960.022*
C350.31082 (17)0.5676 (4)0.54180 (15)0.0290 (7)
H35A0.29770.66620.54690.044*
H35B0.33380.55910.50820.044*
H35C0.34640.53550.57520.044*
C360.18345 (18)0.5209 (4)0.56510 (14)0.0275 (7)
H36A0.16730.61760.55510.041*
H36B0.20250.51490.60590.041*
H36C0.14080.45690.55470.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0078 (4)0.0106 (4)0.0116 (4)0.0001 (3)0.0037 (3)0.0002 (3)
Mg20.0061 (4)0.0082 (4)0.0103 (4)0.0000 (3)0.0024 (3)0.0007 (3)
Mg30.0090 (4)0.0092 (4)0.0117 (4)0.0002 (3)0.0030 (3)0.0006 (3)
O10.0104 (9)0.0187 (10)0.0168 (10)0.0035 (7)0.0032 (7)0.0010 (8)
O20.0094 (8)0.0197 (10)0.0163 (10)0.0038 (7)0.0068 (7)0.0006 (8)
O30.0107 (8)0.0142 (10)0.0159 (9)0.0041 (7)0.0007 (7)0.0016 (8)
O40.0125 (9)0.0167 (10)0.0159 (10)0.0066 (7)0.0056 (7)0.0014 (8)
O50.0131 (9)0.0147 (9)0.0142 (9)0.0053 (7)0.0045 (7)0.0003 (8)
O60.0109 (8)0.0132 (9)0.0146 (9)0.0035 (7)0.0002 (7)0.0018 (8)
O70.0110 (8)0.0176 (10)0.0135 (9)0.0025 (7)0.0067 (7)0.0001 (8)
O80.0097 (8)0.0166 (10)0.0140 (9)0.0026 (7)0.0028 (7)0.0007 (8)
O90.0168 (9)0.0127 (9)0.0142 (9)0.0011 (7)0.0070 (7)0.0001 (8)
O100.0111 (8)0.0078 (8)0.0122 (9)0.0000 (6)0.0017 (7)0.0009 (7)
O110.0159 (9)0.0117 (9)0.0147 (9)0.0014 (7)0.0075 (7)0.0018 (7)
O120.0101 (8)0.0101 (9)0.0119 (9)0.0008 (6)0.0030 (7)0.0002 (7)
O130.0159 (9)0.0250 (11)0.0124 (9)0.0017 (8)0.0049 (7)0.0014 (8)
O140.0121 (9)0.0226 (11)0.0166 (10)0.0060 (8)0.0046 (7)0.0033 (8)
O160.0190 (9)0.0188 (10)0.0109 (9)0.0029 (8)0.0050 (7)0.0003 (8)
N10.0228 (12)0.0161 (12)0.0194 (12)0.0002 (9)0.0078 (10)0.0002 (10)
N20.0111 (11)0.0288 (14)0.0217 (13)0.0066 (10)0.0042 (9)0.0019 (11)
N40.0222 (12)0.0177 (13)0.0227 (13)0.0023 (9)0.0082 (10)0.0024 (10)
C10.0094 (11)0.0113 (12)0.0185 (13)0.0007 (9)0.0046 (10)0.0002 (10)
C20.0113 (12)0.0156 (13)0.0170 (13)0.0032 (10)0.0047 (10)0.0005 (11)
C30.0119 (12)0.0212 (14)0.0140 (13)0.0043 (10)0.0013 (10)0.0003 (11)
C40.0130 (12)0.0201 (14)0.0126 (13)0.0070 (10)0.0030 (10)0.0021 (11)
C50.0093 (11)0.0155 (13)0.0168 (13)0.0025 (9)0.0053 (10)0.0010 (11)
C60.0144 (14)0.048 (2)0.0176 (15)0.0133 (13)0.0013 (11)0.0077 (14)
C70.0175 (14)0.051 (2)0.0165 (14)0.0158 (14)0.0042 (11)0.0103 (14)
C80.0089 (11)0.0093 (12)0.0176 (13)0.0001 (9)0.0051 (9)0.0026 (10)
C90.0080 (11)0.0121 (12)0.0142 (12)0.0002 (9)0.0041 (9)0.0006 (10)
C100.0077 (11)0.0134 (13)0.0139 (13)0.0015 (9)0.0033 (9)0.0016 (10)
C110.0111 (12)0.0203 (14)0.0120 (12)0.0021 (10)0.0051 (9)0.0023 (11)
C120.0111 (12)0.0194 (14)0.0135 (13)0.0034 (10)0.0013 (9)0.0004 (11)
C130.0087 (11)0.0157 (13)0.0126 (12)0.0026 (9)0.0054 (9)0.0009 (10)
C140.0155 (13)0.0323 (17)0.0123 (13)0.0078 (12)0.0055 (10)0.0005 (12)
C150.0150 (13)0.0284 (16)0.0111 (13)0.0089 (11)0.0014 (10)0.0006 (12)
C160.0095 (11)0.0084 (12)0.0159 (13)0.0002 (9)0.0048 (9)0.0018 (10)
C170.0093 (11)0.0093 (12)0.0136 (12)0.0022 (9)0.0015 (9)0.0005 (10)
C180.0133 (12)0.0084 (12)0.0140 (13)0.0005 (9)0.0005 (10)0.0008 (10)
C190.0144 (12)0.0128 (13)0.0177 (13)0.0016 (10)0.0072 (10)0.0023 (11)
C200.0163 (12)0.0079 (12)0.0187 (13)0.0018 (9)0.0055 (10)0.0013 (10)
C210.0113 (11)0.0096 (12)0.0147 (13)0.0022 (9)0.0020 (9)0.0011 (10)
C220.0169 (12)0.0110 (12)0.0162 (13)0.0004 (10)0.0067 (10)0.0005 (10)
C230.0164 (13)0.0101 (12)0.0186 (14)0.0026 (10)0.0064 (10)0.0010 (10)
C240.0106 (11)0.0100 (12)0.0130 (12)0.0007 (9)0.0022 (9)0.0003 (10)
C250.0154 (12)0.0154 (13)0.0139 (13)0.0003 (10)0.0031 (10)0.0018 (10)
C260.0373 (19)0.0222 (17)0.0322 (18)0.0086 (14)0.0009 (14)0.0043 (14)
C270.0329 (17)0.0253 (17)0.0223 (16)0.0101 (13)0.0130 (13)0.0015 (13)
C280.0141 (12)0.0189 (14)0.0190 (14)0.0029 (10)0.0032 (10)0.0011 (11)
C290.0261 (17)0.059 (3)0.0301 (19)0.0200 (17)0.0031 (14)0.0126 (18)
C300.0196 (15)0.045 (2)0.038 (2)0.0080 (14)0.0167 (14)0.0013 (17)
O150.0123 (11)0.0183 (14)0.0193 (15)0.0039 (9)0.0054 (9)0.0026 (9)
C310.0144 (14)0.0218 (17)0.0253 (17)0.0065 (12)0.0036 (12)0.0014 (14)
N30.0122 (13)0.0260 (18)0.0293 (16)0.0041 (11)0.0056 (11)0.0071 (14)
C320.0197 (17)0.039 (2)0.043 (2)0.0097 (15)0.0128 (16)0.0039 (18)
C330.030 (2)0.079 (4)0.046 (3)0.025 (2)0.0068 (18)0.030 (3)
O15B0.0123 (11)0.0183 (14)0.0193 (15)0.0039 (9)0.0054 (9)0.0026 (9)
C31B0.015 (7)0.024 (7)0.026 (7)0.007 (7)0.005 (7)0.006 (7)
N3B0.0122 (13)0.0260 (18)0.0293 (16)0.0041 (11)0.0056 (11)0.0071 (14)
C32B0.021 (14)0.037 (16)0.049 (16)0.008 (13)0.019 (13)0.006 (15)
C33B0.015 (14)0.052 (17)0.057 (17)0.004 (14)0.011 (14)0.013 (16)
C340.0201 (14)0.0173 (14)0.0188 (14)0.0015 (11)0.0045 (11)0.0010 (12)
C350.0259 (16)0.0258 (17)0.0372 (19)0.0053 (13)0.0105 (14)0.0102 (15)
C360.0290 (17)0.0271 (17)0.0295 (17)0.0036 (13)0.0138 (13)0.0079 (14)
Geometric parameters (Å, º) top
Mg1—O12.024 (2)C10—C151.388 (4)
Mg1—O132.036 (2)C10—C111.400 (4)
Mg1—O52.042 (2)C11—C121.390 (4)
Mg1—O142.103 (2)C11—H110.9500
Mg1—O102.162 (2)C12—C131.396 (4)
Mg1—O92.217 (2)C12—H120.9500
Mg1—C172.522 (3)C13—C141.390 (4)
Mg1—Mg23.5575 (13)C13—C161.514 (3)
Mg2—O62.0393 (19)C14—C151.392 (4)
Mg2—O3i2.046 (2)C14—H140.9500
Mg2—O22.0614 (19)C15—H150.9500
Mg2—O7ii2.0619 (19)C17—C181.497 (4)
Mg2—O12iii2.079 (2)C18—C231.390 (4)
Mg2—O102.0837 (19)C18—C191.397 (4)
Mg2—Mg33.5550 (13)C19—C201.390 (4)
Mg3—O162.013 (2)C19—H190.9500
Mg3—O4i2.028 (2)C20—C211.391 (4)
Mg3—O8ii2.0338 (19)C20—H200.9500
Mg3—O152.120 (2)C21—C221.396 (4)
Mg3—O15B2.127 (18)C21—C241.496 (4)
Mg3—O12iii2.157 (2)C22—C231.390 (4)
Mg3—O11iii2.189 (2)C22—H220.9500
Mg3—C24iii2.503 (3)C23—H230.9500
O1—C11.266 (3)C24—Mg3vi2.503 (3)
O2—C11.248 (3)C25—H250.9500
O3—C81.254 (3)C26—H26A0.9800
O3—Mg2iv2.0456 (19)C26—H26B0.9800
O4—C81.265 (3)C26—H26C0.9800
O4—Mg3iv2.028 (2)C27—H27A0.9800
O5—C91.270 (3)C27—H27B0.9800
O6—C91.246 (3)C27—H27C0.9800
O7—C161.251 (3)C28—H280.9500
O7—Mg2v2.0618 (19)C29—H29A0.9800
O8—C161.266 (3)C29—H29B0.9800
O8—Mg3v2.0338 (19)C29—H29C0.9800
O9—C171.257 (3)C30—H30A0.9800
O10—C171.285 (3)C30—H30B0.9800
O11—C241.253 (3)C30—H30C0.9800
O11—Mg3vi2.189 (2)O15—C311.237 (4)
O12—C241.288 (3)C31—N31.314 (4)
O12—Mg2vi2.079 (2)C31—H310.9500
O12—Mg3vi2.157 (2)N3—C331.448 (5)
O13—C251.244 (3)N3—C321.465 (4)
O14—C281.242 (3)C32—H32A0.9800
O16—C341.242 (3)C32—H32B0.9800
N1—C251.318 (4)C32—H32C0.9800
N1—C261.461 (4)C33—H33A0.9800
N1—C271.461 (4)C33—H33B0.9800
N2—C281.324 (3)C33—H33C0.9800
N2—C291.447 (4)O15B—C31B1.250 (19)
N2—C301.453 (4)C31B—N3B1.318 (18)
N4—C341.312 (4)C31B—H31B0.9500
N4—C351.463 (4)N3B—C33B1.448 (18)
N4—C361.468 (4)N3B—C32B1.473 (19)
C1—C21.515 (3)C32B—H32D0.9800
C2—C31.388 (4)C32B—H32E0.9800
C2—C71.394 (4)C32B—H32F0.9800
C3—C41.399 (4)C33B—H33D0.9800
C3—H30.9500C33B—H33E0.9800
C4—C51.399 (4)C33B—H33F0.9800
C4—H40.9500C34—H340.9500
C5—C61.383 (4)C35—H35A0.9800
C5—C81.516 (3)C35—H35B0.9800
C6—C71.393 (4)C35—H35C0.9800
C6—H60.9500C36—H36A0.9800
C7—H70.9500C36—H36B0.9800
C9—C101.516 (3)C36—H36C0.9800
O1—Mg1—O1389.62 (8)C5—C6—C7120.3 (3)
O1—Mg1—O598.14 (9)C5—C6—H6119.9
O13—Mg1—O5105.97 (9)C7—C6—H6119.9
O1—Mg1—O14173.16 (9)C6—C7—C2120.7 (3)
O13—Mg1—O1484.17 (8)C6—C7—H7119.7
O5—Mg1—O1486.35 (8)C2—C7—H7119.7
O1—Mg1—O1099.32 (8)O3—C8—O4126.1 (2)
O13—Mg1—O10155.37 (9)O3—C8—C5116.5 (2)
O5—Mg1—O1095.50 (8)O4—C8—C5117.4 (2)
O14—Mg1—O1085.30 (8)O6—C9—O5125.9 (2)
O1—Mg1—O992.91 (8)O6—C9—C10116.7 (2)
O13—Mg1—O996.53 (8)O5—C9—C10117.4 (2)
O5—Mg1—O9154.90 (8)C15—C10—C11119.2 (2)
O14—Mg1—O984.98 (8)C15—C10—C9119.5 (2)
O10—Mg1—O960.35 (7)C11—C10—C9121.3 (2)
O1—Mg1—C1799.35 (8)C12—C11—C10120.2 (2)
O13—Mg1—C17125.41 (9)C12—C11—H11119.9
O5—Mg1—C17125.37 (9)C10—C11—H11119.9
O14—Mg1—C1782.04 (8)C11—C12—C13120.5 (2)
O10—Mg1—C1730.63 (7)C11—C12—H12119.8
O9—Mg1—C1729.88 (8)C13—C12—H12119.8
O1—Mg1—Mg275.75 (6)C14—C13—C12119.0 (2)
O13—Mg1—Mg2165.35 (7)C14—C13—C16120.0 (2)
O5—Mg1—Mg277.27 (6)C12—C13—C16121.0 (2)
O14—Mg1—Mg2110.41 (6)C13—C14—C15120.6 (3)
O10—Mg1—Mg232.40 (5)C13—C14—H14119.7
O9—Mg1—Mg283.78 (6)C15—C14—H14119.7
C17—Mg1—Mg258.04 (6)C10—C15—C14120.5 (2)
O6—Mg2—O3i178.51 (9)C10—C15—H15119.8
O6—Mg2—O293.34 (8)C14—C15—H15119.8
O3i—Mg2—O287.23 (8)O7—C16—O8126.4 (2)
O6—Mg2—O7ii86.70 (8)O7—C16—C13116.6 (2)
O3i—Mg2—O7ii92.76 (8)O8—C16—C13117.0 (2)
O2—Mg2—O7ii178.54 (9)O9—C17—O10120.0 (2)
O6—Mg2—O12iii90.58 (8)O9—C17—C18121.5 (2)
O3i—Mg2—O12iii88.04 (8)O10—C17—C18118.5 (2)
O2—Mg2—O12iii91.11 (8)O9—C17—Mg161.46 (14)
O7ii—Mg2—O12iii90.35 (8)O10—C17—Mg159.02 (13)
O6—Mg2—O1086.62 (8)C18—C17—Mg1170.10 (17)
O3i—Mg2—O1094.77 (8)C23—C18—C19119.9 (2)
O2—Mg2—O1088.49 (8)C23—C18—C17119.5 (2)
O7ii—Mg2—O1090.06 (8)C19—C18—C17120.5 (2)
O12iii—Mg2—O10177.14 (8)C20—C19—C18120.1 (2)
O6—Mg2—Mg3112.48 (6)C20—C19—H19120.0
O3i—Mg2—Mg366.04 (6)C18—C19—H19120.0
O2—Mg2—Mg3113.72 (6)C19—C20—C21119.8 (2)
O7ii—Mg2—Mg367.58 (6)C19—C20—H20120.1
O12iii—Mg2—Mg333.64 (5)C21—C20—H20120.1
O10—Mg2—Mg3148.63 (6)C20—C21—C22120.2 (2)
O6—Mg2—Mg164.55 (6)C20—C21—C24120.2 (2)
O3i—Mg2—Mg1116.93 (6)C22—C21—C24119.5 (2)
O2—Mg2—Mg166.24 (6)C23—C22—C21119.9 (2)
O7ii—Mg2—Mg1112.51 (6)C23—C22—H22120.1
O12iii—Mg2—Mg1143.84 (6)C21—C22—H22120.1
O10—Mg2—Mg133.79 (5)C18—C23—C22120.1 (2)
Mg3—Mg2—Mg1176.90 (3)C18—C23—H23120.0
O16—Mg3—O4i100.97 (9)C22—C23—H23120.0
O16—Mg3—O8ii89.38 (8)O11—C24—O12120.1 (2)
O4i—Mg3—O8ii96.67 (9)O11—C24—C21120.8 (2)
O16—Mg3—O1586.20 (10)O12—C24—C21119.0 (2)
O4i—Mg3—O1586.40 (10)O11—C24—Mg3vi60.98 (14)
O8ii—Mg3—O15175.03 (10)O12—C24—Mg3vi59.53 (13)
O16—Mg3—O15B79.4 (12)C21—C24—Mg3vi169.95 (18)
O4i—Mg3—O15B95.7 (10)O13—C25—N1124.3 (3)
O8ii—Mg3—O15B164.7 (9)O13—C25—H25117.9
O15—Mg3—O15B10.6 (9)N1—C25—H25117.9
O16—Mg3—O12iii161.12 (9)N1—C26—H26A109.5
O4i—Mg3—O12iii95.39 (8)N1—C26—H26B109.5
O8ii—Mg3—O12iii98.07 (8)H26A—C26—H26B109.5
O15—Mg3—O12iii85.49 (11)N1—C26—H26C109.5
O15B—Mg3—O12iii89.8 (13)H26A—C26—H26C109.5
O16—Mg3—O11iii101.73 (8)H26B—C26—H26C109.5
O4i—Mg3—O11iii155.71 (9)N1—C27—H27A109.5
O8ii—Mg3—O11iii92.10 (8)N1—C27—H27B109.5
O15—Mg3—O11iii86.60 (10)H27A—C27—H27B109.5
O15B—Mg3—O11iii80.2 (12)N1—C27—H27C109.5
O12iii—Mg3—O11iii60.87 (7)H27A—C27—H27C109.5
O16—Mg3—C24iii130.95 (9)H27B—C27—H27C109.5
O4i—Mg3—C24iii125.85 (9)O14—C28—N2124.3 (3)
O8ii—Mg3—C24iii97.93 (8)O14—C28—H28117.8
O15—Mg3—C24iii83.32 (11)N2—C28—H28117.8
O15B—Mg3—C24iii82.0 (14)N2—C29—H29A109.5
O12iii—Mg3—C24iii30.96 (8)N2—C29—H29B109.5
O11iii—Mg3—C24iii30.04 (8)H29A—C29—H29B109.5
O16—Mg3—Mg2163.43 (7)N2—C29—H29C109.5
O4i—Mg3—Mg276.26 (6)H29A—C29—H29C109.5
O8ii—Mg3—Mg274.89 (6)H29B—C29—H29C109.5
O15—Mg3—Mg2109.72 (9)N2—C30—H30A109.5
O15B—Mg3—Mg2117.1 (12)N2—C30—H30B109.5
O12iii—Mg3—Mg232.27 (5)H30A—C30—H30B109.5
O11iii—Mg3—Mg284.30 (6)N2—C30—H30C109.5
C24iii—Mg3—Mg258.19 (6)H30A—C30—H30C109.5
C1—O1—Mg1128.18 (18)H30B—C30—H30C109.5
C1—O2—Mg2141.34 (17)C31—O15—Mg3119.9 (2)
C8—O3—Mg2iv140.36 (18)O15—C31—N3125.7 (3)
C8—O4—Mg3iv126.01 (17)O15—C31—H31117.1
C9—O5—Mg1123.60 (17)N3—C31—H31117.1
C9—O6—Mg2142.32 (18)C31—N3—C33120.8 (3)
C16—O7—Mg2v140.37 (17)C31—N3—C32121.8 (3)
C16—O8—Mg3v130.02 (17)C33—N3—C32117.2 (3)
C17—O9—Mg188.66 (15)C31B—O15B—Mg3130 (3)
C17—O10—Mg2131.15 (16)O15B—C31B—N3B126 (3)
C17—O10—Mg190.35 (15)O15B—C31B—H31B117.2
Mg2—O10—Mg1113.81 (9)N3B—C31B—H31B117.2
C24—O11—Mg3vi88.98 (15)C31B—N3B—C33B123 (2)
C24—O12—Mg2vi131.40 (16)C31B—N3B—C32B121 (2)
C24—O12—Mg3vi89.52 (15)C33B—N3B—C32B114 (2)
Mg2vi—O12—Mg3vi114.08 (9)N3B—C32B—H32D109.5
C25—O13—Mg1130.98 (18)N3B—C32B—H32E109.5
C28—O14—Mg1123.08 (18)H32D—C32B—H32E109.5
C34—O16—Mg3130.47 (19)N3B—C32B—H32F109.5
C25—N1—C26121.1 (3)H32D—C32B—H32F109.5
C25—N1—C27121.7 (3)H32E—C32B—H32F109.5
C26—N1—C27117.0 (3)N3B—C33B—H33D109.5
C28—N2—C29120.5 (3)N3B—C33B—H33E109.5
C28—N2—C30122.5 (3)H33D—C33B—H33E109.5
C29—N2—C30117.0 (2)N3B—C33B—H33F109.5
C34—N4—C35120.0 (3)H33D—C33B—H33F109.5
C34—N4—C36121.4 (3)H33E—C33B—H33F109.5
C35—N4—C36118.6 (3)O16—C34—N4124.0 (3)
O2—C1—O1126.7 (2)O16—C34—H34118.0
O2—C1—C2116.5 (2)N4—C34—H34118.0
O1—C1—C2116.9 (2)N4—C35—H35A109.5
C3—C2—C7119.2 (2)N4—C35—H35B109.5
C3—C2—C1122.4 (2)H35A—C35—H35B109.5
C7—C2—C1118.4 (2)N4—C35—H35C109.5
C2—C3—C4120.3 (2)H35A—C35—H35C109.5
C2—C3—H3119.9H35B—C35—H35C109.5
C4—C3—H3119.9N4—C36—H36A109.5
C5—C4—C3120.1 (2)N4—C36—H36B109.5
C5—C4—H4119.9H36A—C36—H36B109.5
C3—C4—H4119.9N4—C36—H36C109.5
C6—C5—C4119.4 (2)H36A—C36—H36C109.5
C6—C5—C8119.3 (2)H36B—C36—H36C109.5
C4—C5—C8121.2 (2)
O1—Mg1—Mg2—O698.15 (9)O9—Mg1—O13—C2553.0 (3)
O13—Mg1—Mg2—O6100.7 (3)C17—Mg1—O13—C2561.3 (3)
O5—Mg1—Mg2—O63.81 (8)Mg2—Mg1—O13—C2537.4 (5)
O14—Mg1—Mg2—O684.97 (9)O13—Mg1—O14—C28152.1 (2)
O10—Mg1—Mg2—O6126.44 (11)O5—Mg1—O14—C2845.6 (2)
O9—Mg1—Mg2—O6167.24 (8)O10—Mg1—O14—C2850.2 (2)
C17—Mg1—Mg2—O6150.99 (9)O9—Mg1—O14—C28110.8 (2)
O1—Mg1—Mg2—O3i81.68 (9)C17—Mg1—O14—C2880.8 (2)
O13—Mg1—Mg2—O3i79.1 (3)Mg2—Mg1—O14—C2829.3 (2)
O5—Mg1—Mg2—O3i176.36 (9)O4i—Mg3—O16—C34101.4 (3)
O14—Mg1—Mg2—O3i95.20 (9)O8ii—Mg3—O16—C344.7 (3)
O10—Mg1—Mg2—O3i53.73 (11)O15—Mg3—O16—C34173.0 (3)
O9—Mg1—Mg2—O3i12.93 (9)O15B—Mg3—O16—C34164.8 (11)
C17—Mg1—Mg2—O3i29.18 (9)O12iii—Mg3—O16—C34109.0 (3)
O1—Mg1—Mg2—O28.12 (9)O11iii—Mg3—O16—C3487.3 (3)
O13—Mg1—Mg2—O25.5 (3)C24iii—Mg3—O16—C3495.3 (3)
O5—Mg1—Mg2—O2110.07 (9)Mg2—Mg3—O16—C3422.7 (4)
O14—Mg1—Mg2—O2168.77 (9)Mg2—O2—C1—O113.8 (5)
O10—Mg1—Mg2—O2127.30 (11)Mg2—O2—C1—C2165.9 (2)
O9—Mg1—Mg2—O286.50 (8)Mg1—O1—C1—O24.3 (4)
C17—Mg1—Mg2—O2102.74 (9)Mg1—O1—C1—C2175.96 (17)
O1—Mg1—Mg2—O7ii172.71 (9)O2—C1—C2—C3163.9 (3)
O13—Mg1—Mg2—O7ii175.3 (3)O1—C1—C2—C315.9 (4)
O5—Mg1—Mg2—O7ii70.76 (9)O2—C1—C2—C715.3 (4)
O14—Mg1—Mg2—O7ii10.41 (10)O1—C1—C2—C7164.9 (3)
O10—Mg1—Mg2—O7ii51.87 (11)C7—C2—C3—C42.5 (4)
O9—Mg1—Mg2—O7ii92.68 (8)C1—C2—C3—C4176.7 (3)
C17—Mg1—Mg2—O7ii76.43 (9)C2—C3—C4—C50.8 (4)
O1—Mg1—Mg2—O12iii47.37 (12)C3—C4—C5—C61.7 (4)
O13—Mg1—Mg2—O12iii50.0 (3)C3—C4—C5—C8175.4 (3)
O5—Mg1—Mg2—O12iii54.58 (11)C4—C5—C6—C72.5 (5)
O14—Mg1—Mg2—O12iii135.75 (11)C8—C5—C6—C7174.6 (3)
O10—Mg1—Mg2—O12iii177.21 (14)C5—C6—C7—C20.8 (6)
O9—Mg1—Mg2—O12iii141.99 (11)C3—C2—C7—C61.7 (5)
C17—Mg1—Mg2—O12iii158.23 (12)C1—C2—C7—C6177.5 (3)
O1—Mg1—Mg2—O10135.42 (11)Mg2iv—O3—C8—O434.2 (4)
O13—Mg1—Mg2—O10132.8 (3)Mg2iv—O3—C8—C5144.0 (2)
O5—Mg1—Mg2—O10122.63 (11)Mg3iv—O4—C8—O324.5 (4)
O14—Mg1—Mg2—O1041.47 (11)Mg3iv—O4—C8—C5153.63 (18)
O9—Mg1—Mg2—O1040.80 (10)C6—C5—C8—O32.9 (4)
C17—Mg1—Mg2—O1024.56 (11)C4—C5—C8—O3174.2 (3)
O6—Mg2—Mg3—O16100.1 (2)C6—C5—C8—O4178.8 (3)
O3i—Mg2—Mg3—O1680.0 (2)C4—C5—C8—O44.1 (4)
O2—Mg2—Mg3—O16155.4 (2)Mg2—O6—C9—O539.7 (5)
O7ii—Mg2—Mg3—O1623.9 (2)Mg2—O6—C9—C10138.9 (2)
O12iii—Mg2—Mg3—O16153.1 (3)Mg1—O5—C9—O624.4 (4)
O10—Mg2—Mg3—O1623.7 (3)Mg1—O5—C9—C10154.17 (18)
O6—Mg2—Mg3—O4i177.61 (9)O6—C9—C10—C1510.5 (4)
O3i—Mg2—Mg3—O4i2.25 (8)O5—C9—C10—C15168.1 (3)
O2—Mg2—Mg3—O4i73.09 (9)O6—C9—C10—C11171.5 (2)
O7ii—Mg2—Mg3—O4i106.16 (9)O5—C9—C10—C119.8 (4)
O12iii—Mg2—Mg3—O4i124.63 (11)C15—C10—C11—C120.2 (4)
O10—Mg2—Mg3—O4i58.60 (13)C9—C10—C11—C12177.7 (3)
O6—Mg2—Mg3—O8ii81.45 (9)C10—C11—C12—C131.4 (4)
O3i—Mg2—Mg3—O8ii98.69 (9)C11—C12—C13—C142.1 (4)
O2—Mg2—Mg3—O8ii174.04 (9)C11—C12—C13—C16178.1 (3)
O7ii—Mg2—Mg3—O8ii5.22 (8)C12—C13—C14—C151.3 (5)
O12iii—Mg2—Mg3—O8ii134.43 (11)C16—C13—C14—C15178.9 (3)
O10—Mg2—Mg3—O8ii42.34 (13)C11—C10—C15—C141.0 (4)
O6—Mg2—Mg3—O1596.60 (11)C9—C10—C15—C14177.0 (3)
O3i—Mg2—Mg3—O1583.26 (11)C13—C14—C15—C100.3 (5)
O2—Mg2—Mg3—O157.92 (12)Mg2v—O7—C16—O89.1 (5)
O7ii—Mg2—Mg3—O15172.82 (11)Mg2v—O7—C16—C13170.08 (19)
O12iii—Mg2—Mg3—O1543.62 (12)Mg3v—O8—C16—O72.5 (4)
O10—Mg2—Mg3—O15139.61 (14)Mg3v—O8—C16—C13178.32 (17)
O6—Mg2—Mg3—O15B88.2 (12)C14—C13—C16—O76.4 (4)
O3i—Mg2—Mg3—O15B91.7 (12)C12—C13—C16—O7173.8 (2)
O2—Mg2—Mg3—O15B16.3 (12)C14—C13—C16—O8174.4 (3)
O7ii—Mg2—Mg3—O15B164.4 (12)C12—C13—C16—O85.4 (4)
O12iii—Mg2—Mg3—O15B35.2 (12)Mg1—O9—C17—O107.9 (2)
O10—Mg2—Mg3—O15B148.0 (12)Mg1—O9—C17—C18169.1 (2)
O6—Mg2—Mg3—O12iii52.98 (11)Mg2—O10—C17—O9114.6 (2)
O3i—Mg2—Mg3—O12iii126.88 (11)Mg1—O10—C17—O98.1 (2)
O2—Mg2—Mg3—O12iii51.54 (11)Mg2—O10—C17—C1868.3 (3)
O7ii—Mg2—Mg3—O12iii129.21 (11)Mg1—O10—C17—C18168.96 (19)
O10—Mg2—Mg3—O12iii176.77 (15)Mg2—O10—C17—Mg1122.78 (19)
O6—Mg2—Mg3—O11iii12.28 (8)O1—Mg1—C17—O979.45 (15)
O3i—Mg2—Mg3—O11iii167.58 (8)O13—Mg1—C17—O916.80 (18)
O2—Mg2—Mg3—O11iii92.23 (9)O5—Mg1—C17—O9173.53 (14)
O7ii—Mg2—Mg3—O11iii88.51 (8)O14—Mg1—C17—O993.78 (15)
O12iii—Mg2—Mg3—O11iii40.70 (10)O10—Mg1—C17—O9172.0 (2)
O10—Mg2—Mg3—O11iii136.07 (12)Mg2—Mg1—C17—O9146.06 (16)
O6—Mg2—Mg3—C24iii28.17 (9)O1—Mg1—C17—O1092.53 (14)
O3i—Mg2—Mg3—C24iii151.69 (9)O13—Mg1—C17—O10171.22 (13)
O2—Mg2—Mg3—C24iii76.35 (10)O5—Mg1—C17—O1014.49 (17)
O7ii—Mg2—Mg3—C24iii104.40 (9)O14—Mg1—C17—O1094.24 (14)
O12iii—Mg2—Mg3—C24iii24.81 (11)O9—Mg1—C17—O10172.0 (2)
O10—Mg2—Mg3—C24iii151.96 (13)Mg2—Mg1—C17—O1025.92 (11)
O13—Mg1—O1—C1170.4 (2)O9—C17—C18—C23156.9 (2)
O5—Mg1—O1—C183.5 (2)O10—C17—C18—C2320.2 (3)
O10—Mg1—O1—C113.5 (2)O9—C17—C18—C1921.0 (4)
O9—Mg1—O1—C173.9 (2)O10—C17—C18—C19162.0 (2)
C17—Mg1—O1—C144.5 (2)C23—C18—C19—C200.8 (4)
Mg2—Mg1—O1—C18.9 (2)C17—C18—C19—C20178.6 (2)
O6—Mg2—O2—C145.6 (3)C18—C19—C20—C210.7 (4)
O3i—Mg2—O2—C1135.8 (3)C19—C20—C21—C220.3 (4)
O12iii—Mg2—O2—C1136.3 (3)C19—C20—C21—C24177.0 (2)
O10—Mg2—O2—C140.9 (3)C20—C21—C22—C230.1 (4)
Mg1—Mg2—O2—C114.6 (3)C24—C21—C22—C23176.6 (2)
O1—Mg1—O5—C981.0 (2)C19—C18—C23—C220.4 (4)
O13—Mg1—O5—C9172.94 (19)C17—C18—C23—C22178.2 (2)
O14—Mg1—O5—C9104.2 (2)C21—C22—C23—C180.1 (4)
O10—Mg1—O5—C919.3 (2)Mg3vi—O11—C24—O127.1 (2)
O9—Mg1—O5—C934.2 (3)Mg3vi—O11—C24—C21168.6 (2)
C17—Mg1—O5—C926.6 (2)Mg2vi—O12—C24—O11115.2 (2)
Mg2—Mg1—O5—C97.69 (18)Mg3vi—O12—C24—O117.2 (2)
O2—Mg2—O6—C985.1 (3)Mg2vi—O12—C24—C2169.0 (3)
O7ii—Mg2—O6—C993.4 (3)Mg3vi—O12—C24—C21168.5 (2)
O12iii—Mg2—O6—C9176.3 (3)Mg2vi—O12—C24—Mg3vi122.45 (19)
O10—Mg2—O6—C93.1 (3)C20—C21—C24—O11156.0 (2)
Mg3—Mg2—O6—C9157.5 (3)C22—C21—C24—O1120.7 (4)
Mg1—Mg2—O6—C923.5 (3)C20—C21—C24—O1219.7 (4)
O1—Mg1—O9—C17103.77 (15)C22—C21—C24—O12163.6 (2)
O13—Mg1—O9—C17166.29 (15)C20—C21—C24—Mg3vi59.0 (12)
O5—Mg1—O9—C1712.5 (3)C22—C21—C24—Mg3vi117.7 (10)
O14—Mg1—O9—C1782.75 (15)Mg1—O13—C25—N1119.3 (3)
O10—Mg1—O9—C174.69 (13)C26—N1—C25—O132.7 (4)
Mg2—Mg1—O9—C1728.45 (13)C27—N1—C25—O13176.8 (3)
O6—Mg2—O10—C17159.9 (2)Mg1—O14—C28—N2166.9 (2)
O3i—Mg2—O10—C1720.6 (2)C29—N2—C28—O140.9 (5)
O2—Mg2—O10—C1766.5 (2)C30—N2—C28—O14179.0 (3)
O7ii—Mg2—O10—C17113.4 (2)O16—Mg3—O15—C31153.7 (3)
Mg3—Mg2—O10—C1770.4 (3)O4i—Mg3—O15—C3152.5 (3)
Mg1—Mg2—O10—C17113.2 (2)O15B—Mg3—O15—C31157 (8)
O6—Mg2—O10—Mg146.69 (9)O12iii—Mg3—O15—C3143.2 (3)
O3i—Mg2—O10—Mg1133.84 (9)O11iii—Mg3—O15—C31104.3 (3)
O2—Mg2—O10—Mg146.74 (10)C24iii—Mg3—O15—C3174.3 (3)
O7ii—Mg2—O10—Mg1133.39 (9)Mg2—Mg3—O15—C3121.6 (3)
Mg3—Mg2—O10—Mg1176.40 (6)Mg3—O15—C31—N3172.7 (3)
O1—Mg1—O10—C1792.63 (14)O15—C31—N3—C330.0 (6)
O13—Mg1—O10—C1717.4 (3)O15—C31—N3—C32175.8 (4)
O5—Mg1—O10—C17168.17 (14)O16—Mg3—O15B—C31B109 (4)
O14—Mg1—O10—C1782.30 (14)O4i—Mg3—O15B—C31B9 (4)
O9—Mg1—O10—C174.59 (13)O8ii—Mg3—O15B—C31B152 (3)
Mg2—Mg1—O10—C17136.21 (17)O15—Mg3—O15B—C31B21 (5)
O1—Mg1—O10—Mg243.59 (10)O12iii—Mg3—O15B—C31B87 (4)
O13—Mg1—O10—Mg2153.57 (16)O11iii—Mg3—O15B—C31B147 (5)
O5—Mg1—O10—Mg255.62 (10)C24iii—Mg3—O15B—C31B117 (4)
O14—Mg1—O10—Mg2141.49 (10)Mg2—Mg3—O15B—C31B69 (5)
O9—Mg1—O10—Mg2131.63 (11)Mg3—O15B—C31B—N3B117 (5)
C17—Mg1—O10—Mg2136.21 (17)O15B—C31B—N3B—C33B178 (5)
O1—Mg1—O13—C2539.9 (3)O15B—C31B—N3B—C32B15 (7)
O5—Mg1—O13—C25138.3 (2)Mg3—O16—C34—N4108.5 (3)
O14—Mg1—O13—C25137.2 (3)C35—N4—C34—O161.6 (5)
O10—Mg1—O13—C2572.1 (3)C36—N4—C34—O16179.3 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y1, z; (iv) x+1, y1/2, z+1/2; (v) x, y1/2, z+1/2; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mg3(C8H4O4)3(C3H7NO)4]
Mr857.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.158 (2), 9.5046 (13), 24.066 (3)
β (°) 100.825 (2)
V3)4079.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.34 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2011)
Tmin, Tmax0.619, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
21816, 10014, 7598
Rint0.039
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.149, 1.12
No. of reflections10014
No. of parameters574
No. of restraints33
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.35

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SHELXTL (Sheldrick, 2008), SHELXLE (Hübschle et al., 2011) and SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the Department of Energy (DOE), USA, for financial support (grant CDP-3.10). The X-ray diffractometer was funded by the National Science Foundation (grant 0087210), Ohio Board of Regents (grant CAP-491), and by Youngstown State University.

References

First citationBrandenburg, K. (2001). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, A. D., Cassar, K., Friend, R. M. W., Mahon, M. F., Rigby, S. P. & Warren, J. E. (2005). CrystEngComm, 7, 548–550.  Web of Science CSD CrossRef CAS Google Scholar
First citationDavies, R. P., Less, R. J., Lickiss, P. D. & White, A. J. P. (2007). Dalton Trans. pp. 2528–2535.  Web of Science CSD CrossRef Google Scholar
First citationEdgar, M., Mitchell, R., Slawin, A. M. Z., Lightfoot, P. & Wright, P. A. (2001). Chem. Eur. J. 7, 5168–5175.  CrossRef PubMed CAS Google Scholar
First citationGrzesiak, A. L., Uribe, F. J., Ockwig, N. W., Yaghi, O. M. & Matzger, A. J. (2006). Angew. Chem. Int. Ed. 45, 2553–2556.  Web of Science CSD CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMallick, A., Saha, S., Pachfule, P., Roy, S. & Banerjee, R. (2011). Inorg. Chem. 50, 1392–1401.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRood, J. A., Noll, B. C. & Henderson, K. W. (2006). Main Group Chem. 5, 21–30.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, C. A., Blake, A. J., Hubberstey, P. & Schroder, M. (2005). Chem. Commun. pp. 5435–5437.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds