organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5′′-(2,4-Di­chloro­benzyl­­idene)-1′-(2,4-di­chloro­phen­yl)-1′′-methyl-1′,2′,3′,5′,6′,7′,8′,8a'-octa­hydro­di­spiro­[ace­naphthyl­ene-1,3′-indolizine-2′,3′′-piperidine]-2,4′′(1H)-dione

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 30 August 2012; accepted 4 September 2012; online 8 September 2012)

In the title compound, C37H30Cl4N2O2, the pyridinone ring adopts a twisted half-chair conformation. In the octa­hydro­indolizine fused-ring system, the piperidine ring is in a chair conformation and the pyrrole ring is twisted about the C—N bond linking the five- and six-membered rings. The mol­ecular structure features an intra­molecular C—H⋯O inter­action and the crystal packing is stabilized by C—H⋯π inter­actions.

Related literature

For the importance of spiro compounds, see: Biava et al. (2006[Biava, M., Porretta, G. C., Poce, G., Supino, S., Deidda, D., Pompei, R., Molicotti, P., Manetti, F. & Botta, M. J. (2006). Med. Chem. 49, 4946-4952.]); Chande et al. (2005[Chande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143-1148.]); Dandia et al. (2003[Dandia, A., Sati, M., Arya, K., Sharma, R. & Loupy, A. (2003). Chem. Pharm. Bull. 51, 1137-1141.]); Shaharyar et al. (2006[Shaharyar, M., Siddiqui, A. A., Ali, M. A., Sriram, D. & Yogeeswari, P. (2006). Bioorg. Med. Chem. Lett. 16, 3947-3949.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P. & Madhu, K. (2006). Bioorg. Med. Chem. Lett. 16, 876-878.]). For related acenaphthyl­ene structures, see: Hazell & Hazell (1977[Hazell, A. C. & Hazell, R. G. (1977). Acta Cryst. B33, 360-365.]); Hazell & Weigelt (1976[Hazell, A. C. & Weigelt, Å. (1976). Acta Cryst. B32, 306-308.]); Jones et al. (1992[Jones, P. G., Bubenitschek, P., Sheldrick, G. M. & Dyker, G. (1992). Acta Cryst. C48, 1633-1635.]); Sundar et al. (2002[Sundar, T. V., Parthasarathi, V., Álvarez-Rúa, C., García-Granda, S., Saxena, A., Pardasani, P. & Pardasani, R. T. (2002). Acta Cryst. E58, o1405-o1407.]).

[Scheme 1]

Experimental

Crystal data
  • C37H30Cl4N2O2

  • Mr = 676.43

  • Monoclinic, P 21 /c

  • a = 8.5695 (2) Å

  • b = 16.1634 (5) Å

  • c = 23.8325 (7) Å

  • β = 92.399 (2)°

  • V = 3298.20 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 29915 measured reflections

  • 5750 independent reflections

  • 4518 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.105

  • S = 1.08

  • 5750 reflections

  • 407 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C32–C37 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2 0.98 2.50 3.122 (3) 121
C10—H10a⋯Cg1i 0.97 2.68 3.5969 158
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In general, spiro compounds and nitrogen heterocycles display good anti-mycobacterial activities (Chande et al., 2005; Dandia et al., 2003; Sriram et al., 2006; Biava et al., 2006; Shaharyar et al., 2006) . It is also pertinent to note that the synthesis of biologically active indolizine derivatives continues to attract the attention of organic chemists, because of their wide spectrum of biological activity.

In the title compound (Fig. 1) the pyridinone ring adopts twisted half-chair conformation with atoms N1 and C5 deviating by -0.638 (2) and -0.465 (2) Å, respectively, from the least-squares plane defined by the other atoms (C2/C3/C4/C6). Within the octahydroindolizine fused ring system, the piperidine ring is in a chair conformation and the pyrrole ring is twisted about the N2—C8 bond. The C—C bond lengths and C—C—C angles in the acenaphthylene group compare with those of related structures (Hazell & Hazell, 1977; Hazell & Weigelt, 1976; Jones et al., 1992; Sundar et al., 2002). The observed conformation of the pyrrole ring may be due to the presence of an intramolecular C8—H8···O2 interaction (Table 1). The dihedral angle between the dichlorobenzene rings is 67.2 (1)° and these rings form angles of 46.8 (1) and 68.6 (1)° with the acenaphthene group, respectively. The sum of the bond angles at N2 of the pyrrole ring is 337.78°, indicating sp3-hybridization.

A weak C—H···π interaction (Table 1) viz., C10—H10···Cg1 is observed (Cg1 is the centroid of the ring C32—C37).

Related literature top

For the importance of spiro compounds, see: Biava et al. (2006); Chande et al. (2005); Dandia et al. (2003); Shaharyar et al. (2006); Sriram et al. (2006). For related acenaphthylene structures, see: Hazell & Hazell (1977); Hazell & Weigelt (1976); Jones et al. (1992); Sundar et al. (2002)

Experimental top

A mixture of 1-methyl-3,5-bis[(E)-2,4-dichloro phenylmethylidene]tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol) and piperidine-2-carboxylic acid (1 mmol) was dissolved in isopropyl alcohol (15 ml) and heated to reflux for 60 min. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml), the precipitated solid was filtered and washed with water (100 ml) to obtain pure yellow solid. The product was recrystallized from ethyl acetate to obtain suitable crystals of (I) for X-ray analysis having a melting point of 480 K (Yield: 96%).

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, and Uiso = 1.2Ueq(C) for CH2 and CH H atoms and Uiso = 1.5Ueq(C) for CH3 H atoms.

Structure description top

In general, spiro compounds and nitrogen heterocycles display good anti-mycobacterial activities (Chande et al., 2005; Dandia et al., 2003; Sriram et al., 2006; Biava et al., 2006; Shaharyar et al., 2006) . It is also pertinent to note that the synthesis of biologically active indolizine derivatives continues to attract the attention of organic chemists, because of their wide spectrum of biological activity.

In the title compound (Fig. 1) the pyridinone ring adopts twisted half-chair conformation with atoms N1 and C5 deviating by -0.638 (2) and -0.465 (2) Å, respectively, from the least-squares plane defined by the other atoms (C2/C3/C4/C6). Within the octahydroindolizine fused ring system, the piperidine ring is in a chair conformation and the pyrrole ring is twisted about the N2—C8 bond. The C—C bond lengths and C—C—C angles in the acenaphthylene group compare with those of related structures (Hazell & Hazell, 1977; Hazell & Weigelt, 1976; Jones et al., 1992; Sundar et al., 2002). The observed conformation of the pyrrole ring may be due to the presence of an intramolecular C8—H8···O2 interaction (Table 1). The dihedral angle between the dichlorobenzene rings is 67.2 (1)° and these rings form angles of 46.8 (1) and 68.6 (1)° with the acenaphthene group, respectively. The sum of the bond angles at N2 of the pyrrole ring is 337.78°, indicating sp3-hybridization.

A weak C—H···π interaction (Table 1) viz., C10—H10···Cg1 is observed (Cg1 is the centroid of the ring C32—C37).

For the importance of spiro compounds, see: Biava et al. (2006); Chande et al. (2005); Dandia et al. (2003); Shaharyar et al. (2006); Sriram et al. (2006). For related acenaphthylene structures, see: Hazell & Hazell (1977); Hazell & Weigelt (1976); Jones et al. (1992); Sundar et al. (2002)

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 20% probability displacement ellipsoids and the atom-numbering scheme. H-atoms are omitted for clarity.
5''-(2,4-Dichlorobenzylidene)-1'-(2,4-dichlorophenyl)-1''-methyl- 1',2',3',5',6',7',8',8a'-octahydrodispiro[acenaphthylene-1,3'-indolizine- 2',3''-piperidine]-2,4''(1H)-dione top
Crystal data top
C37H30Cl4N2O2F(000) = 1400
Mr = 676.43Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 8.5695 (2) Åθ = 2–31°
b = 16.1634 (5) ŵ = 0.40 mm1
c = 23.8325 (7) ÅT = 293 K
β = 92.399 (2)°Block, colourless
V = 3298.20 (16) Å30.23 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
5750 independent reflections
Radiation source: fine-focus sealed tube4518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω and φ scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1919
Tmin = 0.967, Tmax = 0.974l = 2828
29915 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.035P)2 + 2.1249P]
where P = (Fo2 + 2Fc2)/3
5750 reflections(Δ/σ)max < 0.001
407 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C37H30Cl4N2O2V = 3298.20 (16) Å3
Mr = 676.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5695 (2) ŵ = 0.40 mm1
b = 16.1634 (5) ÅT = 293 K
c = 23.8325 (7) Å0.23 × 0.21 × 0.19 mm
β = 92.399 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
5750 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4518 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.029
29915 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.08Δρmax = 0.60 e Å3
5750 reflectionsΔρmin = 0.55 e Å3
407 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1592 (3)0.47714 (17)0.28069 (11)0.0528 (6)
H1A0.20560.44430.30910.079*
H1B0.22260.47420.24660.079*
H1C0.15180.53360.29300.079*
C20.0685 (2)0.49258 (14)0.22637 (9)0.0412 (5)
H2A0.07010.55070.23640.049*
H2B0.00590.48660.19170.049*
C30.2331 (2)0.46418 (12)0.21678 (8)0.0345 (5)
C40.3245 (2)0.42014 (13)0.26274 (8)0.0344 (5)
C50.2333 (2)0.38735 (12)0.31178 (8)0.0301 (4)
C60.0974 (2)0.44638 (12)0.32082 (8)0.0333 (4)
H6A0.03980.42870.35290.040*
H6B0.13640.50190.32800.040*
C70.3420 (2)0.37231 (12)0.36537 (8)0.0329 (4)
H70.45010.37900.35420.039*
C80.3193 (2)0.28148 (13)0.37979 (8)0.0359 (5)
H80.22700.27560.40240.043*
C90.4565 (3)0.23864 (15)0.40912 (10)0.0499 (6)
H9A0.47410.26150.44650.060*
H9B0.54990.24760.38830.060*
C100.4239 (3)0.14666 (16)0.41318 (11)0.0603 (7)
H10A0.51470.11880.42990.072*
H10B0.33700.13760.43720.072*
C110.3854 (3)0.11052 (15)0.35563 (11)0.0566 (7)
H11A0.35830.05260.35930.068*
H11B0.47630.11420.33280.068*
C120.2503 (3)0.15664 (13)0.32705 (10)0.0468 (6)
H12A0.23100.13540.28930.056*
H12B0.15650.14860.34780.056*
C130.1744 (2)0.29741 (12)0.29436 (8)0.0324 (4)
C140.0011 (2)0.28284 (13)0.31192 (10)0.0413 (5)
C150.0909 (3)0.25445 (15)0.26233 (12)0.0519 (6)
C160.0097 (3)0.24771 (14)0.21835 (10)0.0490 (6)
C170.1641 (3)0.27180 (13)0.23272 (9)0.0387 (5)
C180.2754 (3)0.26134 (15)0.19449 (10)0.0523 (6)
H180.37900.27500.20320.063*
C190.2300 (4)0.22907 (17)0.14080 (11)0.0714 (9)
H190.30560.22200.11430.086*
C200.0795 (5)0.20812 (18)0.12678 (12)0.0804 (10)
H200.05420.18810.09100.097*
C210.0373 (4)0.21633 (17)0.16545 (13)0.0691 (9)
C220.1976 (5)0.1935 (2)0.15962 (18)0.1010 (14)
H220.23640.17220.12560.121*
C230.2948 (4)0.2021 (2)0.2026 (2)0.1132 (16)
H230.39910.18720.19690.136*
C240.2451 (3)0.23215 (19)0.25496 (17)0.0831 (10)
H240.31380.23700.28400.100*
C310.3044 (3)0.47215 (13)0.16838 (9)0.0387 (5)
H310.40480.45030.16810.046*
C320.2482 (3)0.51001 (14)0.11587 (9)0.0411 (5)
C330.1588 (3)0.58133 (16)0.11353 (10)0.0547 (6)
H330.12860.60480.14700.066*
C340.1126 (3)0.61910 (19)0.06375 (11)0.0678 (8)
H340.05300.66720.06360.081*
C350.1566 (3)0.58405 (18)0.01424 (11)0.0617 (7)
C360.2467 (4)0.51463 (17)0.01395 (10)0.0624 (7)
H360.27690.49190.01970.075*
C370.2923 (3)0.47867 (15)0.06447 (10)0.0516 (6)
C710.3175 (2)0.43159 (13)0.41354 (8)0.0352 (5)
C720.2167 (3)0.41435 (15)0.45610 (9)0.0479 (6)
H720.16440.36390.45540.058*
C730.1907 (3)0.46867 (16)0.49932 (10)0.0528 (6)
H730.12340.45460.52740.063*
C740.2651 (3)0.54342 (15)0.50045 (9)0.0466 (6)
C750.3684 (3)0.56349 (14)0.46038 (10)0.0450 (5)
H750.42080.61390.46170.054*
C760.3935 (2)0.50758 (13)0.41784 (9)0.0372 (5)
N10.00377 (18)0.44574 (10)0.27062 (7)0.0347 (4)
N20.28776 (19)0.24449 (10)0.32468 (7)0.0343 (4)
O10.46323 (17)0.40792 (11)0.25980 (6)0.0502 (4)
O20.04270 (19)0.28802 (10)0.35931 (7)0.0543 (4)
Cl10.52441 (8)0.53684 (4)0.36800 (3)0.05731 (18)
Cl20.22476 (9)0.61427 (5)0.55258 (3)0.0710 (2)
Cl30.41405 (13)0.39329 (5)0.06305 (3)0.0963 (3)
Cl40.10043 (13)0.63040 (7)0.04898 (3)0.1064 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0365 (12)0.0663 (16)0.0561 (15)0.0121 (11)0.0088 (11)0.0120 (13)
C20.0388 (12)0.0477 (13)0.0374 (12)0.0057 (10)0.0034 (9)0.0070 (10)
C30.0359 (11)0.0340 (11)0.0335 (11)0.0030 (9)0.0022 (9)0.0002 (9)
C40.0336 (12)0.0363 (11)0.0334 (11)0.0025 (9)0.0020 (9)0.0024 (9)
C50.0314 (10)0.0298 (10)0.0292 (10)0.0004 (8)0.0007 (8)0.0008 (8)
C60.0366 (11)0.0310 (11)0.0326 (10)0.0017 (8)0.0047 (9)0.0002 (9)
C70.0332 (11)0.0348 (11)0.0305 (10)0.0006 (8)0.0011 (8)0.0009 (9)
C80.0420 (12)0.0352 (11)0.0303 (10)0.0008 (9)0.0004 (9)0.0005 (9)
C90.0603 (15)0.0501 (14)0.0382 (12)0.0106 (12)0.0123 (11)0.0035 (11)
C100.0800 (19)0.0476 (15)0.0524 (15)0.0169 (13)0.0087 (13)0.0122 (12)
C110.0717 (17)0.0365 (13)0.0612 (16)0.0109 (12)0.0033 (13)0.0049 (12)
C120.0572 (14)0.0318 (12)0.0511 (14)0.0005 (10)0.0007 (11)0.0021 (10)
C130.0334 (11)0.0319 (11)0.0317 (10)0.0012 (8)0.0000 (8)0.0009 (8)
C140.0380 (12)0.0295 (11)0.0565 (14)0.0002 (9)0.0028 (11)0.0023 (10)
C150.0382 (13)0.0392 (13)0.0774 (17)0.0008 (10)0.0097 (12)0.0119 (12)
C160.0562 (15)0.0321 (12)0.0565 (14)0.0088 (10)0.0228 (12)0.0098 (11)
C170.0491 (13)0.0306 (11)0.0359 (11)0.0072 (9)0.0044 (10)0.0025 (9)
C180.0714 (17)0.0435 (14)0.0425 (13)0.0094 (12)0.0064 (12)0.0054 (11)
C190.124 (3)0.0498 (16)0.0408 (15)0.0223 (17)0.0108 (16)0.0073 (12)
C200.135 (3)0.0565 (18)0.0467 (16)0.0218 (19)0.0341 (19)0.0194 (14)
C210.090 (2)0.0474 (16)0.0660 (18)0.0200 (15)0.0392 (17)0.0195 (14)
C220.098 (3)0.072 (2)0.126 (3)0.017 (2)0.073 (3)0.045 (2)
C230.062 (2)0.088 (3)0.184 (5)0.0097 (19)0.053 (3)0.060 (3)
C240.0433 (16)0.0658 (19)0.139 (3)0.0031 (13)0.0139 (17)0.034 (2)
C310.0401 (12)0.0392 (12)0.0371 (11)0.0011 (9)0.0057 (9)0.0017 (9)
C320.0464 (13)0.0440 (13)0.0333 (11)0.0033 (10)0.0064 (9)0.0041 (10)
C330.0643 (16)0.0579 (16)0.0428 (13)0.0110 (13)0.0133 (12)0.0093 (12)
C340.0735 (19)0.0722 (19)0.0583 (17)0.0209 (15)0.0104 (14)0.0213 (15)
C350.0736 (18)0.0696 (19)0.0410 (14)0.0047 (15)0.0083 (13)0.0177 (13)
C360.098 (2)0.0576 (17)0.0318 (13)0.0112 (15)0.0047 (13)0.0001 (12)
C370.0712 (16)0.0455 (14)0.0387 (13)0.0027 (12)0.0096 (11)0.0024 (11)
C710.0371 (11)0.0377 (12)0.0302 (10)0.0017 (9)0.0060 (9)0.0017 (9)
C720.0546 (14)0.0475 (14)0.0422 (13)0.0101 (11)0.0071 (11)0.0067 (11)
C730.0588 (15)0.0581 (16)0.0423 (13)0.0031 (12)0.0116 (11)0.0089 (12)
C740.0498 (14)0.0498 (14)0.0394 (12)0.0084 (11)0.0071 (10)0.0132 (11)
C750.0464 (13)0.0390 (12)0.0486 (13)0.0007 (10)0.0093 (11)0.0077 (10)
C760.0364 (11)0.0374 (12)0.0372 (11)0.0030 (9)0.0050 (9)0.0008 (9)
N10.0307 (9)0.0390 (10)0.0345 (9)0.0035 (7)0.0031 (7)0.0028 (8)
N20.0392 (9)0.0288 (9)0.0345 (9)0.0026 (7)0.0034 (7)0.0013 (7)
O10.0323 (9)0.0762 (12)0.0424 (9)0.0019 (8)0.0045 (7)0.0069 (8)
O20.0505 (10)0.0524 (10)0.0617 (11)0.0038 (8)0.0217 (8)0.0015 (8)
Cl10.0639 (4)0.0448 (3)0.0646 (4)0.0102 (3)0.0189 (3)0.0010 (3)
Cl20.0791 (5)0.0718 (5)0.0623 (4)0.0039 (4)0.0055 (3)0.0346 (4)
Cl30.1647 (9)0.0739 (5)0.0531 (4)0.0479 (5)0.0376 (5)0.0068 (4)
Cl40.1384 (8)0.1225 (8)0.0564 (5)0.0076 (6)0.0180 (5)0.0381 (5)
Geometric parameters (Å, º) top
C1—N11.454 (3)C15—C241.374 (4)
C1—H1A0.9600C15—C161.389 (4)
C1—H1B0.9600C16—C211.402 (3)
C1—H1C0.9600C16—C171.408 (3)
C2—N11.457 (3)C17—C181.357 (3)
C2—C31.510 (3)C18—C191.421 (4)
C2—H2A0.9700C18—H180.9300
C2—H2B0.9700C19—C201.361 (5)
C3—C311.334 (3)C19—H190.9300
C3—C41.500 (3)C20—C211.395 (5)
C4—O11.210 (2)C20—H200.9300
C4—C51.528 (3)C21—C221.424 (5)
C5—C61.528 (3)C22—C231.355 (6)
C5—C71.568 (3)C22—H220.9300
C5—C131.588 (3)C23—C241.389 (5)
C6—N11.448 (3)C23—H230.9300
C6—H6A0.9700C24—H240.9300
C6—H6B0.9700C31—C321.457 (3)
C7—C711.517 (3)C31—H310.9300
C7—C81.522 (3)C32—C331.384 (3)
C7—H70.9800C32—C371.393 (3)
C8—N21.458 (3)C33—C341.377 (3)
C8—C91.511 (3)C33—H330.9300
C8—H80.9800C34—C351.376 (4)
C9—C101.517 (4)C34—H340.9300
C9—H9A0.9700C35—C361.362 (4)
C9—H9B0.9700C35—Cl41.733 (3)
C10—C111.514 (4)C36—C371.379 (3)
C10—H10A0.9700C36—H360.9300
C10—H10B0.9700C37—Cl31.731 (3)
C11—C121.515 (3)C71—C721.387 (3)
C11—H11A0.9700C71—C761.392 (3)
C11—H11B0.9700C72—C731.379 (3)
C12—N21.457 (3)C72—H720.9300
C12—H12A0.9700C73—C741.366 (3)
C12—H12B0.9700C73—H730.9300
C13—N21.462 (3)C74—C751.368 (3)
C13—C171.525 (3)C74—Cl21.735 (2)
C13—C141.578 (3)C75—C761.382 (3)
C14—O21.208 (3)C75—H750.9300
C14—C151.467 (3)C76—Cl11.733 (2)
N1—C1—H1A109.5C24—C15—C16120.5 (3)
N1—C1—H1B109.5C24—C15—C14131.8 (3)
H1A—C1—H1B109.5C16—C15—C14107.7 (2)
N1—C1—H1C109.5C15—C16—C21122.9 (3)
H1A—C1—H1C109.5C15—C16—C17113.7 (2)
H1B—C1—H1C109.5C21—C16—C17123.4 (3)
N1—C2—C3112.30 (17)C18—C17—C16118.8 (2)
N1—C2—H2A109.1C18—C17—C13131.8 (2)
C3—C2—H2A109.1C16—C17—C13108.99 (19)
N1—C2—H2B109.1C17—C18—C19118.5 (3)
C3—C2—H2B109.1C17—C18—H18120.8
H2A—C2—H2B107.9C19—C18—H18120.8
C31—C3—C4115.66 (18)C20—C19—C18122.2 (3)
C31—C3—C2124.5 (2)C20—C19—H19118.9
C4—C3—C2119.79 (17)C18—C19—H19118.9
O1—C4—C3121.33 (18)C19—C20—C21120.8 (3)
O1—C4—C5121.55 (18)C19—C20—H20119.6
C3—C4—C5117.04 (16)C21—C20—H20119.6
C6—C5—C4108.00 (16)C20—C21—C16116.2 (3)
C6—C5—C7114.36 (15)C20—C21—C22128.8 (3)
C4—C5—C7111.76 (16)C16—C21—C22114.9 (3)
C6—C5—C13111.90 (16)C23—C22—C21121.4 (3)
C4—C5—C13106.54 (15)C23—C22—H22119.3
C7—C5—C13104.03 (15)C21—C22—H22119.3
N1—C6—C5108.20 (15)C22—C23—C24122.7 (3)
N1—C6—H6A110.1C22—C23—H23118.7
C5—C6—H6A110.1C24—C23—H23118.7
N1—C6—H6B110.1C15—C24—C23117.6 (3)
C5—C6—H6B110.1C15—C24—H24121.2
H6A—C6—H6B108.4C23—C24—H24121.2
C71—C7—C8114.53 (16)C3—C31—C32129.5 (2)
C71—C7—C5114.96 (16)C3—C31—H31115.2
C8—C7—C5104.84 (16)C32—C31—H31115.2
C71—C7—H7107.4C33—C32—C37116.0 (2)
C8—C7—H7107.4C33—C32—C31123.2 (2)
C5—C7—H7107.4C37—C32—C31120.7 (2)
N2—C8—C9109.89 (17)C34—C33—C32122.9 (2)
N2—C8—C7102.28 (15)C34—C33—H33118.6
C9—C8—C7116.24 (18)C32—C33—H33118.6
N2—C8—H8109.4C35—C34—C33118.5 (3)
C9—C8—H8109.4C35—C34—H34120.8
C7—C8—H8109.4C33—C34—H34120.8
C8—C9—C10109.7 (2)C36—C35—C34121.3 (2)
C8—C9—H9A109.7C36—C35—Cl4119.3 (2)
C10—C9—H9A109.7C34—C35—Cl4119.4 (2)
C8—C9—H9B109.7C35—C36—C37118.9 (2)
C10—C9—H9B109.7C35—C36—H36120.6
H9A—C9—H9B108.2C37—C36—H36120.6
C11—C10—C9110.7 (2)C36—C37—C32122.5 (2)
C11—C10—H10A109.5C36—C37—Cl3117.91 (19)
C9—C10—H10A109.5C32—C37—Cl3119.55 (19)
C11—C10—H10B109.5C72—C71—C76115.28 (19)
C9—C10—H10B109.5C72—C71—C7122.47 (19)
H10A—C10—H10B108.1C76—C71—C7122.25 (18)
C10—C11—C12110.5 (2)C73—C72—C71122.9 (2)
C10—C11—H11A109.5C73—C72—H72118.5
C12—C11—H11A109.5C71—C72—H72118.5
C10—C11—H11B109.5C74—C73—C72119.2 (2)
C12—C11—H11B109.5C74—C73—H73120.4
H11A—C11—H11B108.1C72—C73—H73120.4
N2—C12—C11109.34 (19)C73—C74—C75120.7 (2)
N2—C12—H12A109.8C73—C74—Cl2119.40 (19)
C11—C12—H12A109.8C75—C74—Cl2119.85 (19)
N2—C12—H12B109.8C74—C75—C76118.8 (2)
C11—C12—H12B109.8C74—C75—H75120.6
H12A—C12—H12B108.3C76—C75—H75120.6
N2—C13—C17109.14 (16)C75—C76—C71123.0 (2)
N2—C13—C14113.25 (16)C75—C76—Cl1116.72 (17)
C17—C13—C14101.40 (16)C71—C76—Cl1120.31 (16)
N2—C13—C5102.07 (15)C6—N1—C1112.44 (17)
C17—C13—C5120.34 (16)C6—N1—C2109.68 (16)
C14—C13—C5111.06 (15)C1—N1—C2110.96 (17)
O2—C14—C15126.7 (2)C12—N2—C8113.42 (17)
O2—C14—C13124.8 (2)C12—N2—C13116.49 (17)
C15—C14—C13108.24 (19)C8—N2—C13107.43 (15)
N1—C2—C3—C31153.9 (2)C17—C18—C19—C200.3 (4)
N1—C2—C3—C423.0 (3)C18—C19—C20—C211.1 (4)
C31—C3—C4—O114.3 (3)C19—C20—C21—C160.6 (4)
C2—C3—C4—O1168.5 (2)C19—C20—C21—C22176.1 (3)
C31—C3—C4—C5162.48 (18)C15—C16—C21—C20175.8 (2)
C2—C3—C4—C514.7 (3)C17—C16—C21—C201.3 (4)
O1—C4—C5—C6150.4 (2)C15—C16—C21—C221.4 (4)
C3—C4—C5—C632.8 (2)C17—C16—C21—C22178.5 (2)
O1—C4—C5—C723.8 (3)C20—C21—C22—C23176.7 (4)
C3—C4—C5—C7159.43 (17)C16—C21—C22—C230.0 (5)
O1—C4—C5—C1389.2 (2)C21—C22—C23—C241.0 (6)
C3—C4—C5—C1387.6 (2)C16—C15—C24—C230.8 (4)
C4—C5—C6—N162.4 (2)C14—C15—C24—C23175.6 (3)
C7—C5—C6—N1172.48 (15)C22—C23—C24—C150.6 (6)
C13—C5—C6—N154.5 (2)C4—C3—C31—C32179.0 (2)
C6—C5—C7—C7112.6 (2)C2—C3—C31—C321.9 (4)
C4—C5—C7—C71110.51 (19)C3—C31—C32—C3338.4 (4)
C13—C5—C7—C71134.93 (17)C3—C31—C32—C37146.3 (2)
C6—C5—C7—C8114.08 (18)C37—C32—C33—C341.2 (4)
C4—C5—C7—C8122.83 (17)C31—C32—C33—C34176.7 (2)
C13—C5—C7—C88.27 (19)C32—C33—C34—C350.4 (4)
C71—C7—C8—N2158.36 (16)C33—C34—C35—C361.4 (5)
C5—C7—C8—N231.43 (19)C33—C34—C35—Cl4179.9 (2)
C71—C7—C8—C981.9 (2)C34—C35—C36—C370.8 (4)
C5—C7—C8—C9151.13 (18)Cl4—C35—C36—C37179.3 (2)
N2—C8—C9—C1056.6 (2)C35—C36—C37—C320.8 (4)
C7—C8—C9—C10172.14 (19)C35—C36—C37—Cl3177.1 (2)
C8—C9—C10—C1155.6 (3)C33—C32—C37—C361.8 (4)
C9—C10—C11—C1255.5 (3)C31—C32—C37—C36177.4 (2)
C10—C11—C12—N255.8 (3)C33—C32—C37—Cl3176.12 (19)
C6—C5—C13—N2141.69 (16)C31—C32—C37—Cl30.5 (3)
C4—C5—C13—N2100.49 (17)C8—C7—C71—C7229.0 (3)
C7—C5—C13—N217.73 (18)C5—C7—C71—C7292.5 (2)
C6—C5—C13—C1797.4 (2)C8—C7—C71—C76151.57 (19)
C4—C5—C13—C1720.4 (2)C5—C7—C71—C7686.9 (2)
C7—C5—C13—C17138.64 (17)C76—C71—C72—C731.0 (3)
C6—C5—C13—C1420.7 (2)C7—C71—C72—C73178.4 (2)
C4—C5—C13—C14138.51 (17)C71—C72—C73—C740.9 (4)
C7—C5—C13—C14103.27 (18)C72—C73—C74—C752.2 (4)
N2—C13—C14—O256.1 (3)C72—C73—C74—Cl2176.50 (19)
C17—C13—C14—O2172.9 (2)C73—C74—C75—C761.5 (4)
C5—C13—C14—O258.1 (3)Cl2—C74—C75—C76177.16 (17)
N2—C13—C14—C15118.41 (19)C74—C75—C76—C710.5 (3)
C17—C13—C14—C151.6 (2)C74—C75—C76—Cl1179.48 (17)
C5—C13—C14—C15127.42 (18)C72—C71—C76—C751.7 (3)
O2—C14—C15—C244.5 (4)C7—C71—C76—C75177.69 (19)
C13—C14—C15—C24178.9 (3)C72—C71—C76—Cl1179.33 (17)
O2—C14—C15—C16172.1 (2)C7—C71—C76—Cl11.2 (3)
C13—C14—C15—C162.2 (2)C5—C6—N1—C1161.08 (17)
C24—C15—C16—C211.8 (4)C5—C6—N1—C274.95 (19)
C14—C15—C16—C21175.3 (2)C3—C2—N1—C652.4 (2)
C24—C15—C16—C17179.1 (2)C3—C2—N1—C1177.25 (19)
C14—C15—C16—C172.0 (3)C11—C12—N2—C859.1 (2)
C15—C16—C17—C18174.6 (2)C11—C12—N2—C13175.37 (18)
C21—C16—C17—C182.7 (3)C9—C8—N2—C1260.0 (2)
C15—C16—C17—C130.9 (3)C7—C8—N2—C12175.93 (17)
C21—C16—C17—C13176.4 (2)C9—C8—N2—C13169.77 (17)
N2—C13—C17—C1852.3 (3)C7—C8—N2—C1345.73 (19)
C14—C13—C17—C18172.1 (2)C17—C13—N2—C1263.5 (2)
C5—C13—C17—C1865.0 (3)C14—C13—N2—C1248.6 (2)
N2—C13—C17—C16120.24 (18)C5—C13—N2—C12168.11 (17)
C14—C13—C17—C160.5 (2)C17—C13—N2—C8168.05 (16)
C5—C13—C17—C16122.4 (2)C14—C13—N2—C879.8 (2)
C16—C17—C18—C192.1 (3)C5—C13—N2—C839.66 (18)
C13—C17—C18—C19174.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C32–C37 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O20.982.503.122 (3)121
C10—H10a···Cg1i0.972.683.5969158
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC37H30Cl4N2O2
Mr676.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.5695 (2), 16.1634 (5), 23.8325 (7)
β (°) 92.399 (2)
V3)3298.20 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
29915, 5750, 4518
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.105, 1.08
No. of reflections5750
No. of parameters407
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.55

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C32–C37 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O20.982.503.122 (3)121
C10—H10a···Cg1i0.972.683.5969158
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

JS thanks the UGC for the FIST support. JS and RV thank the management of Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the fast-track scheme (No. SR/FT/CS-073/2009).

References

First citationBiava, M., Porretta, G. C., Poce, G., Supino, S., Deidda, D., Pompei, R., Molicotti, P., Manetti, F. & Botta, M. J. (2006). Med. Chem. 49, 4946–4952.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143–1148.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDandia, A., Sati, M., Arya, K., Sharma, R. & Loupy, A. (2003). Chem. Pharm. Bull. 51, 1137–1141.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHazell, A. C. & Hazell, R. G. (1977). Acta Cryst. B33, 360–365.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHazell, A. C. & Weigelt, Å. (1976). Acta Cryst. B32, 306–308.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJones, P. G., Bubenitschek, P., Sheldrick, G. M. & Dyker, G. (1992). Acta Cryst. C48, 1633–1635.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShaharyar, M., Siddiqui, A. A., Ali, M. A., Sriram, D. & Yogeeswari, P. (2006). Bioorg. Med. Chem. Lett. 16, 3947–3949.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P. & Madhu, K. (2006). Bioorg. Med. Chem. Lett. 16, 876–878.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSundar, T. V., Parthasarathi, V., Álvarez-Rúa, C., García-Granda, S., Saxena, A., Pardasani, P. & Pardasani, R. T. (2002). Acta Cryst. E58, o1405–o1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds