metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetato-κ2O,O′)[2′-(di-tert-butyl­phosphanyl)-1,1′-bi­phenyl-κ2P,C2]palladium(II)

aDepartment of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: carderne@uj.ac.za

(Received 12 September 2012; accepted 21 September 2012; online 26 September 2012)

The structure of the title compound, [Pd(C2H3O2)(C20H26P)], shows a distorted square-planar geometry for the PdII atom, with significant deviations being evident owing to the asymmetric coordination mode of the acetate ligand. A weak intra­molecular C—H⋯O inter­action is noted. The crystal studied was a racemic twin.

Related literature

For related structures and catalytic literature on palladium complexes, see: Ormondi et al. (2011[Ormondi, B., Shaw, M. L. & Holzapfel, C. W. (2011). J. Organomet. Chem. 696, 3091-3096.]); van Blerk & Holzapfel (2009[Blerk, C. van & Holzapfel, C. W. (2009). Acta Cryst. E65, m1536.]); Zim & Buchwald (2005[Zim, D. & Buchwald, S. L. (2005). Org. Lett. 5, 2413-2415.]); Williams et al. (2008[Williams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560-563.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C2H3O2)(C20H26P)]

  • Mr = 462.82

  • Orthorhombic, P 21 21 21

  • a = 9.800 (3) Å

  • b = 14.2392 (4) Å

  • c = 14.7772 (5) Å

  • V = 2062.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 100 K

  • 0.25 × 0.19 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (AXSCALE; Bruker, 2010[Bruker (2010). APEX2, AXSCALE and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.790, Tmax = 0.874

  • 24048 measured reflections

  • 5179 independent reflections

  • 5077 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.014

  • wR(F2) = 0.034

  • S = 1.06

  • 5179 reflections

  • 243 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: not determined

Table 1
Selected geometric parameters (Å, °)

Pd1—P1 2.2285 (7)
Pd1—O1 2.2109 (12)
Pd1—O2 2.1657 (11)
Pd1—C18 1.9686 (15)
P1—Pd1—O1 113.61 (3)
P1—Pd1—O2 173.58 (3)
P1—Pd1—C18 86.37 (4)
O1—Pd1—O2 60.19 (4)
O1—Pd1—C18 159.59 (5)
O2—Pd1—C18 99.69 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O1 0.98 2.25 3.169 (2) 156

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, AXSCALE and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, AXSCALE and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Our continued studies of palladium catalysed reactions (Ormondi et al., 2011; Williams et al., 2008; van Blerk & Holzapfel, 2009) includes a comparison of the efficiency of a wide range of palladocycles compared against the title compound (I), acetato-(2'-di-t-butylphosphanyl-1,1'-biphenyl-2yl)palladium(II). Compound (I) is an efficient and stable catalyst introduced by Zim & Buchwald (2005). We now report the crystal structure of (I) as part of a structure–activity study.

There is significant deviation from the ideal square planar geometry around the Pd atom as a result of its coordination to the acetate moiety. This distorted geometry is evident from the deviations in bond angles from 90°. The data in Table 1 demonstrate the deviations in the coordination geometry. A weak intramolecular C—H···O interaction is noted (Fig. 2 and Table 2).

Related literature top

For related structures and catalytic literature on palladium complexes, see: Ormondi et al. (2011); van Blerk & Holzapfel (2009); Zim & Buchwald (2005); Williams et al. (2008).

Experimental top

A solution of 2-(biphenyl)-di-tert-butylphosphine (298 mg; 1 mmol) and palladium acetate (224 mg; 1 mmol) in 15 ml of chloroform was refluxed under argon for 3 h. The solvent was evaporated in vacuo to leave a colourless crystalline residue (464 mg; ca 100%). The solid was taken up in dichloromethane (3 ml) and the solution diluted with cyclohexane (10 ml). The solvent was allowed to slowly evaporate in a stream of nitrogen until the solution was reduced to 3 ml. This resulted in the formation of well formed yellow blocks of the title compound (I) (288 mg; m.p. 409–414 K).

Refinement top

The H atoms were included at idealized positions and were allowed to ride with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.2–1.5Ueq(C). The structure was refined as a racemic twin precluding the determination of the absolute structure. Owing to poor agreement, the 0 1 6 and 1 4 0 reflections were omitted from the final refinement.

Structure description top

Our continued studies of palladium catalysed reactions (Ormondi et al., 2011; Williams et al., 2008; van Blerk & Holzapfel, 2009) includes a comparison of the efficiency of a wide range of palladocycles compared against the title compound (I), acetato-(2'-di-t-butylphosphanyl-1,1'-biphenyl-2yl)palladium(II). Compound (I) is an efficient and stable catalyst introduced by Zim & Buchwald (2005). We now report the crystal structure of (I) as part of a structure–activity study.

There is significant deviation from the ideal square planar geometry around the Pd atom as a result of its coordination to the acetate moiety. This distorted geometry is evident from the deviations in bond angles from 90°. The data in Table 1 demonstrate the deviations in the coordination geometry. A weak intramolecular C—H···O interaction is noted (Fig. 2 and Table 2).

For related structures and catalytic literature on palladium complexes, see: Ormondi et al. (2011); van Blerk & Holzapfel (2009); Zim & Buchwald (2005); Williams et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with anisotropic displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Diagram of (I) showing the weak C—H···O intramolecular interaction indicating the H···A distance of 2.25 Å.
(Acetato-κ2O,O')[2'-(di-tert-butylphosphanyl)-1,1'- biphenyl-κ2P,C2]palladium(II) top
Crystal data top
[Pd(C2H3O2)(C20H26P)]F(000) = 952
Mr = 462.82Dx = 1.491 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9242 reflections
a = 9.800 (3) Åθ = 2.5–28.4°
b = 14.2392 (4) ŵ = 0.99 mm1
c = 14.7772 (5) ÅT = 100 K
V = 2062.1 (6) Å3Block, yellow
Z = 40.25 × 0.19 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
5179 independent reflections
Radiation source: fine-focus sealed tube5077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ andω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(AXSCALE; Bruker, 2010)
h = 1312
Tmin = 0.790, Tmax = 0.874k = 1917
24048 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.014H-atom parameters constrained
wR(F2) = 0.034 w = 1/[σ2(Fo2) + (0.0177P)2 + 0.2811P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
5179 reflectionsΔρmax = 0.27 e Å3
243 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
[Pd(C2H3O2)(C20H26P)]V = 2062.1 (6) Å3
Mr = 462.82Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.800 (3) ŵ = 0.99 mm1
b = 14.2392 (4) ÅT = 100 K
c = 14.7772 (5) Å0.25 × 0.19 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
5179 independent reflections
Absorption correction: multi-scan
(AXSCALE; Bruker, 2010)
5077 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 0.874Rint = 0.018
24048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0140 restraints
wR(F2) = 0.034H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
5179 reflectionsΔρmin = 0.19 e Å3
243 parametersAbsolute structure: nd
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01684 (16)0.64306 (10)0.01415 (9)0.0200 (3)
C20.03332 (19)0.70910 (12)0.05813 (11)0.0296 (4)
H2A0.03530.75800.06880.044*
H2B0.11890.73830.03840.044*
H2C0.04900.67400.11420.044*
C30.12994 (14)0.36953 (10)0.17962 (10)0.0179 (3)
C40.12773 (16)0.35830 (11)0.07523 (10)0.0234 (3)
H4A0.07210.30360.05900.035*
H4B0.08860.41480.04770.035*
H4C0.22110.34930.05300.035*
C50.22808 (14)0.45126 (10)0.20099 (10)0.0207 (3)
H5A0.19560.50850.17120.031*
H5B0.23140.46130.26660.031*
H5C0.31960.43580.17880.031*
C60.18496 (16)0.27675 (11)0.21887 (11)0.0238 (3)
H6A0.18240.27950.28510.036*
H6B0.12830.22450.19780.036*
H6C0.27920.26730.19870.036*
C70.16700 (15)0.30436 (10)0.21904 (10)0.0190 (3)
C80.15467 (17)0.24809 (11)0.13080 (13)0.0300 (4)
H8A0.15890.29110.07910.045*
H8B0.06750.21440.13010.045*
H8C0.22980.20290.12690.045*
C90.13811 (18)0.24130 (12)0.30108 (13)0.0299 (4)
H9A0.04360.21900.29850.045*
H9B0.15200.27720.35690.045*
H9C0.20030.18740.30020.045*
C100.31527 (15)0.33883 (11)0.22510 (12)0.0238 (3)
H10A0.32810.37390.28150.036*
H10B0.33520.37980.17350.036*
H10C0.37710.28480.22410.036*
C110.03089 (14)0.44692 (9)0.33655 (8)0.0154 (3)
C120.07717 (15)0.41959 (11)0.39277 (10)0.0209 (3)
H120.13660.37080.37350.025*
C130.09954 (16)0.46231 (12)0.47641 (9)0.0246 (3)
H130.17520.44430.51270.029*
C140.01070 (15)0.53113 (13)0.50607 (9)0.0243 (3)
H140.02680.56200.56200.029*
C150.10184 (17)0.55503 (10)0.45413 (9)0.0201 (3)
H150.16460.60030.47650.024*
C160.12513 (13)0.51377 (9)0.36921 (9)0.0163 (3)
C170.24987 (13)0.54179 (10)0.31892 (9)0.0157 (2)
C180.25148 (14)0.55169 (9)0.22435 (9)0.0147 (3)
C190.37097 (15)0.58258 (10)0.18224 (10)0.0190 (3)
H190.37110.59330.11880.023*
C200.48925 (15)0.59791 (11)0.23147 (11)0.0221 (3)
H200.57000.61790.20160.026*
C210.48961 (15)0.58397 (11)0.32458 (11)0.0237 (3)
H210.57100.59260.35850.028*
C220.36993 (14)0.55730 (9)0.36744 (10)0.0204 (3)
H220.36960.54940.43130.024*
O10.05113 (11)0.56989 (7)0.03223 (7)0.0211 (2)
O20.12585 (11)0.66066 (7)0.05752 (7)0.0209 (2)
P10.04521 (4)0.40789 (2)0.21866 (2)0.01354 (7)
Pd10.097889 (10)0.536270 (7)0.139786 (6)0.01311 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0253 (8)0.0188 (7)0.0158 (6)0.0050 (6)0.0024 (6)0.0028 (5)
C20.0350 (9)0.0291 (9)0.0248 (8)0.0055 (7)0.0017 (7)0.0105 (7)
C30.0173 (7)0.0148 (7)0.0215 (7)0.0024 (5)0.0021 (5)0.0004 (5)
C40.0266 (9)0.0214 (7)0.0223 (7)0.0019 (6)0.0036 (6)0.0044 (6)
C50.0159 (6)0.0219 (8)0.0245 (7)0.0010 (6)0.0035 (5)0.0011 (6)
C60.0204 (7)0.0191 (7)0.0318 (8)0.0050 (6)0.0008 (6)0.0012 (6)
C70.0188 (7)0.0129 (7)0.0253 (7)0.0026 (5)0.0034 (6)0.0028 (5)
C80.0268 (8)0.0208 (8)0.0424 (10)0.0046 (6)0.0002 (8)0.0107 (7)
C90.0258 (8)0.0221 (8)0.0419 (9)0.0061 (6)0.0066 (7)0.0153 (7)
C100.0191 (7)0.0154 (7)0.0367 (9)0.0035 (6)0.0024 (6)0.0026 (6)
C110.0154 (6)0.0157 (7)0.0151 (6)0.0031 (5)0.0001 (5)0.0028 (5)
C120.0190 (8)0.0245 (7)0.0191 (6)0.0029 (6)0.0006 (5)0.0041 (5)
C130.0202 (6)0.0363 (8)0.0173 (6)0.0004 (9)0.0039 (6)0.0052 (6)
C140.0253 (7)0.0332 (8)0.0144 (6)0.0058 (7)0.0015 (5)0.0004 (7)
C150.0206 (6)0.0227 (7)0.0171 (6)0.0017 (6)0.0037 (6)0.0005 (5)
C160.0164 (6)0.0163 (6)0.0162 (6)0.0032 (5)0.0019 (5)0.0043 (5)
C170.0168 (6)0.0104 (6)0.0199 (6)0.0012 (5)0.0009 (5)0.0015 (5)
C180.0165 (6)0.0093 (6)0.0183 (6)0.0014 (5)0.0005 (5)0.0000 (5)
C190.0211 (8)0.0124 (6)0.0235 (7)0.0004 (5)0.0041 (6)0.0006 (5)
C200.0152 (7)0.0178 (7)0.0331 (8)0.0019 (6)0.0036 (6)0.0009 (6)
C210.0160 (7)0.0213 (8)0.0338 (8)0.0006 (6)0.0039 (6)0.0008 (6)
C220.0211 (7)0.0181 (7)0.0220 (6)0.0005 (5)0.0030 (6)0.0008 (5)
O10.0249 (5)0.0200 (5)0.0185 (5)0.0001 (4)0.0028 (4)0.0025 (4)
O20.0241 (6)0.0174 (5)0.0211 (5)0.0008 (4)0.0010 (4)0.0054 (4)
P10.01417 (16)0.01141 (16)0.01505 (15)0.00016 (13)0.00127 (13)0.00109 (12)
Pd10.01529 (5)0.01095 (4)0.01310 (4)0.00049 (4)0.00091 (4)0.00145 (4)
Geometric parameters (Å, º) top
C1—O11.2651 (18)C10—H10B0.9800
C1—O21.2707 (19)C10—H10C0.9800
C1—C21.506 (2)C11—C121.401 (2)
C2—H2A0.9800C11—C161.4114 (19)
C2—H2B0.9800C11—P11.8339 (14)
C2—H2C0.9800C12—C131.395 (2)
C3—C61.540 (2)C12—H120.9500
C3—C51.542 (2)C13—C141.382 (2)
C3—C41.551 (2)C13—H130.9500
C3—P11.8915 (16)C14—C151.386 (2)
C4—H4A0.9800C14—H140.9500
C4—H4B0.9800C15—C161.4043 (19)
C4—H4C0.9800C15—H150.9500
C5—H5A0.9800C16—C171.4852 (19)
C5—H5B0.9800C17—C221.3954 (19)
C5—H5C0.9800C17—C181.4046 (18)
C6—H6A0.9800C18—C191.397 (2)
C6—H6B0.9800C19—C201.386 (2)
C6—H6C0.9800C19—H190.9500
C7—C91.535 (2)C20—C211.390 (2)
C7—C81.535 (2)C20—H200.9500
C7—C101.536 (2)C21—C221.386 (2)
C7—P11.8968 (15)C21—H210.9500
C8—H8A0.9800C22—H220.9500
C8—H8B0.9800Pd1—P12.2285 (7)
C8—H8C0.9800Pd1—O12.2109 (12)
C9—H9A0.9800Pd1—O22.1657 (11)
C9—H9B0.9800Pd1—C12.5278 (15)
C9—H9C0.9800Pd1—C181.9686 (15)
C10—H10A0.9800
O1—C1—O2119.91 (13)C7—C10—H10C109.5
O1—C1—C2119.48 (14)H10A—C10—H10C109.5
O2—C1—C2120.60 (14)H10B—C10—H10C109.5
O1—C1—Pd160.99 (8)C12—C11—C16118.63 (13)
O2—C1—Pd158.94 (7)C12—C11—P1122.48 (11)
C2—C1—Pd1177.93 (11)C16—C11—P1118.63 (10)
C1—C2—H2A109.5C13—C12—C11121.54 (14)
C1—C2—H2B109.5C13—C12—H12119.2
H2A—C2—H2B109.5C11—C12—H12119.2
C1—C2—H2C109.5C14—C13—C12119.42 (14)
H2A—C2—H2C109.5C14—C13—H13120.3
H2B—C2—H2C109.5C12—C13—H13120.3
C6—C3—C5110.60 (12)C13—C14—C15119.98 (14)
C6—C3—C4106.92 (12)C13—C14—H14120.0
C5—C3—C4106.87 (12)C15—C14—H14120.0
C6—C3—P1116.78 (10)C14—C15—C16121.43 (14)
C5—C3—P1106.59 (10)C14—C15—H15119.3
C4—C3—P1108.69 (10)C16—C15—H15119.3
C3—C4—H4A109.5C15—C16—C11118.78 (12)
C3—C4—H4B109.5C15—C16—C17117.94 (12)
H4A—C4—H4B109.5C11—C16—C17123.28 (12)
C3—C4—H4C109.5C22—C17—C18119.07 (13)
H4A—C4—H4C109.5C22—C17—C16118.65 (12)
H4B—C4—H4C109.5C18—C17—C16122.27 (12)
C3—C5—H5A109.5C19—C18—C17118.95 (13)
C3—C5—H5B109.5C19—C18—Pd1113.16 (10)
H5A—C5—H5B109.5C17—C18—Pd1127.72 (10)
C3—C5—H5C109.5C20—C19—C18121.12 (14)
H5A—C5—H5C109.5C20—C19—H19119.4
H5B—C5—H5C109.5C18—C19—H19119.4
C3—C6—H6A109.5C19—C20—C21119.95 (14)
C3—C6—H6B109.5C19—C20—H20120.0
H6A—C6—H6B109.5C21—C20—H20120.0
C3—C6—H6C109.5C22—C21—C20119.28 (14)
H6A—C6—H6C109.5C22—C21—H21120.4
H6B—C6—H6C109.5C20—C21—H21120.4
C9—C7—C8110.54 (13)C21—C22—C17121.48 (14)
C9—C7—C10108.38 (13)C21—C22—H22119.3
C8—C7—C10106.90 (13)C17—C22—H22119.3
C9—C7—P1109.94 (10)C1—O1—Pd188.98 (9)
C8—C7—P1110.71 (11)C1—O2—Pd190.88 (9)
C10—C7—P1110.30 (10)C11—P1—C3107.92 (7)
C7—C8—H8A109.5C11—P1—C7106.31 (6)
C7—C8—H8B109.5C3—P1—C7110.33 (7)
H8A—C8—H8B109.5C11—P1—Pd1105.42 (5)
C7—C8—H8C109.5C3—P1—Pd1106.72 (5)
H8A—C8—H8C109.5C7—P1—Pd1119.56 (5)
H8B—C8—H8C109.5P1—Pd1—O1113.61 (3)
C7—C9—H9A109.5P1—Pd1—O2173.58 (3)
C7—C9—H9B109.5P1—Pd1—C1886.37 (4)
H9A—C9—H9B109.5O1—Pd1—O260.19 (4)
C7—C9—H9C109.5O1—Pd1—C18159.59 (5)
H9A—C9—H9C109.5O2—Pd1—C1899.69 (5)
H9B—C9—H9C109.5C18—Pd1—C1129.74 (5)
C7—C10—H10A109.5O2—Pd1—C130.17 (5)
C7—C10—H10B109.5O1—Pd1—C130.03 (4)
H10A—C10—H10B109.5P1—Pd1—C1143.59 (4)
C16—C11—C12—C135.3 (2)C4—C3—P1—C777.17 (11)
P1—C11—C12—C13168.67 (11)C6—C3—P1—Pd1175.16 (10)
C11—C12—C13—C142.1 (2)C5—C3—P1—Pd160.68 (10)
C12—C13—C14—C152.0 (2)C4—C3—P1—Pd154.18 (10)
C13—C14—C15—C162.9 (2)C9—C7—P1—C1140.82 (13)
C14—C15—C16—C110.3 (2)C8—C7—P1—C11163.24 (11)
C14—C15—C16—C17178.63 (13)C10—C7—P1—C1178.65 (11)
C12—C11—C16—C154.31 (19)C9—C7—P1—C375.95 (12)
P1—C11—C16—C15169.90 (10)C8—C7—P1—C346.47 (12)
C12—C11—C16—C17174.56 (12)C10—C7—P1—C3164.59 (10)
P1—C11—C16—C1711.24 (18)C9—C7—P1—Pd1159.80 (9)
C15—C16—C17—C2237.76 (18)C8—C7—P1—Pd177.78 (11)
C11—C16—C17—C22141.12 (14)C10—C7—P1—Pd140.34 (12)
C15—C16—C17—C18143.27 (14)C19—C18—Pd1—O241.41 (11)
C11—C16—C17—C1837.9 (2)C17—C18—Pd1—O2133.73 (12)
C22—C17—C18—C194.0 (2)C19—C18—Pd1—O150.65 (19)
C16—C17—C18—C19177.00 (12)C17—C18—Pd1—O1124.49 (14)
C22—C17—C18—Pd1178.92 (10)C19—C18—Pd1—P1140.72 (10)
C16—C17—C18—Pd12.1 (2)C17—C18—Pd1—P144.15 (12)
C17—C18—C19—C204.0 (2)C19—C18—Pd1—C144.46 (13)
Pd1—C18—C19—C20179.56 (11)C17—C18—Pd1—C1130.67 (12)
C18—C19—C20—C211.0 (2)C1—O2—Pd1—C18175.32 (9)
C19—C20—C21—C221.8 (2)C1—O2—Pd1—O10.98 (8)
C20—C21—C22—C171.7 (2)C1—O1—Pd1—C189.53 (17)
C18—C17—C22—C211.3 (2)C1—O1—Pd1—O20.98 (8)
C16—C17—C22—C21179.71 (13)C1—O1—Pd1—P1177.14 (7)
O2—C1—O1—Pd11.67 (13)C11—P1—Pd1—C1854.30 (6)
C2—C1—O1—Pd1177.69 (13)C3—P1—Pd1—C18168.90 (6)
O1—C1—O2—Pd11.71 (13)C7—P1—Pd1—C1865.13 (7)
C2—C1—O2—Pd1177.65 (13)C11—P1—Pd1—O1121.40 (6)
C12—C11—P1—C320.76 (14)C3—P1—Pd1—O16.80 (6)
C16—C11—P1—C3153.20 (11)C7—P1—Pd1—O1119.17 (7)
C12—C11—P1—C797.61 (13)C11—P1—Pd1—C1118.98 (7)
C16—C11—P1—C788.43 (12)C3—P1—Pd1—C14.39 (8)
C12—C11—P1—Pd1134.52 (11)C7—P1—Pd1—C1121.59 (8)
C16—C11—P1—Pd139.45 (11)O1—C1—Pd1—C18175.69 (8)
C6—C3—P1—C1171.95 (12)O2—C1—Pd1—C186.00 (11)
C5—C3—P1—C1152.21 (11)O1—C1—Pd1—O2178.31 (13)
C4—C3—P1—C11167.07 (10)O2—C1—Pd1—O1178.31 (13)
C6—C3—P1—C743.81 (13)O1—C1—Pd1—P14.42 (11)
C5—C3—P1—C7167.97 (9)O2—C1—Pd1—P1177.27 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O10.982.253.169 (2)156

Experimental details

Crystal data
Chemical formula[Pd(C2H3O2)(C20H26P)]
Mr462.82
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.800 (3), 14.2392 (4), 14.7772 (5)
V3)2062.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.25 × 0.19 × 0.14
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(AXSCALE; Bruker, 2010)
Tmin, Tmax0.790, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
24048, 5179, 5077
Rint0.018
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.034, 1.06
No. of reflections5179
No. of parameters243
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.19
Absolute structureNd

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Pd1—P12.2285 (7)Pd1—O22.1657 (11)
Pd1—O12.2109 (12)Pd1—C181.9686 (15)
P1—Pd1—O1113.61 (3)O1—Pd1—O260.19 (4)
P1—Pd1—O2173.58 (3)O1—Pd1—C18159.59 (5)
P1—Pd1—C1886.37 (4)O2—Pd1—C1899.69 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O10.982.253.169 (2)156
 

Acknowledgements

The authors acknowledge the University of Johannesburg for the use of their facilities and for funding this project.

References

First citationBlerk, C. van & Holzapfel, C. W. (2009). Acta Cryst. E65, m1536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2010). APEX2, AXSCALE and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOrmondi, B., Shaw, M. L. & Holzapfel, C. W. (2011). J. Organomet. Chem. 696, 3091–3096.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560–563.  Web of Science CrossRef CAS Google Scholar
First citationZim, D. & Buchwald, S. L. (2005). Org. Lett. 5, 2413–2415.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds