metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-amino-3,5-bis­­(pyridin-2-yl)-4H-1,2,4-triazole-κ2N1,N5]di­aqua­cobalt(II) bis­­(perchlorate)

aCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
*Correspondence e-mail: cezlliu@imu.edu.cn

(Received 23 July 2012; accepted 8 September 2012; online 15 September 2012)

In the title structure, [Co(C12H10N6)2(H2O)2](ClO4)2, the CoII atom lies on an inversion centre and is coordinated in a slightly distorted octa­hedral geometry by four N atoms from two 4-amino-3,5-bis­(pyridin-2-yl)-4H-1,2,4-triazole (adpt) ligands in equatorial positions and two O atoms from two water mol­ecules in axial positions. An intra­molecular N—H⋯N inter­action stabilizes the mol­ecular conformation. Inter­molecular N—H⋯O and O—H⋯O inter­actions involving the perchlorate counter-anions extend the monomeric compound into a two-dimensional network parallel to the bc plane.

Related literature

For the synthesis of the adpt ligand, see: Geldard & Lions (1965[Geldard, J. F. & Lions, F. (1965). J. Org. Chem. 30, 318-319.]). For background to the coordination chemistry of the adpt ligand, see: Meng et al. (2009[Meng, Z.-S., Yun, L., Zhang, W.-X., Hong, C.-G., Herchel, R., Ou, Y.-C., Leng, J.-D., Peng, M.-X., Lin, Z.-J. & Tong, M.-L. (2009). Dalton Trans. pp. 10284-10295.]). For intra­molecular hydrogen bonds in the adpt ligand, see: Kitchen et al. (2008[Kitchen, J. A., Noble, A., Brandt, C. D., Moubaraki, B., Murray, K. S. & Brooker, S. (2008). Inorg. Chem. 47, 9450-9458.]). For other Co(II) coordination compounds with the same ligand, see: Keij et al. (1984[Keij, F. S., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). J. Chem. Soc. Dalton Trans. pp. 2093-2097.]); Peng et al. (2006[Peng, M. X., Hong, C. G., Tan, C. K., Chen, J. C. & Tong, M. L. (2006). J. Chem. Crystallogr. 36, 703-707.]); García-Couceiro et al. (2009[García-Couceiro, U., Castillo, O., Cepeda, J., Luque, A., Pérez-Yanez, S. & Román, P. (2009). Inorg. Chim. Acta, 362, 4212-4218.]); White et al. (2010[White, N. G., Feltham, H. L. C., Gandolfi, C., Albrecht, M. & Brooker, S. (2010). Dalton Trans. 39, 3751-3758.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H10N6)2(H2O)2](ClO4)2

  • Mr = 770.38

  • Monoclinic, P 21 /c

  • a = 8.5839 (17) Å

  • b = 12.950 (3) Å

  • c = 14.975 (5) Å

  • β = 114.34 (2)°

  • V = 1516.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 293 K

  • 0.04 × 0.03 × 0.01 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.992

  • 10155 measured reflections

  • 2681 independent reflections

  • 2336 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.121

  • S = 1.07

  • 2681 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6B⋯N5 0.89 2.29 2.897 (4) 125
N6—H6B⋯O3i 0.89 2.39 2.989 (4) 124
O1—H1A⋯O4 0.85 2.16 2.782 (4) 130
O1—H1B⋯O2ii 0.85 2.22 2.983 (4) 150
O1—H1B⋯O5ii 0.85 2.58 3.284 (5) 141
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, 4-amine-3,5-di-2-pyridyl-1,2,4-triazol (adpt) has been used as a potential multidentate ligand to generate novel metal-organic complexes due to containing five N coordination sites and three potentially conjugated aromatic rings (Meng et al., 2009). Such complexes with adpt have interesting properties for potential applications in the fields of magnetic materials (Keij et al., 1984). Several Co(II) compounds containing adpt have been reported previously (Keij et al., 1984; Peng et al., 2006; García-Couceiro et al., 2009; White et al., 2010). Herein, the synthesis and crystal structure of the title complex [Co(C12H10N6)2(H2O)2](ClO4)2, (I), is reported.

As shown in Figure 1, compound (I) consists of one Co(II) atom located on an inversion centre, two adpt ligands, two water molecules and two isolated perchlorate counter anions. The Co(II) is six-coordinated by four N atoms from two adpt ligands and two O atoms from two water molecules, giving a slightly distorted octahedral coordination environment. The equatorial plane is defined by four N atoms from two adpt ligands with a chelate formation, and the axial positions are occupied by two O atoms of water molecules. The dihedral angle between the non-coordinated pyridine ring and the coordinating pyridine ring is 11.94 (16) ° and that between the coordinating pyridine ring and the triazole ring is 6.76 (6)°. In the mononuclear unit, an intramolecular N—H···N hydrogen-bonding interaction between the NH2 group attached to the the triazole ring and the non-coordinating N atom of pyridine is observed (Kitchen et al., 2008). Intermolecular N—H···O and O—H···O hydrogen-bonding interactions exist between the amine group and the coordinating water molecules, respectively, with the O atoms of the isolated perchlorate counter anions. In the crystal, the molecular entities are linked by O—H···O hydrogen bonds generating chains along the b axis. These chains in turn aggregate into a two-dimensional network parallel to the bc plane (Fig. 2).

Related literature top

For the synthesis of the adpt ligand, see: Geldard & Lions (1965). For background to the coordination chemistry of the adpt ligand, see: Meng et al. (2009). For intramolecular hydrogen bonds in the adpt ligand, see: Kitchen et al. (2008). For other Co(II) coordination compounds with the same ligand, see: Keij et al. (1984); Peng et al. (2006); García-Couceiro et al. (2009); White et al. (2010).

Experimental top

4-Amino-3,5-bis(pyridin-2-yl)-4H-1,2,4-triazole (abpt, 5mmol) was dissolved in 20 ml mixture solution of water and methanol (1:1, v/v). Then Co(ClO4)2`4H2O (5 mmol) was added to the above solution. The resulting solution was stirred for 3 h at room temperature. Upon slow evaporation of the solvent, dark red block-shaped crystals formed from the filtrate in a few days. The used 4-amine-3,5-di-2-pyridyl-1,2,4-triazol (adpt) was synthesized according to the previously reported procedure (Geldard & Lions, 1965).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms bonded to N and O atoms were located in a difference map and refined with a fixed distance of O—H = 0.85 and N—H = 0.89 Å, and with Uiso(H) = 1.2Ueq(N,O).

Structure description top

Recently, 4-amine-3,5-di-2-pyridyl-1,2,4-triazol (adpt) has been used as a potential multidentate ligand to generate novel metal-organic complexes due to containing five N coordination sites and three potentially conjugated aromatic rings (Meng et al., 2009). Such complexes with adpt have interesting properties for potential applications in the fields of magnetic materials (Keij et al., 1984). Several Co(II) compounds containing adpt have been reported previously (Keij et al., 1984; Peng et al., 2006; García-Couceiro et al., 2009; White et al., 2010). Herein, the synthesis and crystal structure of the title complex [Co(C12H10N6)2(H2O)2](ClO4)2, (I), is reported.

As shown in Figure 1, compound (I) consists of one Co(II) atom located on an inversion centre, two adpt ligands, two water molecules and two isolated perchlorate counter anions. The Co(II) is six-coordinated by four N atoms from two adpt ligands and two O atoms from two water molecules, giving a slightly distorted octahedral coordination environment. The equatorial plane is defined by four N atoms from two adpt ligands with a chelate formation, and the axial positions are occupied by two O atoms of water molecules. The dihedral angle between the non-coordinated pyridine ring and the coordinating pyridine ring is 11.94 (16) ° and that between the coordinating pyridine ring and the triazole ring is 6.76 (6)°. In the mononuclear unit, an intramolecular N—H···N hydrogen-bonding interaction between the NH2 group attached to the the triazole ring and the non-coordinating N atom of pyridine is observed (Kitchen et al., 2008). Intermolecular N—H···O and O—H···O hydrogen-bonding interactions exist between the amine group and the coordinating water molecules, respectively, with the O atoms of the isolated perchlorate counter anions. In the crystal, the molecular entities are linked by O—H···O hydrogen bonds generating chains along the b axis. These chains in turn aggregate into a two-dimensional network parallel to the bc plane (Fig. 2).

For the synthesis of the adpt ligand, see: Geldard & Lions (1965). For background to the coordination chemistry of the adpt ligand, see: Meng et al. (2009). For intramolecular hydrogen bonds in the adpt ligand, see: Kitchen et al. (2008). For other Co(II) coordination compounds with the same ligand, see: Keij et al. (1984); Peng et al. (2006); García-Couceiro et al. (2009); White et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms. N—H···N and O—H···O interactions are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound. O—H···O interactions are shown as dashed lines.
Bis[4-amino-3,5-bis(pyridin-2-yl)-4H-1,2,4-triazole- κ2N1,N5]diaquacobalt(II) bis(perchlorate) top
Crystal data top
[Co(C12H10N6)2(H2O)2](ClO4)2F(000) = 786
Mr = 770.38Dx = 1.687 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3601 reflections
a = 8.5839 (17) Åθ = 2.2–27.9°
b = 12.950 (3) ŵ = 0.82 mm1
c = 14.975 (5) ÅT = 293 K
β = 114.34 (2)°Block, dark red
V = 1516.7 (7) Å30.04 × 0.03 × 0.01 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
2681 independent reflections
Radiation source: fine-focus sealed tube2336 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 710
Tmin = 0.971, Tmax = 0.992k = 1515
10155 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0587P)2 + 2.3812P]
where P = (Fo2 + 2Fc2)/3
2681 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Co(C12H10N6)2(H2O)2](ClO4)2V = 1516.7 (7) Å3
Mr = 770.38Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.5839 (17) ŵ = 0.82 mm1
b = 12.950 (3) ÅT = 293 K
c = 14.975 (5) Å0.04 × 0.03 × 0.01 mm
β = 114.34 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2681 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2336 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.992Rint = 0.038
10155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.07Δρmax = 0.87 e Å3
2681 reflectionsΔρmin = 0.50 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.0181 (2)
Cl10.51836 (11)0.31957 (6)0.20373 (6)0.0255 (2)
N10.2655 (3)0.5819 (2)0.46508 (18)0.0182 (6)
N20.7370 (3)0.6987 (2)0.59168 (19)0.0203 (6)
N30.5833 (3)0.64755 (19)0.55294 (19)0.0188 (6)
N40.5287 (3)0.80947 (19)0.56599 (18)0.0165 (6)
N50.7829 (4)0.9719 (2)0.6482 (2)0.0247 (6)
N60.4322 (4)0.9001 (2)0.5607 (2)0.0295 (7)
H6A0.39840.92780.50120.044*
H6B0.49710.94520.60540.044*
O10.5064 (3)0.54303 (18)0.36619 (16)0.0287 (6)
H1A0.59520.51770.36280.043*
H1B0.50930.60850.36300.043*
O20.6254 (4)0.2589 (3)0.1740 (3)0.0633 (10)
O30.4116 (4)0.3823 (2)0.1213 (2)0.0555 (9)
O40.6210 (4)0.3837 (2)0.2840 (2)0.0475 (8)
O50.4126 (4)0.2533 (3)0.2297 (2)0.0687 (11)
C10.2804 (4)0.6823 (2)0.4928 (2)0.0181 (7)
C20.1401 (4)0.7437 (3)0.4777 (2)0.0229 (7)
H20.15370.81230.49770.027*
C30.0217 (4)0.7004 (3)0.4318 (3)0.0273 (8)
H30.11840.73980.42110.033*
C40.0381 (4)0.5988 (3)0.4024 (2)0.0261 (8)
H40.14570.56920.37040.031*
C50.1082 (4)0.5415 (3)0.4210 (2)0.0228 (7)
H50.09690.47240.40230.027*
C60.4598 (4)0.7148 (2)0.5385 (2)0.0171 (7)
C70.7014 (4)0.7965 (2)0.5981 (2)0.0190 (7)
C80.8325 (4)0.8777 (2)0.6329 (2)0.0205 (7)
C90.9991 (4)0.8547 (3)0.6470 (3)0.0285 (8)
H91.02930.78790.63780.034*
C101.1191 (5)0.9332 (3)0.6750 (3)0.0334 (9)
H101.23070.92070.68280.040*
C111.0696 (5)1.0310 (3)0.6914 (3)0.0313 (8)
H111.14771.08510.71070.038*
C120.9036 (5)1.0464 (3)0.6786 (3)0.0287 (8)
H120.87261.11160.69150.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0183 (3)0.0139 (3)0.0231 (3)0.0002 (2)0.0096 (3)0.0014 (2)
Cl10.0309 (5)0.0211 (4)0.0282 (5)0.0011 (3)0.0160 (4)0.0031 (3)
N10.0186 (14)0.0168 (14)0.0212 (13)0.0010 (11)0.0103 (11)0.0001 (11)
N20.0157 (14)0.0183 (14)0.0245 (14)0.0012 (11)0.0058 (12)0.0021 (11)
N30.0174 (14)0.0143 (13)0.0244 (14)0.0001 (11)0.0083 (12)0.0013 (11)
N40.0191 (14)0.0131 (13)0.0185 (13)0.0010 (10)0.0091 (11)0.0003 (10)
N50.0233 (15)0.0187 (14)0.0297 (16)0.0012 (12)0.0086 (13)0.0012 (12)
N60.0262 (16)0.0185 (15)0.0424 (18)0.0023 (12)0.0128 (14)0.0011 (13)
O10.0389 (15)0.0206 (12)0.0312 (13)0.0066 (11)0.0191 (12)0.0034 (10)
O20.0474 (19)0.070 (2)0.073 (2)0.0008 (17)0.0256 (17)0.0440 (19)
O30.062 (2)0.0395 (18)0.0509 (18)0.0045 (16)0.0092 (16)0.0161 (14)
O40.0537 (19)0.0519 (18)0.0393 (16)0.0126 (15)0.0217 (14)0.0229 (14)
O50.060 (2)0.096 (3)0.0425 (18)0.046 (2)0.0130 (16)0.0131 (18)
C10.0217 (17)0.0179 (16)0.0181 (16)0.0007 (13)0.0116 (14)0.0017 (12)
C20.0237 (18)0.0196 (17)0.0283 (18)0.0016 (14)0.0138 (15)0.0002 (14)
C30.0205 (18)0.0293 (19)0.035 (2)0.0053 (15)0.0145 (16)0.0059 (15)
C40.0165 (17)0.032 (2)0.0295 (18)0.0049 (15)0.0090 (15)0.0010 (15)
C50.0240 (18)0.0206 (17)0.0268 (17)0.0019 (14)0.0134 (15)0.0012 (14)
C60.0212 (17)0.0156 (16)0.0175 (15)0.0007 (13)0.0109 (13)0.0007 (12)
C70.0218 (17)0.0181 (16)0.0193 (16)0.0002 (13)0.0107 (14)0.0002 (13)
C80.0214 (17)0.0196 (17)0.0198 (16)0.0013 (13)0.0077 (14)0.0007 (13)
C90.0248 (19)0.0256 (19)0.0339 (19)0.0015 (15)0.0111 (16)0.0073 (15)
C100.0230 (19)0.039 (2)0.038 (2)0.0043 (16)0.0120 (17)0.0086 (17)
C110.028 (2)0.029 (2)0.031 (2)0.0115 (16)0.0065 (16)0.0048 (16)
C120.029 (2)0.0191 (18)0.0338 (19)0.0032 (15)0.0089 (16)0.0063 (15)
Geometric parameters (Å, º) top
Co1—N32.079 (3)N6—H6B0.8901
Co1—N3i2.079 (3)O1—H1A0.8500
Co1—O1i2.102 (2)O1—H1B0.8500
Co1—O12.102 (2)C1—C21.381 (4)
Co1—N12.141 (3)C1—C61.466 (4)
Co1—N1i2.141 (3)C2—C31.389 (5)
Cl1—O21.413 (3)C2—H20.9300
Cl1—O51.416 (3)C3—C41.376 (5)
Cl1—O41.428 (3)C3—H30.9300
Cl1—O31.446 (3)C4—C51.385 (5)
N1—C51.341 (4)C4—H40.9300
N1—C11.355 (4)C5—H50.9300
N2—C71.316 (4)C7—C81.470 (4)
N2—N31.372 (4)C8—C91.389 (5)
N3—C61.319 (4)C9—C101.384 (5)
N4—C61.350 (4)C9—H90.9300
N4—C71.367 (4)C10—C111.390 (5)
N4—N61.420 (4)C10—H100.9300
N5—C81.342 (4)C11—C121.372 (5)
N5—C121.350 (5)C11—H110.9300
N6—H6A0.8901C12—H120.9300
N3—Co1—N3i180.0H1A—O1—H1B109.5
N3—Co1—O1i91.15 (10)N1—C1—C2122.4 (3)
N3i—Co1—O1i88.85 (10)N1—C1—C6111.5 (3)
N3—Co1—O188.85 (10)C2—C1—C6126.1 (3)
N3i—Co1—O191.15 (10)C1—C2—C3118.4 (3)
O1i—Co1—O1180.000 (1)C1—C2—H2120.8
N3—Co1—N177.24 (10)C3—C2—H2120.8
N3i—Co1—N1102.76 (10)C4—C3—C2119.6 (3)
O1i—Co1—N188.45 (9)C4—C3—H3120.2
O1—Co1—N191.55 (9)C2—C3—H3120.2
N3—Co1—N1i102.76 (10)C3—C4—C5119.0 (3)
N3i—Co1—N1i77.24 (10)C3—C4—H4120.5
O1i—Co1—N1i91.55 (9)C5—C4—H4120.5
O1—Co1—N1i88.45 (9)N1—C5—C4122.3 (3)
N1—Co1—N1i180.000 (1)N1—C5—H5118.8
O2—Cl1—O5108.9 (3)C4—C5—H5118.8
O2—Cl1—O4109.47 (19)N3—C6—N4109.2 (3)
O5—Cl1—O4111.4 (2)N3—C6—C1120.4 (3)
O2—Cl1—O3108.0 (2)N4—C6—C1130.3 (3)
O5—Cl1—O3108.8 (2)N2—C7—N4110.1 (3)
O4—Cl1—O3110.2 (2)N2—C7—C8123.2 (3)
C5—N1—C1118.3 (3)N4—C7—C8126.7 (3)
C5—N1—Co1125.6 (2)N5—C8—C9123.3 (3)
C1—N1—Co1116.1 (2)N5—C8—C7117.4 (3)
C7—N2—N3106.5 (3)C9—C8—C7119.3 (3)
C6—N3—N2108.6 (2)C10—C9—C8118.7 (3)
C6—N3—Co1114.6 (2)C10—C9—H9120.7
N2—N3—Co1136.4 (2)C8—C9—H9120.7
C6—N4—C7105.7 (3)C9—C10—C11118.7 (3)
C6—N4—N6124.2 (3)C9—C10—H10120.7
C7—N4—N6130.1 (3)C11—C10—H10120.7
C8—N5—C12117.0 (3)C12—C11—C10118.9 (3)
N4—N6—H6A109.3C12—C11—H11120.6
N4—N6—H6B109.2C10—C11—H11120.6
H6A—N6—H6B109.5N5—C12—C11123.5 (3)
Co1—O1—H1A109.3N5—C12—H12118.2
Co1—O1—H1B109.3C11—C12—H12118.2
N3—Co1—N1—C5179.1 (3)Co1—N3—C6—N4173.37 (18)
N3i—Co1—N1—C50.9 (3)N2—N3—C6—C1176.9 (3)
O1i—Co1—N1—C587.5 (3)Co1—N3—C6—C13.0 (4)
O1—Co1—N1—C592.5 (3)C7—N4—C6—N30.0 (3)
N3—Co1—N1—C10.9 (2)N6—N4—C6—N3179.7 (3)
N3i—Co1—N1—C1179.1 (2)C7—N4—C6—C1175.8 (3)
O1i—Co1—N1—C190.7 (2)N6—N4—C6—C14.4 (5)
O1—Co1—N1—C189.3 (2)N1—C1—C6—N33.6 (4)
C7—N2—N3—C61.0 (3)C2—C1—C6—N3176.9 (3)
C7—N2—N3—Co1171.1 (2)N1—C1—C6—N4171.8 (3)
O1i—Co1—N3—C689.3 (2)C2—C1—C6—N47.7 (5)
O1—Co1—N3—C690.7 (2)N3—N2—C7—N41.0 (3)
N1—Co1—N3—C61.1 (2)N3—N2—C7—C8177.6 (3)
N1i—Co1—N3—C6178.9 (2)C6—N4—C7—N20.6 (3)
O1i—Co1—N3—N299.0 (3)N6—N4—C7—N2179.1 (3)
O1—Co1—N3—N281.0 (3)C6—N4—C7—C8177.8 (3)
N1—Co1—N3—N2172.8 (3)N6—N4—C7—C82.4 (5)
N1i—Co1—N3—N27.2 (3)C12—N5—C8—C90.2 (5)
C5—N1—C1—C20.3 (4)C12—N5—C8—C7178.9 (3)
Co1—N1—C1—C2178.0 (2)N2—C7—C8—N5171.5 (3)
C5—N1—C1—C6179.2 (3)N4—C7—C8—N510.2 (5)
Co1—N1—C1—C62.5 (3)N2—C7—C8—C99.4 (5)
N1—C1—C2—C30.4 (5)N4—C7—C8—C9169.0 (3)
C6—C1—C2—C3179.1 (3)N5—C8—C9—C102.3 (5)
C1—C2—C3—C40.4 (5)C7—C8—C9—C10176.8 (3)
C2—C3—C4—C51.3 (5)C8—C9—C10—C112.3 (5)
C1—N1—C5—C40.6 (5)C9—C10—C11—C120.4 (5)
Co1—N1—C5—C4178.8 (2)C8—N5—C12—C111.9 (5)
C3—C4—C5—N11.4 (5)C10—C11—C12—N51.8 (6)
N2—N3—C6—N40.6 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6B···N50.892.292.897 (4)125
N6—H6B···O3ii0.892.392.989 (4)124
O1—H1A···O40.852.162.782 (4)130
O1—H1B···O2iii0.852.222.983 (4)150
O1—H1B···O5iii0.852.583.284 (5)141
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C12H10N6)2(H2O)2](ClO4)2
Mr770.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.5839 (17), 12.950 (3), 14.975 (5)
β (°) 114.34 (2)
V3)1516.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.04 × 0.03 × 0.01
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
10155, 2681, 2336
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.121, 1.07
No. of reflections2681
No. of parameters223
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.50

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6B···N50.892.292.897 (4)125.2
N6—H6B···O3i0.892.392.989 (4)124.3
O1—H1A···O40.852.162.782 (4)129.7
O1—H1B···O2ii0.852.222.983 (4)150.1
O1—H1B···O5ii0.852.583.284 (5)140.8
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank the NSFC (21061009) and the National Students of Innovation and Entrepreneurship Training Programs (111012608) for their financial support.

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarcía-Couceiro, U., Castillo, O., Cepeda, J., Luque, A., Pérez-Yanez, S. & Román, P. (2009). Inorg. Chim. Acta, 362, 4212–4218.  Google Scholar
First citationGeldard, J. F. & Lions, F. (1965). J. Org. Chem. 30, 318–319.  CrossRef CAS Web of Science Google Scholar
First citationKeij, F. S., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1984). J. Chem. Soc. Dalton Trans. pp. 2093–2097.  CSD CrossRef Web of Science Google Scholar
First citationKitchen, J. A., Noble, A., Brandt, C. D., Moubaraki, B., Murray, K. S. & Brooker, S. (2008). Inorg. Chem. 47, 9450–9458.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMeng, Z.-S., Yun, L., Zhang, W.-X., Hong, C.-G., Herchel, R., Ou, Y.-C., Leng, J.-D., Peng, M.-X., Lin, Z.-J. & Tong, M.-L. (2009). Dalton Trans. pp. 10284–10295.  Web of Science CSD CrossRef Google Scholar
First citationPeng, M. X., Hong, C. G., Tan, C. K., Chen, J. C. & Tong, M. L. (2006). J. Chem. Crystallogr. 36, 703–707.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhite, N. G., Feltham, H. L. C., Gandolfi, C., Albrecht, M. & Brooker, S. (2010). Dalton Trans. 39, 3751–3758.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds