metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­tris­­(nitrato-κ2O,O′){2,2′-[pyridine-2,6-diylbis(methyl­ene­­oxy)]dibenzaldehyde-κO1}dysprosium(III)–2,2′-[pyridine-2,6-diylbis(methyl­ene­­oxy)]dibenzaldehyde (1/1)

aUniversidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León CP 66451, Mexico, and bFacultad de Química, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 23 August 2012; accepted 25 August 2012; online 5 September 2012)

The title compound, [Dy(NO3)3(C21H17NO4)(H2O)2]·C21H17NO4, may be considered as an organic–metalorganic 1:1 co-crystal, in which the two dialdehyde mol­ecules act as a ligand and as an organic moiety, respectively. The DyIII atom coordinates nine O atoms from the organic ligand, bidentate nitrate ions and water mol­ecules, approximating a square-face-tricapped trigonal–prismatic geometry. The coordinated dialdehyde is not planar: the uncoordinated oxybenzaldehyde group is twisted by 39.96 (4)° from the rest of the ligand. In contrast, the free organic moiety is almost planar, with an r.m.s. deviation of 0.15 Å. In the crystal, segregated stacks of dialdehyde are formed in the [100] direction. For the complex, the shortest ππ contact is found at 3.781 (2) Å, and for the free ligand, at 3.785 (2) Å. The crystal structure is further stabilized by O—H⋯O and O—H⋯N hydrogen bonds in which coordinated water mol­ecules are the donor groups.

Related literature

For the X-ray structure of the free ligand and other rare-earth complexes based on this ligand, see: Rodríguez De Luna et al. (2010[Rodríguez De Luna, S. L., Garza, L. Á., Bernès, S., Elizondo, P., Nájera, B. & Pérez, N. (2010). Polyhedron, 29, 2048-2052.]). For isotypic complexes, see: Garza Rodríguez (2010[Garza Rodríguez, L. Á. (2010). PhD thesis, Universidad Autónoma de Nuevo León, Mexico.]). For the nomenclature of 9-coordinated metal centers, see: IUPAC (2005[IUPAC (2005). Nomenclature of Inorganic Chemistry: IUPAC recommendations 2005, edited by N. G. Connelly & T. Damhus, pp. 175-179. Cambridge: RSC Publishing.]).

[Scheme 1]

Experimental

Crystal data
  • [Dy(NO3)3(C21H17NO4)(H2O)2]·C21H17NO4

  • Mr = 1079.27

  • Triclinic, [P \overline 1]

  • a = 7.7552 (3) Å

  • b = 16.1249 (8) Å

  • c = 17.7178 (7) Å

  • α = 75.531 (4)°

  • β = 85.173 (3)°

  • γ = 88.398 (4)°

  • V = 2137.71 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.84 mm−1

  • T = 136 K

  • 0.43 × 0.26 × 0.12 mm

Data collection
  • Agilent Xcalibur Atlas Gemini diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]); based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.599, Tmax = 0.816

  • 15907 measured reflections

  • 8436 independent reflections

  • 7464 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.066

  • S = 1.05

  • 8436 reflections

  • 616 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Selected bond lengths (Å)

Dy1—O1 2.435 (2)
Dy1—O5 2.327 (2)
Dy1—O6 2.320 (2)
Dy1—O7 2.410 (2)
Dy1—O8 2.437 (2)
Dy1—O10 2.443 (2)
Dy1—O11 2.429 (2)
Dy1—O13 2.460 (2)
Dy1—O14 2.403 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯N1i 0.76 (4) 1.97 (4) 2.724 (3) 173 (4)
O5—H52⋯O12ii 0.73 (3) 2.19 (4) 2.907 (3) 168 (4)
O6—H61⋯O4iii 0.71 (3) 2.10 (3) 2.797 (3) 169 (4)
O6—H62⋯N51iii 0.86 (3) 1.86 (4) 2.712 (3) 177 (3)
Symmetry codes: (i) -x, -y+1, -z; (ii) x-1, y, z; (iii) x, y-1, z.

Data collection: CrysAlis CCD (Agilent, 2010[Agilent (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis CCD (Agilent, 2010[Agilent (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lanthanides (Ln) are well known for giving high and rather unpredictable coordination numbers, in the range 8 to 12. For example, in the case of O-donor ligands, the coordination sphere may be completed by water molecules. Such modifications are reflected in the flexible coordination geometry of these complexes, which, in turn, has consequences on the physical properties characteristics of these metals.

While working on the synthesis of an isotypic series of LnIII complexes with photoluminescent properties (Rodríguez De Luna et al., 2010), we realised that, occasionally, a by-product crystallized with the desired complex, although elemental analysis systematically matched the expected formula. The desired complex had formula [LnIIIL2(NO3)3(H2O)2] where L is a monodentate dialdehyde ligand, 2,2'-[pyridine-2,6-diyl-bis(methyleneoxy)]dibenzaldehyde, giving a coordination number of 10 for the metal. This compound crystallizes readily in space group C2/c. The crystallographic analysis revealed that the by-product, which crystallizes in space group P1, is isoformular, although the coordination number is reduced to 9, because one L ligand, present in the asymmetric unit, is not coordinated to the metal. The resulting formula is then [LnIIIL(NO3)3(H2O)2].L, which may be seen as an organic-metalorganic system.

So far, we have detected the presence of this new complex with Ln = HoIII, TbIII and DyIII, on the basis of unit-cell parameters (Garza Rodríguez, 2010). The X-ray characterization is however complicated by the very low yield and the poor quality of single crystals we have obtained. The present report is for Ln = DyIII, which gave a suitable refinement.

The asymmetric unit contains one complex and one free ligand (Fig. 1). The DyIII atom is bonded to the monodentate L ligand, three bidentate nitrate ions, and two water molecules, forming nine Dy—O bonds in the range 2.320 (2)–2.460 (2) Å. The resulting coordination geometry approximates a square-face-tricapped trigonal prismatic polyhedron (polyhedral symbol in the IUPAC nomenclature: TPRS-9; IUPAC, 2005), with distortions from the ideal D3h symmetry induced by the nitrate bite angles (Fig. 1, inset). The organic ligand is not planar, and the peripheral ring, C15···C21/O3/O4 is twisted by 39.96 (4)° from the rest of the ligand. The free ligand is more planar, and presents a conformation reminiscent of that observed in the crystal structure of pure L (Rodríguez De Luna et al., 2010).

The crystal structure features segregated stacks for organic and metalorganic moieties (Fig. 2). The free organic molecules are stacked in the [100] direction with π···π interactions between pyridine rings in the range 3.785 (2)–4.528 (2) Å. Because of the deviation from planarity of the whole molecule, benzaldehyde rings are less engaged in π···π interactions, with centroid-to-centroid separations in the range 4.139 (3)–5.156 (3) Å. L ligands bonded to the metals also interact in the same direction, and the most favorable π···π separation is found at 3.781 (2) Å.

Related literature top

For the X-ray structure of the free ligand and other rare-earth complexes based on this ligand, see: Rodríguez De Luna et al. (2010). For isotypic complexes, see: Garza Rodríguez (2010). For the nomenclature of 9-coordinated metal centers, see: IUPAC (2005).

Experimental top

The title compound was obtained by mixing 2,2'-[pyridine-2,6-diyl-bis(methyleneoxy)]dibenzaldehyde (L, 50 mg in 15 ml of acetonitrile) and Dy(NO3)3.5H2O (100 mg in 2 ml of acetonitrile), at room temperature. The mixture was refluxed for 5 h and then cooled to room temperature. After evaporation of the solvent, a few crystals of the complex were collected.

Refinement top

C-bound H atoms were placed in idealized positions, with C—H bond lengths fixed to 0.95 (aromatic CH) or 0.99 Å (methylene CH2). In the case of coordinated water molecules, H atoms were clearly detected in a difference map, and refined freely. Final O—H bond lengths span the range 0.71 (3)–0.86 (3) Å. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(carrier atom).

Structure description top

Lanthanides (Ln) are well known for giving high and rather unpredictable coordination numbers, in the range 8 to 12. For example, in the case of O-donor ligands, the coordination sphere may be completed by water molecules. Such modifications are reflected in the flexible coordination geometry of these complexes, which, in turn, has consequences on the physical properties characteristics of these metals.

While working on the synthesis of an isotypic series of LnIII complexes with photoluminescent properties (Rodríguez De Luna et al., 2010), we realised that, occasionally, a by-product crystallized with the desired complex, although elemental analysis systematically matched the expected formula. The desired complex had formula [LnIIIL2(NO3)3(H2O)2] where L is a monodentate dialdehyde ligand, 2,2'-[pyridine-2,6-diyl-bis(methyleneoxy)]dibenzaldehyde, giving a coordination number of 10 for the metal. This compound crystallizes readily in space group C2/c. The crystallographic analysis revealed that the by-product, which crystallizes in space group P1, is isoformular, although the coordination number is reduced to 9, because one L ligand, present in the asymmetric unit, is not coordinated to the metal. The resulting formula is then [LnIIIL(NO3)3(H2O)2].L, which may be seen as an organic-metalorganic system.

So far, we have detected the presence of this new complex with Ln = HoIII, TbIII and DyIII, on the basis of unit-cell parameters (Garza Rodríguez, 2010). The X-ray characterization is however complicated by the very low yield and the poor quality of single crystals we have obtained. The present report is for Ln = DyIII, which gave a suitable refinement.

The asymmetric unit contains one complex and one free ligand (Fig. 1). The DyIII atom is bonded to the monodentate L ligand, three bidentate nitrate ions, and two water molecules, forming nine Dy—O bonds in the range 2.320 (2)–2.460 (2) Å. The resulting coordination geometry approximates a square-face-tricapped trigonal prismatic polyhedron (polyhedral symbol in the IUPAC nomenclature: TPRS-9; IUPAC, 2005), with distortions from the ideal D3h symmetry induced by the nitrate bite angles (Fig. 1, inset). The organic ligand is not planar, and the peripheral ring, C15···C21/O3/O4 is twisted by 39.96 (4)° from the rest of the ligand. The free ligand is more planar, and presents a conformation reminiscent of that observed in the crystal structure of pure L (Rodríguez De Luna et al., 2010).

The crystal structure features segregated stacks for organic and metalorganic moieties (Fig. 2). The free organic molecules are stacked in the [100] direction with π···π interactions between pyridine rings in the range 3.785 (2)–4.528 (2) Å. Because of the deviation from planarity of the whole molecule, benzaldehyde rings are less engaged in π···π interactions, with centroid-to-centroid separations in the range 4.139 (3)–5.156 (3) Å. L ligands bonded to the metals also interact in the same direction, and the most favorable π···π separation is found at 3.781 (2) Å.

For the X-ray structure of the free ligand and other rare-earth complexes based on this ligand, see: Rodríguez De Luna et al. (2010). For isotypic complexes, see: Garza Rodríguez (2010). For the nomenclature of 9-coordinated metal centers, see: IUPAC (2005).

Computing details top

Data collection: CrysAlis CCD (Agilent, 2010); cell refinement: CrysAlis CCD (Agilent, 2010); data reduction: CrysAlis RED (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-like view of the asymmetric unit, with displacement ellipsoids for non-H atoms at the 50% probability level. The inset represents the TPRS-9 polyhedron formed by coordinated O atoms. On the left, the actual coordination is represented, which compares well with the ideal D3 h polyhedron on the right, depicted in the IUPAC red book (IUPAC, 2005).
[Figure 2] Fig. 2. A part of the crystal structure, showing how L ligands interact in the crystal. Free L molecules (blue) form stacks separated from coordinated L molecules (green). All H atoms have been omitted for clarity.
Diaquatris(nitrato-κ2O,O'){2,2'-[pyridine-2,6- diylbis(methyleneoxy)]dibenzaldehyde-κO1}dysprosium(III)– 2,2'-[pyridine-2,6-diylbis(methyleneoxy)]dibenzaldehyde (1/1) top
Crystal data top
[Dy(NO3)3(C21H17NO4)(H2O)2]·C21H17NO4Z = 2
Mr = 1079.27F(000) = 1086
Triclinic, P1Dx = 1.677 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7552 (3) ÅCell parameters from 6816 reflections
b = 16.1249 (8) Åθ = 3.4–26.0°
c = 17.7178 (7) ŵ = 1.84 mm1
α = 75.531 (4)°T = 136 K
β = 85.173 (3)°Irregular, colourless
γ = 88.398 (4)°0.43 × 0.26 × 0.12 mm
V = 2137.71 (16) Å3
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
8436 independent reflections
Radiation source: Enhance (Mo) X-ray Source7464 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.4685 pixels mm-1θmax = 26.1°, θmin = 3.4°
φ and ω scansh = 99
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2010); based on expressions derived by Clark & Reid (1995)]
k = 1919
Tmin = 0.599, Tmax = 0.816l = 2021
15907 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.021P)2 + 0.3171P]
where P = (Fo2 + 2Fc2)/3
8436 reflections(Δ/σ)max = 0.001
616 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.88 e Å3
0 constraints
Crystal data top
[Dy(NO3)3(C21H17NO4)(H2O)2]·C21H17NO4γ = 88.398 (4)°
Mr = 1079.27V = 2137.71 (16) Å3
Triclinic, P1Z = 2
a = 7.7552 (3) ÅMo Kα radiation
b = 16.1249 (8) ŵ = 1.84 mm1
c = 17.7178 (7) ÅT = 136 K
α = 75.531 (4)°0.43 × 0.26 × 0.12 mm
β = 85.173 (3)°
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
8436 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2010); based on expressions derived by Clark & Reid (1995)]
7464 reflections with I > 2σ(I)
Tmin = 0.599, Tmax = 0.816Rint = 0.034
15907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.95 e Å3
8436 reflectionsΔρmin = 0.88 e Å3
616 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.314191 (17)0.208885 (9)0.209569 (8)0.01740 (6)
O10.3943 (3)0.27312 (13)0.07188 (12)0.0234 (5)
O20.2481 (3)0.50508 (13)0.02862 (12)0.0256 (5)
O30.1020 (3)0.86057 (13)0.08702 (12)0.0264 (5)
O40.0259 (3)0.97127 (14)0.24948 (13)0.0313 (5)
N10.0247 (3)0.69668 (15)0.00696 (14)0.0161 (5)
C10.3563 (4)0.3456 (2)0.03692 (18)0.0211 (7)
H1A0.29810.38120.06650.025*
C20.3930 (4)0.38191 (18)0.04627 (17)0.0165 (6)
C30.4822 (4)0.3355 (2)0.09437 (18)0.0207 (7)
H3A0.52360.27950.07220.025*
C40.5106 (4)0.3703 (2)0.17365 (19)0.0259 (7)
H4A0.57230.33880.20600.031*
C50.4485 (4)0.4517 (2)0.20566 (19)0.0279 (8)
H5A0.46740.47540.26040.033*
C60.3594 (4)0.4993 (2)0.15972 (19)0.0245 (7)
H6A0.31740.55510.18260.029*
C70.3324 (4)0.46446 (19)0.07995 (18)0.0194 (7)
C80.1760 (4)0.58838 (18)0.05739 (18)0.0210 (7)
H8A0.08270.58560.09150.025*
H8B0.26630.62780.08830.025*
C90.1047 (4)0.61991 (18)0.01229 (17)0.0164 (6)
C100.1242 (4)0.57589 (19)0.08854 (18)0.0208 (7)
H10A0.18130.52180.10000.025*
C110.0588 (4)0.6122 (2)0.14780 (18)0.0240 (7)
H11A0.06930.58300.20090.029*
C120.0220 (4)0.6911 (2)0.12971 (18)0.0221 (7)
H12A0.06680.71710.16990.027*
C130.0365 (4)0.73145 (18)0.05210 (17)0.0175 (6)
C140.1237 (4)0.81730 (18)0.02744 (17)0.0185 (6)
H14A0.06990.85030.02350.022*
H14B0.24820.81010.02220.022*
C150.1588 (4)0.94333 (19)0.07654 (18)0.0213 (7)
C160.2499 (4)0.9860 (2)0.01378 (19)0.0230 (7)
H16A0.27430.95860.02570.028*
C170.3046 (4)1.0697 (2)0.0099 (2)0.0261 (7)
H17A0.36621.09950.03300.031*
C180.2714 (4)1.1104 (2)0.0669 (2)0.0291 (8)
H18A0.31191.16720.06390.035*
C190.1788 (4)1.06780 (19)0.12838 (19)0.0245 (7)
H19A0.15501.09590.16750.029*
C200.1196 (4)0.98422 (19)0.13412 (18)0.0202 (7)
C210.0134 (4)0.9414 (2)0.19675 (19)0.0261 (7)
H21A0.02860.88550.19630.031*
O50.0475 (3)0.24740 (15)0.15929 (14)0.0233 (5)
H510.026 (4)0.259 (2)0.117 (2)0.028*
H520.029 (4)0.244 (2)0.187 (2)0.028*
O60.1312 (3)0.11311 (14)0.29763 (13)0.0206 (5)
H610.092 (5)0.079 (2)0.286 (2)0.025*
H620.150 (4)0.097 (2)0.346 (2)0.025*
N20.2136 (4)0.36004 (18)0.25775 (16)0.0277 (6)
N30.6425 (3)0.22608 (17)0.26502 (16)0.0239 (6)
N40.3919 (3)0.04582 (16)0.17732 (15)0.0228 (6)
O70.3260 (3)0.36027 (13)0.20041 (13)0.0285 (5)
O80.1607 (3)0.28687 (13)0.29638 (12)0.0251 (5)
O90.1582 (4)0.42612 (15)0.27163 (16)0.0473 (7)
O100.6228 (3)0.24169 (14)0.19230 (12)0.0252 (5)
O110.5087 (3)0.20311 (14)0.31135 (12)0.0239 (5)
O120.7836 (3)0.23299 (18)0.28843 (15)0.0424 (7)
O130.4666 (3)0.07017 (13)0.22969 (12)0.0250 (5)
O140.2866 (3)0.10068 (13)0.13961 (12)0.0242 (5)
O150.4164 (3)0.02375 (13)0.16444 (13)0.0301 (5)
O510.6068 (4)0.64204 (18)0.57161 (17)0.0580 (8)
O520.4043 (3)0.85788 (14)0.45072 (13)0.0301 (5)
O530.0234 (3)1.21517 (14)0.53723 (13)0.0331 (6)
O540.1747 (3)1.27365 (19)0.73601 (16)0.0518 (8)
N510.1880 (3)1.05765 (15)0.45113 (14)0.0179 (5)
C510.5413 (5)0.7050 (2)0.5331 (2)0.0361 (9)
H51A0.46570.73760.55970.043*
C520.5697 (4)0.7354 (2)0.4473 (2)0.0274 (8)
C530.6692 (5)0.6861 (2)0.4054 (2)0.0374 (9)
H53A0.72030.63410.43260.045*
C540.6948 (5)0.7116 (3)0.3246 (2)0.0444 (10)
H54A0.76380.67780.29660.053*
C550.6194 (5)0.7863 (2)0.2855 (2)0.0365 (9)
H55A0.63580.80360.23000.044*
C560.5196 (4)0.8369 (2)0.3254 (2)0.0285 (8)
H56A0.46810.88850.29760.034*
C570.4961 (4)0.8113 (2)0.40600 (19)0.0239 (7)
C580.3267 (4)0.93714 (19)0.41339 (18)0.0219 (7)
H58A0.22640.92670.38610.026*
H58B0.41140.97260.37450.026*
C590.2691 (4)0.98224 (19)0.47611 (17)0.0182 (6)
C600.2996 (4)0.9489 (2)0.55383 (18)0.0223 (7)
H60A0.35670.89520.56990.027*
C610.2456 (4)0.9951 (2)0.60731 (18)0.0247 (7)
H61A0.26410.97340.66100.030*
C620.1645 (4)1.0730 (2)0.58215 (18)0.0226 (7)
H62A0.12841.10620.61810.027*
C630.1363 (4)1.10250 (19)0.50375 (17)0.0178 (6)
C640.0520 (4)1.18726 (19)0.47187 (18)0.0226 (7)
H64A0.13881.22900.44150.027*
H64B0.03791.18120.43720.027*
C650.0895 (4)1.2957 (2)0.5271 (2)0.0305 (8)
C660.1002 (6)1.3522 (2)0.4560 (2)0.0495 (11)
H66A0.05901.33710.40920.059*
C670.1727 (9)1.4322 (3)0.4539 (3)0.099 (2)
H67A0.18091.47250.40500.118*
C680.2332 (9)1.4540 (3)0.5219 (4)0.105 (2)
H68A0.28611.50840.51910.126*
C690.2182 (6)1.3984 (3)0.5933 (3)0.0601 (13)
H69A0.25611.41510.63980.072*
C700.1479 (4)1.3182 (2)0.5976 (2)0.0332 (8)
C710.1374 (4)1.2578 (3)0.6730 (2)0.0374 (9)
H71A0.09821.20140.67320.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.01950 (8)0.01749 (9)0.01499 (8)0.00244 (6)0.00209 (6)0.00368 (6)
O10.0267 (11)0.0203 (12)0.0201 (12)0.0047 (10)0.0035 (10)0.0006 (9)
O20.0428 (13)0.0166 (11)0.0159 (11)0.0112 (10)0.0027 (10)0.0040 (9)
O30.0444 (14)0.0177 (12)0.0212 (12)0.0081 (10)0.0105 (10)0.0107 (10)
O40.0441 (14)0.0335 (14)0.0193 (12)0.0114 (11)0.0020 (11)0.0122 (10)
N10.0185 (12)0.0154 (13)0.0158 (13)0.0002 (10)0.0013 (10)0.0062 (11)
C10.0221 (16)0.0213 (17)0.0204 (17)0.0013 (13)0.0009 (13)0.0069 (14)
C20.0163 (14)0.0161 (15)0.0161 (16)0.0004 (12)0.0028 (12)0.0036 (12)
C30.0202 (15)0.0203 (16)0.0231 (17)0.0006 (13)0.0013 (13)0.0089 (14)
C40.0267 (17)0.0289 (19)0.0245 (18)0.0006 (15)0.0077 (14)0.0145 (15)
C50.0331 (18)0.033 (2)0.0169 (17)0.0031 (15)0.0046 (14)0.0064 (15)
C60.0295 (17)0.0226 (17)0.0194 (17)0.0033 (14)0.0037 (14)0.0035 (14)
C70.0221 (15)0.0179 (16)0.0193 (16)0.0020 (13)0.0011 (13)0.0070 (13)
C80.0279 (16)0.0150 (16)0.0186 (16)0.0029 (13)0.0007 (13)0.0022 (13)
C90.0179 (14)0.0174 (16)0.0152 (15)0.0031 (12)0.0012 (12)0.0070 (12)
C100.0276 (16)0.0144 (16)0.0207 (17)0.0021 (13)0.0061 (14)0.0040 (13)
C110.0337 (18)0.0238 (18)0.0160 (16)0.0006 (15)0.0061 (14)0.0063 (14)
C120.0277 (16)0.0223 (17)0.0190 (17)0.0022 (14)0.0005 (14)0.0107 (14)
C130.0182 (15)0.0184 (16)0.0176 (16)0.0016 (12)0.0035 (13)0.0070 (13)
C140.0244 (16)0.0187 (16)0.0151 (15)0.0039 (13)0.0039 (13)0.0089 (13)
C150.0246 (16)0.0170 (16)0.0222 (17)0.0002 (13)0.0055 (14)0.0074 (13)
C160.0232 (16)0.0235 (17)0.0230 (17)0.0008 (14)0.0011 (14)0.0076 (14)
C170.0236 (16)0.0246 (18)0.0294 (19)0.0028 (14)0.0017 (15)0.0067 (15)
C180.0270 (17)0.0197 (17)0.041 (2)0.0015 (14)0.0062 (16)0.0111 (16)
C190.0246 (16)0.0228 (17)0.0286 (19)0.0055 (14)0.0079 (14)0.0136 (15)
C200.0231 (15)0.0201 (16)0.0177 (16)0.0036 (13)0.0063 (13)0.0078 (13)
C210.0332 (18)0.0243 (18)0.0219 (18)0.0039 (15)0.0044 (15)0.0093 (15)
O50.0219 (12)0.0332 (13)0.0132 (12)0.0063 (10)0.0001 (10)0.0037 (11)
O60.0272 (12)0.0218 (13)0.0137 (11)0.0034 (10)0.0024 (10)0.0053 (10)
N20.0370 (16)0.0272 (17)0.0196 (15)0.0022 (13)0.0014 (13)0.0077 (13)
N30.0205 (14)0.0262 (15)0.0253 (16)0.0043 (12)0.0045 (12)0.0062 (12)
N40.0302 (15)0.0198 (15)0.0170 (14)0.0022 (12)0.0039 (12)0.0045 (12)
O70.0399 (13)0.0237 (12)0.0209 (12)0.0045 (10)0.0055 (11)0.0060 (10)
O80.0316 (12)0.0209 (12)0.0205 (12)0.0005 (10)0.0007 (10)0.0011 (10)
O90.077 (2)0.0240 (14)0.0404 (16)0.0164 (14)0.0043 (14)0.0112 (12)
O100.0271 (12)0.0312 (13)0.0158 (12)0.0012 (10)0.0016 (9)0.0029 (10)
O110.0202 (11)0.0332 (13)0.0176 (12)0.0012 (10)0.0009 (9)0.0055 (10)
O120.0208 (12)0.0715 (19)0.0357 (15)0.0012 (12)0.0079 (11)0.0128 (14)
O130.0272 (12)0.0265 (12)0.0228 (12)0.0061 (10)0.0047 (10)0.0090 (10)
O140.0349 (12)0.0212 (12)0.0161 (11)0.0071 (10)0.0061 (10)0.0033 (9)
O150.0445 (14)0.0171 (12)0.0293 (13)0.0045 (10)0.0012 (11)0.0086 (10)
O510.084 (2)0.0463 (17)0.0405 (17)0.0355 (17)0.0179 (16)0.0053 (14)
O520.0435 (14)0.0244 (12)0.0208 (12)0.0154 (11)0.0006 (11)0.0049 (10)
O530.0537 (15)0.0250 (13)0.0215 (13)0.0138 (11)0.0022 (11)0.0104 (10)
O540.0451 (16)0.084 (2)0.0402 (17)0.0168 (15)0.0043 (13)0.0427 (16)
N510.0216 (13)0.0179 (13)0.0140 (13)0.0004 (11)0.0001 (11)0.0041 (11)
C510.049 (2)0.031 (2)0.029 (2)0.0160 (18)0.0084 (18)0.0084 (17)
C520.0276 (17)0.0278 (19)0.0288 (19)0.0035 (15)0.0062 (15)0.0099 (15)
C530.041 (2)0.030 (2)0.042 (2)0.0139 (17)0.0028 (18)0.0109 (18)
C540.049 (2)0.042 (2)0.045 (3)0.0113 (19)0.010 (2)0.021 (2)
C550.043 (2)0.040 (2)0.028 (2)0.0011 (18)0.0044 (17)0.0139 (17)
C560.0352 (19)0.0259 (18)0.0248 (19)0.0005 (15)0.0009 (15)0.0080 (15)
C570.0238 (16)0.0230 (17)0.0273 (18)0.0005 (14)0.0008 (14)0.0112 (15)
C580.0262 (16)0.0202 (17)0.0186 (17)0.0056 (14)0.0034 (13)0.0038 (13)
C590.0171 (15)0.0211 (17)0.0166 (16)0.0021 (13)0.0015 (13)0.0056 (13)
C600.0228 (16)0.0233 (17)0.0188 (17)0.0028 (13)0.0043 (13)0.0013 (14)
C610.0249 (16)0.0321 (19)0.0153 (16)0.0004 (15)0.0017 (14)0.0025 (14)
C620.0231 (16)0.0274 (18)0.0182 (17)0.0026 (14)0.0001 (13)0.0078 (14)
C630.0171 (14)0.0203 (16)0.0167 (16)0.0035 (13)0.0006 (12)0.0063 (13)
C640.0319 (17)0.0218 (17)0.0151 (16)0.0007 (14)0.0007 (14)0.0073 (13)
C650.0281 (18)0.0248 (19)0.039 (2)0.0023 (15)0.0006 (16)0.0104 (16)
C660.071 (3)0.031 (2)0.041 (3)0.017 (2)0.007 (2)0.0037 (19)
C670.159 (6)0.047 (3)0.064 (4)0.048 (4)0.035 (4)0.013 (3)
C680.167 (6)0.036 (3)0.093 (5)0.048 (3)0.044 (4)0.004 (3)
C690.072 (3)0.037 (2)0.070 (3)0.009 (2)0.024 (3)0.022 (2)
C700.0275 (18)0.030 (2)0.048 (2)0.0031 (15)0.0002 (17)0.0211 (18)
C710.0324 (19)0.051 (2)0.037 (2)0.0130 (18)0.0060 (17)0.027 (2)
Geometric parameters (Å, º) top
Dy1—O12.435 (2)O5—H520.73 (3)
Dy1—O52.327 (2)O6—H610.71 (3)
Dy1—O62.320 (2)O6—H620.86 (3)
Dy1—O72.410 (2)N2—O91.212 (3)
Dy1—O82.437 (2)N2—O81.267 (3)
Dy1—O102.443 (2)N2—O71.281 (3)
Dy1—O112.429 (2)N3—O121.221 (3)
Dy1—O132.460 (2)N3—O111.270 (3)
Dy1—O142.403 (2)N3—O101.271 (3)
Dy1—N22.846 (3)N4—O151.206 (3)
Dy1—N32.849 (3)N4—O131.279 (3)
Dy1—N42.865 (3)N4—O141.285 (3)
O1—C11.220 (3)O51—C511.199 (4)
O2—C71.363 (3)O52—C571.368 (4)
O2—C81.428 (3)O52—C581.426 (3)
O3—C151.366 (3)O53—C651.358 (4)
O3—C141.426 (3)O53—C641.420 (3)
O4—C211.216 (4)O54—C711.217 (4)
N1—C91.347 (4)N51—C591.344 (4)
N1—C131.353 (4)N51—C631.346 (4)
C1—C21.450 (4)C51—C521.475 (5)
C1—H1A0.9500C51—H51A0.9500
C2—C31.398 (4)C52—C571.394 (4)
C2—C71.402 (4)C52—C531.395 (5)
C3—C41.377 (4)C53—C541.386 (5)
C3—H3A0.9500C53—H53A0.9500
C4—C51.384 (4)C54—C551.373 (5)
C4—H4A0.9500C54—H54A0.9500
C5—C61.385 (4)C55—C561.388 (5)
C5—H5A0.9500C55—H55A0.9500
C6—C71.385 (4)C56—C571.382 (5)
C6—H6A0.9500C56—H56A0.9500
C8—C91.507 (4)C58—C591.505 (4)
C8—H8A0.9900C58—H58A0.9900
C8—H8B0.9900C58—H58B0.9900
C9—C101.379 (4)C59—C601.385 (4)
C10—C111.380 (4)C60—C611.377 (4)
C10—H10A0.9500C60—H60A0.9500
C11—C121.378 (4)C61—C621.378 (4)
C11—H11A0.9500C61—H61A0.9500
C12—C131.379 (4)C62—C631.385 (4)
C12—H12A0.9500C62—H62A0.9500
C13—C141.503 (4)C63—C641.497 (4)
C14—H14A0.9900C64—H64A0.9900
C14—H14B0.9900C64—H64B0.9900
C15—C161.390 (4)C65—C661.366 (5)
C15—C201.403 (4)C65—C701.419 (5)
C16—C171.389 (4)C66—C671.385 (6)
C16—H16A0.9500C66—H66A0.9500
C17—C181.379 (5)C67—C681.380 (7)
C17—H17A0.9500C67—H67A0.9500
C18—C191.380 (5)C68—C691.366 (7)
C18—H18A0.9500C68—H68A0.9500
C19—C201.394 (4)C69—C701.377 (5)
C19—H19A0.9500C69—H69A0.9500
C20—C211.458 (4)C70—C711.451 (5)
C21—H21A0.9500C71—H71A0.9500
O5—H510.76 (4)
O6—Dy1—O578.55 (8)C17—C16—C15118.7 (3)
O6—Dy1—O1479.03 (8)C17—C16—H16A120.6
O5—Dy1—O1479.82 (8)C15—C16—H16A120.6
O6—Dy1—O7125.04 (7)C18—C17—C16121.4 (3)
O5—Dy1—O781.96 (8)C18—C17—H17A119.3
O14—Dy1—O7145.81 (7)C16—C17—H17A119.3
O6—Dy1—O1189.94 (7)C17—C18—C19119.4 (3)
O5—Dy1—O11149.62 (8)C17—C18—H18A120.3
O14—Dy1—O11125.81 (7)C19—C18—H18A120.3
O7—Dy1—O1181.97 (7)C18—C19—C20121.1 (3)
O6—Dy1—O1145.20 (8)C18—C19—H19A119.4
O5—Dy1—O177.24 (8)C20—C19—H19A119.4
O14—Dy1—O172.40 (7)C19—C20—C15118.5 (3)
O7—Dy1—O175.50 (7)C19—C20—C21120.8 (3)
O11—Dy1—O1122.85 (7)C15—C20—C21120.6 (3)
O6—Dy1—O872.43 (7)O4—C21—C20125.3 (3)
O5—Dy1—O874.04 (8)O4—C21—H21A117.4
O14—Dy1—O8144.36 (7)C20—C21—H21A117.4
O7—Dy1—O852.83 (7)Dy1—O5—H51129 (3)
O11—Dy1—O875.70 (7)Dy1—O5—H52118 (3)
O1—Dy1—O8123.16 (7)H51—O5—H52113 (4)
O6—Dy1—O10136.95 (7)Dy1—O6—H61121 (3)
O5—Dy1—O10144.49 (8)Dy1—O6—H62121 (2)
O14—Dy1—O10104.30 (7)H61—O6—H62110 (4)
O7—Dy1—O1075.42 (7)O9—N2—O8122.9 (3)
O11—Dy1—O1052.72 (7)O9—N2—O7121.5 (3)
O1—Dy1—O1070.85 (7)O8—N2—O7115.6 (2)
O8—Dy1—O10111.08 (7)O9—N2—Dy1172.6 (2)
O6—Dy1—O1375.04 (7)O8—N2—Dy158.53 (14)
O5—Dy1—O13128.94 (8)O7—N2—Dy157.34 (14)
O14—Dy1—O1352.83 (7)O12—N3—O11122.2 (3)
O7—Dy1—O13148.23 (7)O12—N3—O10121.0 (3)
O11—Dy1—O1373.02 (7)O11—N3—O10116.7 (2)
O1—Dy1—O13101.80 (7)O12—N3—Dy1179.5 (2)
O8—Dy1—O13134.29 (7)O11—N3—Dy158.04 (14)
O10—Dy1—O1373.92 (7)O10—N3—Dy158.66 (14)
O6—Dy1—N298.47 (8)O15—N4—O13122.9 (3)
O5—Dy1—N275.03 (8)O15—N4—O14122.1 (3)
O14—Dy1—N2154.70 (7)O13—N4—O14115.1 (2)
O7—Dy1—N226.59 (7)O15—N4—Dy1176.9 (2)
O11—Dy1—N279.08 (7)O13—N4—Dy158.85 (13)
O1—Dy1—N298.99 (7)O14—N4—Dy156.29 (13)
O8—Dy1—N226.32 (7)N2—O7—Dy196.07 (17)
O10—Dy1—N294.69 (8)N2—O8—Dy195.15 (17)
O13—Dy1—N2151.25 (7)N3—O10—Dy194.95 (17)
O6—Dy1—N3113.96 (8)N3—O11—Dy195.62 (16)
O5—Dy1—N3159.45 (8)N4—O13—Dy194.73 (16)
O14—Dy1—N3117.58 (7)N4—O14—Dy197.28 (16)
O7—Dy1—N377.50 (7)C57—O52—C58119.3 (2)
O11—Dy1—N326.34 (7)C65—O53—C64120.0 (3)
O1—Dy1—N396.91 (7)C59—N51—C63118.5 (2)
O8—Dy1—N393.67 (7)O51—C51—C52124.7 (3)
O10—Dy1—N326.38 (7)O51—C51—H51A117.7
O13—Dy1—N371.37 (7)C52—C51—H51A117.7
N2—Dy1—N386.66 (8)C57—C52—C53118.4 (3)
O6—Dy1—N474.87 (7)C57—C52—C51122.1 (3)
O5—Dy1—N4104.39 (8)C53—C52—C51119.5 (3)
O14—Dy1—N426.42 (7)C54—C53—C52121.0 (3)
O7—Dy1—N4160.10 (7)C54—C53—H53A119.5
O11—Dy1—N499.44 (7)C52—C53—H53A119.5
O1—Dy1—N487.39 (7)C55—C54—C53119.2 (3)
O8—Dy1—N4146.90 (7)C55—C54—H54A120.4
O10—Dy1—N489.55 (7)C53—C54—H54A120.4
O13—Dy1—N426.42 (7)C54—C55—C56121.2 (3)
N2—Dy1—N4173.22 (7)C54—C55—H55A119.4
N3—Dy1—N494.89 (7)C56—C55—H55A119.4
C1—O1—Dy1125.07 (19)C57—C56—C55119.1 (3)
C7—O2—C8119.3 (2)C57—C56—H56A120.4
C15—O3—C14118.7 (2)C55—C56—H56A120.4
C9—N1—C13117.5 (2)O52—C57—C56123.6 (3)
O1—C1—C2125.1 (3)O52—C57—C52115.5 (3)
O1—C1—H1A117.4C56—C57—C52121.0 (3)
C2—C1—H1A117.4O52—C58—C59107.3 (2)
C3—C2—C7119.0 (3)O52—C58—H58A110.3
C3—C2—C1121.7 (3)C59—C58—H58A110.3
C7—C2—C1119.3 (3)O52—C58—H58B110.3
C4—C3—C2120.7 (3)C59—C58—H58B110.3
C4—C3—H3A119.7H58A—C58—H58B108.5
C2—C3—H3A119.7N51—C59—C60122.5 (3)
C3—C4—C5119.3 (3)N51—C59—C58115.2 (2)
C3—C4—H4A120.3C60—C59—C58122.4 (3)
C5—C4—H4A120.3C61—C60—C59118.7 (3)
C4—C5—C6121.5 (3)C61—C60—H60A120.7
C4—C5—H5A119.2C59—C60—H60A120.7
C6—C5—H5A119.2C60—C61—C62119.4 (3)
C7—C6—C5119.0 (3)C60—C61—H61A120.3
C7—C6—H6A120.5C62—C61—H61A120.3
C5—C6—H6A120.5C61—C62—C63119.2 (3)
O2—C7—C6124.6 (3)C61—C62—H62A120.4
O2—C7—C2114.9 (3)C63—C62—H62A120.4
C6—C7—C2120.5 (3)N51—C63—C62121.9 (3)
O2—C8—C9107.6 (2)N51—C63—C64115.9 (3)
O2—C8—H8A110.2C62—C63—C64122.2 (3)
C9—C8—H8A110.2O53—C64—C63106.6 (2)
O2—C8—H8B110.2O53—C64—H64A110.4
C9—C8—H8B110.2C63—C64—H64A110.4
H8A—C8—H8B108.5O53—C64—H64B110.4
N1—C9—C10123.0 (3)C63—C64—H64B110.4
N1—C9—C8113.6 (2)H64A—C64—H64B108.6
C10—C9—C8123.3 (3)O53—C65—C66124.2 (3)
C9—C10—C11118.4 (3)O53—C65—C70114.5 (3)
C9—C10—H10A120.8C66—C65—C70121.3 (3)
C11—C10—H10A120.8C65—C66—C67118.3 (4)
C12—C11—C10119.7 (3)C65—C66—H66A120.9
C12—C11—H11A120.1C67—C66—H66A120.9
C10—C11—H11A120.1C68—C67—C66120.8 (5)
C11—C12—C13118.6 (3)C68—C67—H67A119.6
C11—C12—H12A120.7C66—C67—H67A119.6
C13—C12—H12A120.7C69—C68—C67121.0 (4)
N1—C13—C12122.7 (3)C69—C68—H68A119.5
N1—C13—C14115.3 (2)C67—C68—H68A119.5
C12—C13—C14121.9 (3)C68—C69—C70119.7 (4)
O3—C14—C13106.5 (2)C68—C69—H69A120.1
O3—C14—H14A110.4C70—C69—H69A120.1
C13—C14—H14A110.4C69—C70—C65118.8 (4)
O3—C14—H14B110.4C69—C70—C71120.0 (4)
C13—C14—H14B110.4C65—C70—C71121.2 (3)
H14A—C14—H14B108.6O54—C71—C70125.2 (3)
O3—C15—C16123.6 (3)O54—C71—H71A117.4
O3—C15—C20115.6 (3)C70—C71—H71A117.4
C16—C15—C20120.8 (3)
O6—Dy1—O1—C1104.2 (2)O6—Dy1—O7—N22.6 (2)
O5—Dy1—O1—C157.2 (2)O5—Dy1—O7—N272.50 (17)
O14—Dy1—O1—C1140.4 (2)O14—Dy1—O7—N2130.81 (17)
O7—Dy1—O1—C127.7 (2)O11—Dy1—O7—N281.64 (17)
O11—Dy1—O1—C197.9 (2)O1—Dy1—O7—N2151.32 (18)
O8—Dy1—O1—C13.8 (3)O8—Dy1—O7—N23.53 (15)
O10—Dy1—O1—C1107.0 (2)O10—Dy1—O7—N2135.10 (18)
O13—Dy1—O1—C1175.1 (2)O13—Dy1—O7—N2119.63 (18)
N2—Dy1—O1—C115.1 (2)N3—Dy1—O7—N2108.03 (17)
N3—Dy1—O1—C1102.8 (2)N4—Dy1—O7—N2177.18 (19)
N4—Dy1—O1—C1162.6 (2)O9—N2—O8—Dy1171.4 (3)
Dy1—O1—C1—C2175.3 (2)O7—N2—O8—Dy15.9 (3)
O1—C1—C2—C31.7 (5)O6—Dy1—O8—N2171.17 (18)
O1—C1—C2—C7176.0 (3)O5—Dy1—O8—N288.41 (18)
C7—C2—C3—C40.2 (4)O14—Dy1—O8—N2132.82 (17)
C1—C2—C3—C4177.9 (3)O7—Dy1—O8—N23.56 (16)
C2—C3—C4—C50.6 (5)O11—Dy1—O8—N294.27 (17)
C3—C4—C5—C60.5 (5)O1—Dy1—O8—N225.88 (19)
C4—C5—C6—C70.1 (5)O10—Dy1—O8—N254.45 (18)
C8—O2—C7—C62.1 (4)O13—Dy1—O8—N2142.22 (16)
C8—O2—C7—C2177.9 (2)N3—Dy1—O8—N274.84 (17)
C5—C6—C7—O2179.5 (3)N4—Dy1—O8—N2179.61 (15)
C5—C6—C7—C20.6 (4)O12—N3—O10—Dy1179.5 (3)
C3—C2—C7—O2179.6 (3)O11—N3—O10—Dy10.4 (3)
C1—C2—C7—O22.7 (4)O6—Dy1—O10—N335.0 (2)
C3—C2—C7—C60.4 (4)O5—Dy1—O10—N3143.38 (17)
C1—C2—C7—C6177.3 (3)O14—Dy1—O10—N3124.13 (16)
C7—O2—C8—C9175.5 (2)O7—Dy1—O10—N391.21 (17)
C13—N1—C9—C100.8 (4)O11—Dy1—O10—N30.26 (15)
C13—N1—C9—C8177.2 (2)O1—Dy1—O10—N3170.63 (18)
O2—C8—C9—N1176.9 (2)O8—Dy1—O10—N351.50 (17)
O2—C8—C9—C105.1 (4)O13—Dy1—O10—N380.39 (16)
N1—C9—C10—C110.0 (4)N2—Dy1—O10—N372.73 (17)
C8—C9—C10—C11177.8 (3)N4—Dy1—O10—N3101.98 (17)
C9—C10—C11—C120.7 (4)O12—N3—O11—Dy1179.5 (3)
C10—C11—C12—C130.6 (4)O10—N3—O11—Dy10.4 (3)
C9—N1—C13—C120.9 (4)O6—Dy1—O11—N3156.54 (16)
C9—N1—C13—C14179.7 (2)O5—Dy1—O11—N3136.68 (18)
C11—C12—C13—N10.2 (5)O14—Dy1—O11—N380.16 (18)
C11—C12—C13—C14179.6 (3)O7—Dy1—O11—N378.01 (16)
C15—O3—C14—C13175.3 (2)O1—Dy1—O11—N311.10 (19)
N1—C13—C14—O3152.1 (2)O8—Dy1—O11—N3131.59 (17)
C12—C13—C14—O328.4 (4)O10—Dy1—O11—N30.26 (15)
C14—O3—C15—C165.5 (4)O13—Dy1—O11—N382.18 (16)
C14—O3—C15—C20174.6 (3)N2—Dy1—O11—N3104.82 (17)
O3—C15—C16—C17178.7 (3)N4—Dy1—O11—N381.90 (16)
C20—C15—C16—C171.3 (5)O15—N4—O13—Dy1176.9 (2)
C15—C16—C17—C180.4 (5)O14—N4—O13—Dy12.3 (2)
C16—C17—C18—C191.3 (5)O6—Dy1—O13—N486.02 (16)
C17—C18—C19—C200.5 (5)O5—Dy1—O13—N424.7 (2)
C18—C19—C20—C151.1 (4)O14—Dy1—O13—N41.42 (15)
C18—C19—C20—C21176.4 (3)O7—Dy1—O13—N4139.78 (17)
O3—C15—C20—C19177.9 (3)O11—Dy1—O13—N4179.37 (17)
C16—C15—C20—C192.0 (4)O1—Dy1—O13—N458.33 (17)
O3—C15—C20—C214.5 (4)O8—Dy1—O13—N4131.83 (16)
C16—C15—C20—C21175.5 (3)O10—Dy1—O13—N4124.19 (17)
C19—C20—C21—O43.3 (5)N2—Dy1—O13—N4166.22 (16)
C15—C20—C21—O4179.2 (3)N3—Dy1—O13—N4151.73 (17)
O6—Dy1—N2—O88.51 (18)O15—N4—O14—Dy1176.9 (2)
O5—Dy1—N2—O884.18 (17)O13—N4—O14—Dy12.4 (2)
O14—Dy1—N2—O890.7 (2)O6—Dy1—O14—N478.03 (16)
O7—Dy1—N2—O8173.6 (3)O5—Dy1—O14—N4158.21 (17)
O11—Dy1—N2—O879.78 (17)O7—Dy1—O14—N4142.92 (16)
O1—Dy1—N2—O8158.29 (16)O11—Dy1—O14—N43.85 (19)
O10—Dy1—N2—O8130.38 (17)O1—Dy1—O14—N4122.07 (17)
O13—Dy1—N2—O865.8 (2)O8—Dy1—O14—N4115.09 (17)
N3—Dy1—N2—O8105.23 (17)O10—Dy1—O14—N457.91 (17)
O6—Dy1—N2—O7177.84 (17)O13—Dy1—O14—N41.42 (15)
O5—Dy1—N2—O7102.17 (18)N2—Dy1—O14—N4164.64 (17)
O14—Dy1—N2—O795.6 (2)N3—Dy1—O14—N433.40 (18)
O11—Dy1—N2—O793.87 (17)O51—C51—C52—C57177.0 (4)
O1—Dy1—N2—O728.06 (17)O51—C51—C52—C534.8 (6)
O8—Dy1—N2—O7173.6 (3)C57—C52—C53—C540.0 (5)
O10—Dy1—N2—O743.27 (17)C51—C52—C53—C54178.3 (4)
O13—Dy1—N2—O7107.9 (2)C52—C53—C54—C550.6 (6)
N3—Dy1—N2—O768.42 (17)C53—C54—C55—C560.6 (6)
O6—Dy1—N3—O1125.82 (18)C54—C55—C56—C570.0 (5)
O5—Dy1—N3—O1198.7 (3)C58—O52—C57—C560.3 (4)
O14—Dy1—N3—O11115.66 (16)C58—O52—C57—C52179.0 (3)
O7—Dy1—N3—O1197.20 (16)C55—C56—C57—O52178.1 (3)
O1—Dy1—N3—O11170.62 (16)C55—C56—C57—C520.6 (5)
O8—Dy1—N3—O1146.57 (16)C53—C52—C57—O52178.2 (3)
O10—Dy1—N3—O11179.5 (3)C51—C52—C57—O523.6 (5)
O13—Dy1—N3—O1189.21 (16)C53—C52—C57—C560.6 (5)
N2—Dy1—N3—O1171.96 (16)C51—C52—C57—C56177.7 (3)
N4—Dy1—N3—O11101.42 (16)C57—O52—C58—C59168.1 (3)
O6—Dy1—N3—O10154.64 (16)C63—N51—C59—C600.6 (4)
O5—Dy1—N3—O1080.8 (3)C63—N51—C59—C58178.5 (3)
O14—Dy1—N3—O1064.81 (18)O52—C58—C59—N51178.2 (2)
O7—Dy1—N3—O1082.34 (17)O52—C58—C59—C602.7 (4)
O11—Dy1—N3—O10179.5 (3)N51—C59—C60—C610.4 (5)
O1—Dy1—N3—O108.91 (17)C58—C59—C60—C61178.7 (3)
O8—Dy1—N3—O10132.96 (16)C59—C60—C61—C620.5 (5)
O13—Dy1—N3—O1091.25 (17)C60—C61—C62—C631.2 (4)
N2—Dy1—N3—O10107.58 (17)C59—N51—C63—C620.0 (4)
N4—Dy1—N3—O1079.04 (17)C59—N51—C63—C64178.1 (3)
O6—Dy1—N4—O1386.75 (16)C61—C62—C63—N510.9 (5)
O5—Dy1—N4—O13160.39 (16)C61—C62—C63—C64178.8 (3)
O14—Dy1—N4—O13177.5 (3)C65—O53—C64—C63171.2 (3)
O7—Dy1—N4—O1393.1 (3)N51—C63—C64—O53168.3 (3)
O11—Dy1—N4—O130.61 (17)C62—C63—C64—O5313.7 (4)
O1—Dy1—N4—O13123.49 (16)C64—O53—C65—C664.7 (5)
O8—Dy1—N4—O1377.6 (2)C64—O53—C65—C70175.0 (3)
O10—Dy1—N4—O1352.64 (16)O53—C65—C66—C67179.2 (4)
N3—Dy1—N4—O1326.77 (17)C70—C65—C66—C671.1 (7)
O6—Dy1—N4—O1495.80 (17)C65—C66—C67—C680.3 (9)
O5—Dy1—N4—O1422.16 (17)C66—C67—C68—C692.1 (11)
O7—Dy1—N4—O1484.4 (3)C67—C68—C69—C702.6 (10)
O11—Dy1—N4—O14176.84 (15)C68—C69—C70—C651.2 (7)
O1—Dy1—N4—O1453.96 (16)C68—C69—C70—C71177.8 (5)
O8—Dy1—N4—O14104.90 (18)O53—C65—C70—C69179.6 (3)
O10—Dy1—N4—O14124.81 (16)C66—C65—C70—C690.7 (5)
O13—Dy1—N4—O14177.5 (3)O53—C65—C70—C710.7 (5)
N3—Dy1—N4—O14150.68 (16)C66—C65—C70—C71179.6 (4)
O9—N2—O7—Dy1171.4 (3)C69—C70—C71—O545.8 (6)
O8—N2—O7—Dy16.0 (3)C65—C70—C71—O54175.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···N1i0.76 (4)1.97 (4)2.724 (3)173 (4)
O5—H52···O12ii0.73 (3)2.19 (4)2.907 (3)168 (4)
O6—H61···O4iii0.71 (3)2.10 (3)2.797 (3)169 (4)
O6—H62···N51iii0.86 (3)1.86 (4)2.712 (3)177 (3)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Dy(NO3)3(C21H17NO4)(H2O)2]·C21H17NO4
Mr1079.27
Crystal system, space groupTriclinic, P1
Temperature (K)136
a, b, c (Å)7.7552 (3), 16.1249 (8), 17.7178 (7)
α, β, γ (°)75.531 (4), 85.173 (3), 88.398 (4)
V3)2137.71 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.84
Crystal size (mm)0.43 × 0.26 × 0.12
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2010); based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.599, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
15907, 8436, 7464
Rint0.034
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.066, 1.05
No. of reflections8436
No. of parameters616
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.95, 0.88

Computer programs: CrysAlis CCD (Agilent, 2010), CrysAlis RED (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Dy1—O12.435 (2)Dy1—O102.443 (2)
Dy1—O52.327 (2)Dy1—O112.429 (2)
Dy1—O62.320 (2)Dy1—O132.460 (2)
Dy1—O72.410 (2)Dy1—O142.403 (2)
Dy1—O82.437 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···N1i0.76 (4)1.97 (4)2.724 (3)173 (4)
O5—H52···O12ii0.73 (3)2.19 (4)2.907 (3)168 (4)
O6—H61···O4iii0.71 (3)2.10 (3)2.797 (3)169 (4)
O6—H62···N51iii0.86 (3)1.86 (4)2.712 (3)177 (3)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x, y1, z.
 

Acknowledgements

The authors thank the PAICyT program (Programa de Apoyo a la Investigación Científica y Tecnológica), Universidad Autónoma de Nuevo León, for supporting this work (project No. CE 600–10).

References

First citationAgilent (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarza Rodríguez, L. Á. (2010). PhD thesis, Universidad Autónoma de Nuevo León, Mexico.  Google Scholar
First citationIUPAC (2005). Nomenclature of Inorganic Chemistry: IUPAC recommendations 2005, edited by N. G. Connelly & T. Damhus, pp. 175–179. Cambridge: RSC Publishing.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRodríguez De Luna, S. L., Garza, L. Á., Bernès, S., Elizondo, P., Nájera, B. & Pérez, N. (2010). Polyhedron, 29, 2048–2052.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds