metal-organic compounds
(2,9-Dimethyl-1,10-phenanthroline-κ2N,N′)bis(thiocyanato-κS)mercury(II)
aDepartment of Chemistry, College of Science, King Saud University, PO Box 2455 Riyadh 11451, Saudi Arabia, bLaboratoire LCM, Faculté Sciences, Université Mohammed Ier, Oujda 60000, Morocco, cLCAE–URAC18, Faculté des Sciences, Université Mohammed Ier, Oujda 60000, Morocco, and dDepartment of Chemistry, The University of Jordan, Amman 11942, Jordan
*Correspondence e-mail: hadsal2003@yahoo.com
The 2(C14H12N2)], contains two complex molecules in which the HgII atoms are both four-coordinated in a distorted tetrahedral configuration by two N atoms from a chelating 2,9-dimethyl-1,10-phenanthroline ligand and by two S atoms from two thiocyanate anions. The 1,10-phenanthroline ligand is slightly folded for one complex, the dihedral angle between the pyridine planes being 5.3 (1)°. In contrast it is nearly planar [0.5 (1)°] as it complexes with the other HgII atom. The thiocyanate ligands are virtually linear and the S atom is bonded to HgII with N⋯S—Hg angles ranging from 99.3 (1) to 103.5 (1)°. Despite the presence of six aromatic rings in the there are no significant intermolecular π–π contacts between phenanthroline ligands as the centroid–centroid distance of the closest contact between six-membered rings is 4.11 (1) A°.
of the title compound, [Hg(SCN)Related literature
For the coordination geometry of other complexes with C14H12N2, see: Alizadeh et al. (2009); Wang & Zhong (2009); Warad et al. (2011). For therapeutic applications of similar compounds, see: Miller et al. (1999); Lange et al. (2000); Bodoki et al. (2009).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536812038160/vn2049sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812038160/vn2049Isup2.hkl
The title compound was prepared by a procedure similar to that used for [CdI2(dmphen)] (Warad et al., 2011). A mixture of mercury thiosyanode (Hg(SCN)2, 50 mg, 0.16 mmol) in methanol (10 ml) and dmphen (32.8 mg, 0.16 mmol) in dichloromethane (5 ml) is stirred for 2 h at room temperature. The obtained solution was concentrated to about 1 ml under reduced pressure and mixed to 40 ml of n-hexane. This caused the precipitation of a white powder of 75 mg, (90% yield) which was filtered, dried and used for the preparation of colorless prisms of [Hg(SCN)2(dmphen)] by slow diffusion of n-hexane into a solution of the complex in dichloromethane. All chemicals were purchased from Acros/Belgium.
All nonhydrogen atoms were refined anisotropically. H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) except for methyl groups where Uiso(H)= 1.5Ueq(C).
Transition metal complexes using 1,10-phenanthroline (phen) and their modified derivatives as ligands are particularly attractive species for the design and development of novel diagnostic and therapeutic agents, that can recognize and selectively cleave DNA (Miller et al., 1999; Bodoki et al., 2009). The reaction of Hg(SCN)2, with dmphen = 2,9-dimethyl-1,10-phenanthroline ligand yields Hg(SCN)2(dmphen) mixed ligand complexes. The number of ligands bound to the metal cation is influenced greatly by both the chemistry and geometry of ligand and the type of co-ligand SCN (Lange et al., 2000). Here we report the synthesis and
of a new HgII complex, [Hg(SCN)2(dmphen)].The molecular structure of Hg(SCN)2(dmphen), along with the numbering scheme, is shown in Fig. 1. The two HgII cations are located on general positions and coordinated to two nitrogen atoms of one dmphen bidentate ligand and two SCN ions. A similar coordination geometry around the central atom has been observed in other metal complexes involving the same dmphen ligand such as [HgBr2(dmphen)] (Alizadeh et al., 2009), [CuCl2(dmphen)] (Wang & Zhong, 2009), [CdI2(dmphen)] (Warad et al., 2011), and [CdBr2(dmphen)] (Warad et al., 2011).
One of the two 2,9-dimethyl-1,10-phenanthroline ligands, the one bonded to Hg1, is folded by 5.3 (1)° while the other bonded to Hg2 is planar. Such conjugate double bond systems are expected to be planar. The probable reason comes from packing considerations. The soft Hg bonds to the soft S atom of SCN- as expected. the variations in the approach angle, 99.3 (1) to 103.5 (1)° should also be attributed to packing considerations.
For the coordination geometry of other complexes with C14H12N2, see: Alizadeh et al. (2009); Wang & Zhong (2009); Warad et al. (2011). For therapeutic applications of similar compounds, see: Miller et al. (1999); Lange et al. (2000); Bodoki et al. (2009).
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as spheres of arbitary radius. |
[Hg(NCS)2(C14H12N2)] | Z = 4 |
Mr = 525.01 | F(000) = 992 |
Triclinic, P1 | Dx = 2.059 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1593 (4) Å | Cell parameters from 5117 reflections |
b = 11.2985 (5) Å | θ = 3.1–29.2° |
c = 18.9456 (9) Å | µ = 9.34 mm−1 |
α = 77.205 (4)° | T = 293 K |
β = 84.015 (4)° | Parallelpiped, colourless |
γ = 89.802 (4)° | 0.4 × 0.2 × 0.15 mm |
V = 1693.55 (14) Å3 |
Agilent Xcalibur Eos diffractometer | 5985 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 4876 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 16.0534 pixels mm-1 | θmax = 25.0°, θmin = 3.1° |
ω scans | h = −9→5 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −13→13 |
Tmin = 0.122, Tmax = 0.246 | l = −22→22 |
11206 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0191P)2] where P = (Fo2 + 2Fc2)/3 |
5985 reflections | (Δ/σ)max < 0.001 |
419 parameters | Δρmax = 0.65 e Å−3 |
0 restraints | Δρmin = −1.13 e Å−3 |
[Hg(NCS)2(C14H12N2)] | γ = 89.802 (4)° |
Mr = 525.01 | V = 1693.55 (14) Å3 |
Triclinic, P1 | Z = 4 |
a = 8.1593 (4) Å | Mo Kα radiation |
b = 11.2985 (5) Å | µ = 9.34 mm−1 |
c = 18.9456 (9) Å | T = 293 K |
α = 77.205 (4)° | 0.4 × 0.2 × 0.15 mm |
β = 84.015 (4)° |
Agilent Xcalibur Eos diffractometer | 5985 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 4876 reflections with I > 2σ(I) |
Tmin = 0.122, Tmax = 0.246 | Rint = 0.041 |
11206 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.65 e Å−3 |
5985 reflections | Δρmin = −1.13 e Å−3 |
419 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Hg1 | 0.18189 (3) | 0.13738 (2) | 0.159189 (11) | 0.04673 (8) | |
Hg2 | 0.39752 (3) | 0.29806 (2) | 0.364029 (11) | 0.05009 (8) | |
S3 | 0.1361 (2) | 0.30784 (17) | 0.30774 (8) | 0.0606 (5) | |
S4 | 0.6423 (2) | 0.18246 (17) | 0.35203 (10) | 0.0698 (5) | |
S1 | 0.0329 (2) | −0.00199 (18) | 0.26099 (8) | 0.0716 (6) | |
S2 | 0.3866 (2) | 0.30366 (18) | 0.13101 (10) | 0.0722 (6) | |
N5 | 0.4455 (5) | 0.5081 (4) | 0.3585 (2) | 0.0404 (11) | |
N6 | 0.2922 (6) | 0.3419 (4) | 0.4762 (2) | 0.0447 (12) | |
N2 | 0.0222 (5) | 0.2220 (4) | 0.0616 (2) | 0.0322 (10) | |
N1 | 0.2267 (5) | 0.0263 (4) | 0.0651 (2) | 0.0310 (10) | |
C11 | 0.1771 (6) | 0.0853 (4) | −0.0005 (2) | 0.0290 (11) | |
C28 | 0.2868 (7) | 0.4619 (6) | 0.4772 (3) | 0.0436 (14) | |
C10 | −0.0780 (7) | 0.3145 (5) | 0.0613 (3) | 0.0403 (13) | |
C12 | 0.0728 (6) | 0.1882 (4) | −0.0015 (2) | 0.0302 (11) | |
C7 | 0.0207 (6) | 0.2508 (5) | −0.0687 (3) | 0.0370 (13) | |
C27 | 0.3688 (7) | 0.5490 (5) | 0.4153 (3) | 0.0411 (14) | |
N4 | 0.3853 (7) | 0.3735 (5) | −0.0213 (3) | 0.0690 (16) | |
C17 | 0.5215 (7) | 0.5864 (6) | 0.3020 (3) | 0.0513 (16) | |
C1 | 0.3147 (6) | −0.0736 (5) | 0.0678 (3) | 0.0387 (13) | |
C16 | 0.3852 (7) | 0.3451 (5) | 0.0410 (4) | 0.0497 (15) | |
C4 | 0.2219 (6) | 0.0459 (5) | −0.0656 (3) | 0.0376 (13) | |
C3 | 0.3154 (6) | −0.0589 (5) | −0.0603 (3) | 0.0438 (14) | |
H3A | 0.3468 | −0.0883 | −0.1017 | 0.053* | |
C23 | 0.2056 (8) | 0.5034 (6) | 0.5351 (3) | 0.0526 (16) | |
C2 | 0.3609 (6) | −0.1184 (5) | 0.0055 (3) | 0.0486 (15) | |
H2A | 0.4224 | −0.1885 | 0.0089 | 0.058* | |
C8 | −0.0848 (7) | 0.3477 (5) | −0.0666 (3) | 0.0479 (15) | |
H8A | −0.1211 | 0.3912 | −0.1096 | 0.057* | |
C6 | 0.0741 (7) | 0.2105 (6) | −0.1336 (3) | 0.0464 (15) | |
H6A | 0.0423 | 0.2528 | −0.1779 | 0.056* | |
C5 | 0.1695 (7) | 0.1125 (6) | −0.1319 (3) | 0.0461 (15) | |
H5A | 0.2016 | 0.0880 | −0.1750 | 0.055* | |
C9 | −0.1353 (7) | 0.3796 (5) | −0.0029 (3) | 0.0490 (15) | |
H9A | −0.2068 | 0.4437 | −0.0019 | 0.059* | |
C19 | 0.4423 (8) | 0.7529 (6) | 0.3558 (4) | 0.0645 (19) | |
H19A | 0.4405 | 0.8359 | 0.3538 | 0.077* | |
C15 | 0.1360 (8) | 0.0123 (6) | 0.3288 (3) | 0.0556 (17) | |
C14 | −0.1309 (7) | 0.3473 (5) | 0.1335 (3) | 0.0568 (17) | |
H14A | −0.1896 | 0.2797 | 0.1658 | 0.085* | |
H14B | −0.2014 | 0.4162 | 0.1258 | 0.085* | |
H14C | −0.0353 | 0.3668 | 0.1546 | 0.085* | |
C20 | 0.3639 (7) | 0.6725 (6) | 0.4161 (3) | 0.0488 (15) | |
N8 | 0.5652 (8) | 0.0478 (6) | 0.2516 (3) | 0.0817 (19) | |
C18 | 0.5223 (8) | 0.7107 (6) | 0.2993 (3) | 0.0613 (18) | |
H18A | 0.5765 | 0.7646 | 0.2594 | 0.074* | |
C31 | 0.1355 (8) | 0.4561 (8) | 0.2732 (3) | 0.0620 (19) | |
C13 | 0.3626 (7) | −0.1385 (5) | 0.1401 (3) | 0.0534 (16) | |
H13A | 0.4021 | −0.0807 | 0.1649 | 0.080* | |
H13B | 0.4481 | −0.1947 | 0.1331 | 0.080* | |
H13C | 0.2685 | −0.1819 | 0.1687 | 0.080* | |
C32 | 0.5939 (8) | 0.1038 (6) | 0.2922 (3) | 0.0562 (16) | |
C26 | 0.2191 (8) | 0.2611 (6) | 0.5327 (3) | 0.0579 (18) | |
N3 | 0.2032 (8) | 0.0173 (6) | 0.3789 (3) | 0.084 (2) | |
N7 | 0.1302 (8) | 0.5602 (6) | 0.2495 (3) | 0.084 (2) | |
C29 | 0.6022 (9) | 0.5361 (6) | 0.2401 (3) | 0.075 (2) | |
H29A | 0.6589 | 0.4633 | 0.2591 | 0.112* | |
H29B | 0.6795 | 0.5950 | 0.2103 | 0.112* | |
H29C | 0.5195 | 0.5179 | 0.2113 | 0.112* | |
C22 | 0.2020 (9) | 0.6313 (7) | 0.5327 (4) | 0.070 (2) | |
H22A | 0.1451 | 0.6589 | 0.5709 | 0.085* | |
C21 | 0.2791 (9) | 0.7110 (7) | 0.4766 (4) | 0.068 (2) | |
H21A | 0.2775 | 0.7932 | 0.4769 | 0.082* | |
C25 | 0.1346 (9) | 0.2991 (7) | 0.5926 (3) | 0.072 (2) | |
H25A | 0.0827 | 0.2419 | 0.6315 | 0.086* | |
C24 | 0.1290 (7) | 0.4172 (5) | 0.5935 (2) | 0.069 (2) | |
H24A | 0.0740 | 0.4419 | 0.6332 | 0.082* | |
C30 | 0.2305 (7) | 0.1283 (5) | 0.5324 (2) | 0.096 (3) | |
H30A | 0.1531 | 0.1078 | 0.5019 | 0.144* | |
H30B | 0.2055 | 0.0810 | 0.5811 | 0.144* | |
H30C | 0.3400 | 0.1112 | 0.5140 | 0.144* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Hg1 | 0.05436 (16) | 0.04869 (16) | 0.03648 (13) | 0.00370 (12) | −0.00277 (11) | −0.00905 (11) |
Hg2 | 0.05948 (17) | 0.04426 (16) | 0.04687 (14) | 0.01347 (12) | −0.00141 (12) | −0.01299 (11) |
S3 | 0.0617 (11) | 0.0717 (13) | 0.0550 (9) | 0.0052 (9) | −0.0130 (9) | −0.0248 (9) |
S4 | 0.0627 (12) | 0.0703 (13) | 0.0932 (12) | 0.0275 (9) | −0.0289 (10) | −0.0448 (11) |
S1 | 0.0765 (13) | 0.0860 (14) | 0.0467 (9) | −0.0330 (11) | −0.0061 (9) | −0.0024 (9) |
S2 | 0.0691 (12) | 0.0768 (14) | 0.0767 (12) | −0.0223 (10) | −0.0121 (10) | −0.0277 (10) |
N5 | 0.046 (3) | 0.040 (3) | 0.036 (2) | 0.006 (2) | −0.005 (2) | −0.009 (2) |
N6 | 0.055 (3) | 0.051 (3) | 0.029 (2) | 0.001 (3) | −0.006 (2) | −0.009 (2) |
N2 | 0.026 (2) | 0.032 (3) | 0.040 (2) | 0.0019 (19) | 0.0036 (19) | −0.014 (2) |
N1 | 0.024 (2) | 0.025 (2) | 0.042 (2) | 0.0009 (19) | −0.001 (2) | −0.005 (2) |
C11 | 0.022 (3) | 0.028 (3) | 0.037 (3) | −0.004 (2) | 0.006 (2) | −0.010 (2) |
C28 | 0.040 (3) | 0.056 (4) | 0.040 (3) | 0.009 (3) | −0.017 (3) | −0.017 (3) |
C10 | 0.034 (3) | 0.039 (3) | 0.054 (3) | 0.002 (3) | −0.003 (3) | −0.023 (3) |
C12 | 0.024 (3) | 0.031 (3) | 0.037 (3) | −0.002 (2) | 0.000 (2) | −0.012 (2) |
C7 | 0.029 (3) | 0.038 (3) | 0.041 (3) | −0.004 (2) | −0.003 (3) | −0.005 (3) |
C27 | 0.045 (4) | 0.040 (4) | 0.041 (3) | 0.008 (3) | −0.012 (3) | −0.010 (3) |
N4 | 0.059 (4) | 0.055 (4) | 0.085 (4) | 0.006 (3) | 0.010 (4) | −0.006 (3) |
C17 | 0.050 (4) | 0.052 (4) | 0.050 (3) | −0.002 (3) | −0.002 (3) | −0.007 (3) |
C1 | 0.020 (3) | 0.034 (3) | 0.057 (3) | −0.003 (2) | 0.003 (3) | −0.003 (3) |
C16 | 0.031 (3) | 0.039 (4) | 0.081 (4) | 0.008 (3) | 0.005 (3) | −0.022 (4) |
C4 | 0.026 (3) | 0.045 (4) | 0.045 (3) | −0.010 (3) | 0.008 (2) | −0.022 (3) |
C3 | 0.032 (3) | 0.044 (4) | 0.061 (4) | −0.007 (3) | 0.010 (3) | −0.030 (3) |
C23 | 0.052 (4) | 0.072 (5) | 0.042 (3) | 0.010 (3) | −0.010 (3) | −0.028 (3) |
C2 | 0.031 (3) | 0.041 (4) | 0.078 (4) | 0.008 (3) | 0.009 (3) | −0.030 (3) |
C8 | 0.042 (4) | 0.045 (4) | 0.054 (3) | 0.002 (3) | −0.014 (3) | 0.000 (3) |
C6 | 0.041 (4) | 0.067 (5) | 0.029 (3) | −0.010 (3) | −0.003 (3) | −0.005 (3) |
C5 | 0.037 (3) | 0.067 (5) | 0.038 (3) | −0.013 (3) | 0.007 (3) | −0.024 (3) |
C9 | 0.041 (4) | 0.039 (4) | 0.070 (4) | 0.009 (3) | −0.013 (3) | −0.015 (3) |
C19 | 0.080 (5) | 0.040 (4) | 0.077 (5) | 0.000 (4) | −0.028 (4) | −0.012 (4) |
C15 | 0.065 (4) | 0.049 (4) | 0.047 (3) | 0.000 (3) | 0.012 (3) | −0.006 (3) |
C14 | 0.057 (4) | 0.052 (4) | 0.069 (4) | 0.020 (3) | −0.005 (3) | −0.029 (3) |
C20 | 0.049 (4) | 0.047 (4) | 0.057 (4) | 0.008 (3) | −0.020 (3) | −0.018 (3) |
N8 | 0.095 (5) | 0.076 (5) | 0.081 (4) | 0.003 (4) | 0.010 (4) | −0.041 (4) |
C18 | 0.074 (5) | 0.047 (4) | 0.057 (4) | −0.008 (4) | −0.013 (4) | 0.004 (3) |
C31 | 0.057 (4) | 0.098 (6) | 0.036 (3) | 0.025 (4) | −0.016 (3) | −0.021 (4) |
C13 | 0.041 (4) | 0.044 (4) | 0.073 (4) | 0.009 (3) | −0.008 (3) | −0.007 (3) |
C32 | 0.060 (4) | 0.044 (4) | 0.060 (4) | 0.012 (3) | 0.012 (3) | −0.011 (3) |
C26 | 0.064 (4) | 0.068 (5) | 0.038 (3) | −0.006 (4) | −0.006 (3) | −0.005 (3) |
N3 | 0.108 (5) | 0.088 (5) | 0.057 (3) | −0.006 (4) | −0.021 (4) | −0.013 (3) |
N7 | 0.113 (6) | 0.076 (5) | 0.062 (4) | 0.042 (4) | −0.023 (4) | −0.009 (4) |
C29 | 0.090 (6) | 0.070 (5) | 0.055 (4) | −0.005 (4) | 0.021 (4) | −0.007 (4) |
C22 | 0.073 (5) | 0.088 (6) | 0.069 (4) | 0.022 (4) | −0.016 (4) | −0.051 (4) |
C21 | 0.079 (5) | 0.062 (5) | 0.079 (5) | 0.016 (4) | −0.026 (4) | −0.043 (4) |
C25 | 0.083 (5) | 0.094 (6) | 0.033 (3) | −0.009 (5) | 0.004 (3) | −0.007 (4) |
C24 | 0.070 (5) | 0.099 (6) | 0.042 (4) | 0.004 (4) | 0.002 (3) | −0.029 (4) |
C30 | 0.154 (9) | 0.067 (6) | 0.053 (4) | −0.017 (6) | 0.011 (5) | 0.004 (4) |
Hg1—N1 | 2.396 (4) | C3—H3A | 0.9300 |
Hg1—N2 | 2.395 (4) | C23—C24 | 1.395 (7) |
Hg1—S1 | 2.4201 (16) | C23—C22 | 1.436 (9) |
Hg1—S2 | 2.4488 (16) | C2—H2A | 0.9300 |
Hg2—N5 | 2.384 (4) | C8—C9 | 1.359 (7) |
Hg2—N6 | 2.362 (4) | C8—H8A | 0.9300 |
Hg2—S3 | 2.4741 (16) | C6—C5 | 1.348 (8) |
Hg2—S4 | 2.4013 (18) | C6—H6A | 0.9300 |
S3—C31 | 1.658 (8) | C5—H5A | 0.9300 |
S4—C32 | 1.666 (7) | C9—H9A | 0.9300 |
S1—C15 | 1.644 (7) | C19—C18 | 1.371 (9) |
S2—C16 | 1.666 (7) | C19—C20 | 1.390 (8) |
N5—C17 | 1.327 (7) | C19—H19A | 0.9300 |
N5—C27 | 1.357 (6) | C15—N3 | 1.156 (7) |
N6—C26 | 1.332 (7) | C14—H14A | 0.9600 |
N6—C28 | 1.361 (7) | C14—H14B | 0.9600 |
N2—C10 | 1.324 (7) | C14—H14C | 0.9600 |
N2—C12 | 1.360 (6) | C20—C21 | 1.426 (8) |
N1—C1 | 1.330 (7) | N8—C32 | 1.140 (7) |
N1—C11 | 1.374 (6) | C18—H18A | 0.9300 |
C11—C4 | 1.413 (6) | C31—N7 | 1.164 (8) |
C11—C12 | 1.436 (7) | C13—H13A | 0.9600 |
C28—C23 | 1.392 (8) | C13—H13B | 0.9600 |
C28—C27 | 1.455 (7) | C13—H13C | 0.9600 |
C10—C9 | 1.400 (7) | C26—C25 | 1.415 (9) |
C10—C14 | 1.514 (7) | C26—C30 | 1.504 (8) |
C12—C7 | 1.418 (6) | C29—H29A | 0.9600 |
C7—C8 | 1.395 (8) | C29—H29B | 0.9600 |
C7—C6 | 1.430 (7) | C29—H29C | 0.9600 |
C27—C20 | 1.400 (7) | C22—C21 | 1.333 (9) |
N4—C16 | 1.154 (7) | C22—H22A | 0.9300 |
C17—C18 | 1.394 (8) | C21—H21A | 0.9300 |
C17—C29 | 1.504 (8) | C25—C24 | 1.339 (8) |
C1—C2 | 1.401 (7) | C25—H25A | 0.9300 |
C1—C13 | 1.493 (7) | C24—H24A | 0.9300 |
C4—C3 | 1.397 (8) | C30—H30A | 0.9600 |
C4—C5 | 1.421 (7) | C30—H30B | 0.9600 |
C3—C2 | 1.366 (7) | C30—H30C | 0.9600 |
N2—Hg1—N1 | 70.31 (13) | C1—C2—H2A | 120.0 |
N2—Hg1—S1 | 115.08 (10) | C9—C8—C7 | 121.1 (5) |
N1—Hg1—S1 | 105.19 (10) | C9—C8—H8A | 119.4 |
N2—Hg1—S2 | 95.17 (10) | C7—C8—H8A | 119.4 |
N1—Hg1—S2 | 107.09 (10) | C5—C6—C7 | 121.3 (5) |
S1—Hg1—S2 | 141.59 (6) | C5—C6—H6A | 119.4 |
N6—Hg2—N5 | 71.23 (15) | C7—C6—H6A | 119.4 |
N6—Hg2—S4 | 122.12 (12) | C6—C5—C4 | 121.2 (5) |
N5—Hg2—S4 | 114.77 (12) | C6—C5—H5A | 119.4 |
N6—Hg2—S3 | 98.11 (12) | C4—C5—H5A | 119.4 |
N5—Hg2—S3 | 100.38 (11) | C8—C9—C10 | 118.9 (6) |
S4—Hg2—S3 | 132.60 (6) | C8—C9—H9A | 120.6 |
C31—S3—Hg2 | 98.6 (2) | C10—C9—H9A | 120.6 |
C32—S4—Hg2 | 101.1 (2) | C18—C19—C20 | 120.5 (6) |
C15—S1—Hg1 | 101.9 (2) | C18—C19—H19A | 119.8 |
C16—S2—Hg1 | 100.0 (2) | C20—C19—H19A | 119.8 |
C17—N5—C27 | 119.7 (5) | N3—C15—S1 | 176.3 (6) |
C17—N5—Hg2 | 125.3 (4) | C10—C14—H14A | 109.5 |
C27—N5—Hg2 | 114.4 (3) | C10—C14—H14B | 109.5 |
C26—N6—C28 | 119.2 (5) | H14A—C14—H14B | 109.5 |
C26—N6—Hg2 | 124.8 (4) | C10—C14—H14C | 109.5 |
C28—N6—Hg2 | 115.3 (4) | H14A—C14—H14C | 109.5 |
C10—N2—C12 | 120.1 (4) | H14B—C14—H14C | 109.5 |
C10—N2—Hg1 | 124.5 (3) | C19—C20—C27 | 117.0 (6) |
C12—N2—Hg1 | 113.5 (3) | C19—C20—C21 | 123.0 (6) |
C1—N1—C11 | 118.9 (4) | C27—C20—C21 | 120.0 (6) |
C1—N1—Hg1 | 126.2 (3) | C19—C18—C17 | 119.4 (6) |
C11—N1—Hg1 | 114.1 (3) | C19—C18—H18A | 120.3 |
N1—C11—C4 | 122.1 (5) | C17—C18—H18A | 120.3 |
N1—C11—C12 | 118.1 (4) | N7—C31—S3 | 178.0 (7) |
C4—C11—C12 | 119.8 (5) | C1—C13—H13A | 109.5 |
N6—C28—C23 | 122.1 (6) | C1—C13—H13B | 109.5 |
N6—C28—C27 | 118.4 (5) | H13A—C13—H13B | 109.5 |
C23—C28—C27 | 119.4 (6) | C1—C13—H13C | 109.5 |
N2—C10—C9 | 121.8 (5) | H13A—C13—H13C | 109.5 |
N2—C10—C14 | 117.6 (5) | H13B—C13—H13C | 109.5 |
C9—C10—C14 | 120.6 (5) | N8—C32—S4 | 177.9 (7) |
N2—C12—C7 | 121.1 (5) | N6—C26—C25 | 120.7 (6) |
N2—C12—C11 | 119.8 (4) | N6—C26—C30 | 118.9 (5) |
C7—C12—C11 | 119.0 (4) | C25—C26—C30 | 120.4 (6) |
C8—C7—C12 | 117.0 (5) | C17—C29—H29A | 109.5 |
C8—C7—C6 | 123.7 (5) | C17—C29—H29B | 109.5 |
C12—C7—C6 | 119.3 (5) | H29A—C29—H29B | 109.5 |
N5—C27—C20 | 122.2 (5) | C17—C29—H29C | 109.5 |
N5—C27—C28 | 119.1 (5) | H29A—C29—H29C | 109.5 |
C20—C27—C28 | 118.7 (5) | H29B—C29—H29C | 109.5 |
N5—C17—C18 | 121.1 (6) | C21—C22—C23 | 120.9 (6) |
N5—C17—C29 | 117.4 (6) | C21—C22—H22A | 119.5 |
C18—C17—C29 | 121.5 (6) | C23—C22—H22A | 119.5 |
N1—C1—C2 | 121.7 (5) | C22—C21—C20 | 121.2 (6) |
N1—C1—C13 | 118.0 (5) | C22—C21—H21A | 119.4 |
C2—C1—C13 | 120.4 (5) | C20—C21—H21A | 119.4 |
N4—C16—S2 | 179.5 (6) | C24—C25—C26 | 120.1 (6) |
C3—C4—C11 | 117.1 (5) | C24—C25—H25A | 119.9 |
C3—C4—C5 | 123.5 (5) | C26—C25—H25A | 119.9 |
C11—C4—C5 | 119.4 (5) | C25—C24—C23 | 120.1 (5) |
C2—C3—C4 | 120.2 (5) | C25—C24—H24A | 119.9 |
C2—C3—H3A | 119.9 | C23—C24—H24A | 119.9 |
C4—C3—H3A | 119.9 | C26—C30—H30A | 109.5 |
C28—C23—C24 | 117.7 (6) | C26—C30—H30B | 109.5 |
C28—C23—C22 | 119.7 (6) | H30A—C30—H30B | 109.5 |
C24—C23—C22 | 122.5 (6) | C26—C30—H30C | 109.5 |
C3—C2—C1 | 120.0 (5) | H30A—C30—H30C | 109.5 |
C3—C2—H2A | 120.0 | H30B—C30—H30C | 109.5 |
N6—Hg2—S3—C31 | 85.6 (3) | Hg2—N5—C27—C28 | 8.4 (6) |
N5—Hg2—S3—C31 | 13.3 (2) | N6—C28—C27—N5 | 0.9 (7) |
S4—Hg2—S3—C31 | −125.1 (2) | C23—C28—C27—N5 | −179.0 (5) |
N6—Hg2—S4—C32 | 143.6 (3) | N6—C28—C27—C20 | −179.9 (5) |
N5—Hg2—S4—C32 | −133.8 (2) | C23—C28—C27—C20 | 0.2 (8) |
S3—Hg2—S4—C32 | 0.2 (3) | C27—N5—C17—C18 | −0.9 (8) |
N2—Hg1—S1—C15 | −152.7 (3) | Hg2—N5—C17—C18 | 170.2 (4) |
N1—Hg1—S1—C15 | 132.3 (3) | C27—N5—C17—C29 | −179.0 (5) |
S2—Hg1—S1—C15 | −14.0 (3) | Hg2—N5—C17—C29 | −8.0 (7) |
N2—Hg1—S2—C16 | −31.0 (2) | C11—N1—C1—C2 | 1.5 (7) |
N1—Hg1—S2—C16 | 40.0 (2) | Hg1—N1—C1—C2 | −167.2 (3) |
S1—Hg1—S2—C16 | −174.1 (2) | C11—N1—C1—C13 | −178.0 (4) |
N6—Hg2—N5—C17 | 179.0 (5) | Hg1—N1—C1—C13 | 13.4 (6) |
S4—Hg2—N5—C17 | 61.5 (5) | Hg1—S2—C16—N4 | −115 (83) |
S3—Hg2—N5—C17 | −85.9 (4) | N1—C11—C4—C3 | 2.0 (7) |
N6—Hg2—N5—C27 | −9.6 (3) | C12—C11—C4—C3 | −176.3 (4) |
S4—Hg2—N5—C27 | −127.1 (3) | N1—C11—C4—C5 | −178.6 (4) |
S3—Hg2—N5—C27 | 85.5 (4) | C12—C11—C4—C5 | 3.1 (7) |
N5—Hg2—N6—C26 | −179.7 (5) | C11—C4—C3—C2 | −0.5 (7) |
S4—Hg2—N6—C26 | −71.7 (5) | C5—C4—C3—C2 | −179.8 (5) |
S3—Hg2—N6—C26 | 82.0 (5) | N6—C28—C23—C24 | 0.3 (8) |
N5—Hg2—N6—C28 | 10.1 (3) | C27—C28—C23—C24 | −179.8 (5) |
S4—Hg2—N6—C28 | 118.1 (4) | N6—C28—C23—C22 | −179.1 (5) |
S3—Hg2—N6—C28 | −88.1 (4) | C27—C28—C23—C22 | 0.8 (8) |
N1—Hg1—N2—C10 | 178.6 (4) | C4—C3—C2—C1 | −0.5 (8) |
S1—Hg1—N2—C10 | 80.6 (4) | N1—C1—C2—C3 | 0.0 (8) |
S2—Hg1—N2—C10 | −75.1 (4) | C13—C1—C2—C3 | 179.5 (5) |
N1—Hg1—N2—C12 | −17.2 (3) | C12—C7—C8—C9 | −0.3 (7) |
S1—Hg1—N2—C12 | −115.2 (3) | C6—C7—C8—C9 | 178.0 (5) |
S2—Hg1—N2—C12 | 89.1 (3) | C8—C7—C6—C5 | −176.6 (5) |
N2—Hg1—N1—C1 | −174.6 (4) | C12—C7—C6—C5 | 1.7 (8) |
S1—Hg1—N1—C1 | −62.9 (4) | C7—C6—C5—C4 | −0.5 (8) |
S2—Hg1—N1—C1 | 96.0 (4) | C3—C4—C5—C6 | 177.5 (5) |
N2—Hg1—N1—C11 | 16.3 (3) | C11—C4—C5—C6 | −1.9 (8) |
S1—Hg1—N1—C11 | 128.0 (3) | C7—C8—C9—C10 | 0.9 (8) |
S2—Hg1—N1—C11 | −73.1 (3) | N2—C10—C9—C8 | −0.9 (8) |
C1—N1—C11—C4 | −2.5 (6) | C14—C10—C9—C8 | 179.8 (5) |
Hg1—N1—C11—C4 | 167.4 (3) | Hg1—S1—C15—N3 | −175 (11) |
C1—N1—C11—C12 | 175.8 (4) | C18—C19—C20—C27 | −1.0 (9) |
Hg1—N1—C11—C12 | −14.2 (5) | C18—C19—C20—C21 | 179.9 (6) |
C26—N6—C28—C23 | −0.7 (8) | N5—C27—C20—C19 | −0.3 (8) |
Hg2—N6—C28—C23 | 170.0 (4) | C28—C27—C20—C19 | −179.4 (5) |
C26—N6—C28—C27 | 179.4 (5) | N5—C27—C20—C21 | 178.9 (5) |
Hg2—N6—C28—C27 | −9.9 (6) | C28—C27—C20—C21 | −0.3 (8) |
C12—N2—C10—C9 | 0.3 (7) | C20—C19—C18—C17 | 1.3 (10) |
Hg1—N2—C10—C9 | 163.5 (4) | N5—C17—C18—C19 | −0.4 (9) |
C12—N2—C10—C14 | 179.6 (4) | C29—C17—C18—C19 | 177.7 (6) |
Hg1—N2—C10—C14 | −17.2 (6) | Hg2—S3—C31—N7 | −141 (17) |
C10—N2—C12—C7 | 0.3 (7) | Hg2—S4—C32—N8 | −172 (17) |
Hg1—N2—C12—C7 | −164.7 (3) | C28—N6—C26—C25 | 0.9 (9) |
C10—N2—C12—C11 | −177.9 (4) | Hg2—N6—C26—C25 | −168.9 (5) |
Hg1—N2—C12—C11 | 17.1 (5) | C28—N6—C26—C30 | −177.9 (5) |
N1—C11—C12—N2 | −2.1 (6) | Hg2—N6—C26—C30 | 12.3 (7) |
C4—C11—C12—N2 | 176.3 (4) | C28—C23—C22—C21 | −1.8 (10) |
N1—C11—C12—C7 | 179.7 (4) | C24—C23—C22—C21 | 178.8 (6) |
C4—C11—C12—C7 | −1.9 (7) | C23—C22—C21—C20 | 1.7 (10) |
N2—C12—C7—C8 | −0.3 (7) | C19—C20—C21—C22 | 178.4 (6) |
C11—C12—C7—C8 | 178.0 (4) | C27—C20—C21—C22 | −0.7 (10) |
N2—C12—C7—C6 | −178.7 (4) | N6—C26—C25—C24 | −0.8 (10) |
C11—C12—C7—C6 | −0.4 (7) | C30—C26—C25—C24 | 178.0 (7) |
C17—N5—C27—C20 | 1.2 (8) | C26—C25—C24—C23 | 0.4 (10) |
Hg2—N5—C27—C20 | −170.8 (4) | C28—C23—C24—C25 | −0.2 (9) |
C17—N5—C27—C28 | −179.6 (5) | C22—C23—C24—C25 | 179.3 (6) |
Experimental details
Crystal data | |
Chemical formula | [Hg(NCS)2(C14H12N2)] |
Mr | 525.01 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.1593 (4), 11.2985 (5), 18.9456 (9) |
α, β, γ (°) | 77.205 (4), 84.015 (4), 89.802 (4) |
V (Å3) | 1693.55 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 9.34 |
Crystal size (mm) | 0.4 × 0.2 × 0.15 |
Data collection | |
Diffractometer | Agilent Xcalibur Eos |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.122, 0.246 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11206, 5985, 4876 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.066, 1.02 |
No. of reflections | 5985 |
No. of parameters | 419 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −1.13 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
Hg1—N1 | 2.396 (4) | Hg2—N5 | 2.384 (4) |
Hg1—N2 | 2.395 (4) | Hg2—N6 | 2.362 (4) |
Hg1—S1 | 2.4201 (16) | Hg2—S3 | 2.4741 (16) |
Hg1—S2 | 2.4488 (16) | Hg2—S4 | 2.4013 (18) |
Acknowledgements
This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center. The X-ray structural work was performed at the Hamdi Mango Center for Scientific Research at The University of Jordan.
References
Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bodoki, A., Hangan, A., Oprean, L., Alzuet, G., Castineiras, A. & Borras, J. (2009). Polyhedron, 28, 2537–2544. Web of Science CSD CrossRef CAS Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Lange, J., Elias, H. & Paulus, H. (2000). Inorg. Chem. 39, 3342–3349. Web of Science CSD CrossRef PubMed CAS Google Scholar
Miller, M. T., Gantzel, P. K. & Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292–4293. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, B. S. & Zhong, H. (2009). Acta Cryst. E65, m1156. Web of Science CSD CrossRef IUCr Journals Google Scholar
Warad, I., Boshaala, A., Al-Resayes, S. I., Al-Deyab, S. S. & Rzaigui, M. (2011). Acta Cryst. E67, m1650. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Transition metal complexes using 1,10-phenanthroline (phen) and their modified derivatives as ligands are particularly attractive species for the design and development of novel diagnostic and therapeutic agents, that can recognize and selectively cleave DNA (Miller et al., 1999; Bodoki et al., 2009). The reaction of Hg(SCN)2, with dmphen = 2,9-dimethyl-1,10-phenanthroline ligand yields Hg(SCN)2(dmphen) mixed ligand complexes. The number of ligands bound to the metal cation is influenced greatly by both the chemistry and geometry of ligand and the type of co-ligand SCN (Lange et al., 2000). Here we report the synthesis and crystal structure of a new HgII complex, [Hg(SCN)2(dmphen)].
The molecular structure of Hg(SCN)2(dmphen), along with the numbering scheme, is shown in Fig. 1. The two HgII cations are located on general positions and coordinated to two nitrogen atoms of one dmphen bidentate ligand and two SCN ions. A similar coordination geometry around the central atom has been observed in other metal complexes involving the same dmphen ligand such as [HgBr2(dmphen)] (Alizadeh et al., 2009), [CuCl2(dmphen)] (Wang & Zhong, 2009), [CdI2(dmphen)] (Warad et al., 2011), and [CdBr2(dmphen)] (Warad et al., 2011).
One of the two 2,9-dimethyl-1,10-phenanthroline ligands, the one bonded to Hg1, is folded by 5.3 (1)° while the other bonded to Hg2 is planar. Such conjugate double bond systems are expected to be planar. The probable reason comes from packing considerations. The soft Hg bonds to the soft S atom of SCN- as expected. the variations in the approach angle, 99.3 (1) to 103.5 (1)° should also be attributed to packing considerations.