metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Oxalato-κ4O1,O2:O1′,O2′-bis­­[aqua­(2,2′-bi­pyridine-κN)(nitrato-κ2O,O′)lead(II)]

aCollege of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
*Correspondence e-mail: tangjinniu@126.com

(Received 25 July 2012; accepted 22 September 2012; online 29 September 2012)

The title compound, [Pb2(C2O4)(NO3)2(C10H8N2)2(H2O)2], was synthesized hydro­thermally. The binuclear complex mol­ecule is centrosymmetric, the inversion centre being located at the mid-point of the oxalate C—C bond. The PbII ion is hepta­coordinated by the O atom of one water mol­ecule, two oxalate O atoms, two nitrate O atoms and two 2,2′-bipyridine N atoms, forming an irregular coordination environemnt. Inter­molecular O—H⋯O hydrogen bonds between water mol­ecules and oxalate and nitrate ions result in the formation of layers parallel to (010). ππ inter­actions between pyridine rings in adjacent layers, with centroid–centroid distances of 3.584 (2) Å, stabilize the structural set-up.

Related literature

For general background to this class of compounds, see: Fan & Zhu (2006[Fan, S. R. & Zhu, L. G. (2006). Inorg. Chem. 45, 7935-7942.]); Hamilton et al. (2004[Hamilton, B. H., Kelley, K. A., Wagler, T. A., Espe, M. P. & Ziegler, C. J. (2004). Inorg. Chem. 43, 50-56.]); Hagrman & Zubieta (2000[Hagrman, P. J. & Zubieta, J. (2000). Inorg. Chem. 39, 3252-3260.]); Li et al. (2002[Li, Y. G., Wang, E. B., Zhang, H., Luan, G. L. & Hu, C. W. (2002). J. Solid State Chem. 163, 10-16.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C2O4)(NO3)2(C10H8N2)2(H2O)2]

  • Mr = 974.82

  • Monoclinic, P 21 /c

  • a = 9.5791 (19) Å

  • b = 20.6330 (14) Å

  • c = 6.7649 (15) Å

  • β = 91.687 (1)°

  • V = 1336.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 12.66 mm−1

  • T = 296 K

  • 0.29 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.120, Tmax = 0.137

  • 7096 measured reflections

  • 2336 independent reflections

  • 2082 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.07

  • 2336 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 2.68 e Å−3

  • Δρmin = −1.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O5i 0.85 2.23 2.875 (7) 133
O7—H7B⋯O3ii 0.85 2.16 2.912 (8) 148
Symmetry codes: (i) x, y, z+1; (ii) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Complexes containing PbII (Fan & Zhu et al., 2006) are interesting because of the variety of their structures and their potential applications, especially in environmental protection, e.g heavy metal removal. It is known that the introduction of chelating ligands such as 2,2'-bipyridine causes the passivation of metal sites via the N donors of the organic groups and may induce new structural evolution (Hamilton et al., 2004; Hagrman & Zubieta, 2000; Li et al., 2002).

In the title binuclear lead(II) compound, [Pb2(C2O4)(NO3)2(H2O)2(C10H8N2)2], a centrosymmetric molcule is present, with the centre of symmetry at the mid-point of the C—C oxalate bond (Fig. 1). The PbII ion is hepta-coordinated in an irregular fashion by one water molecule, two nitrate oxygen atoms, two oxalate oxygen atoms, and two nitrogen atoms from 2,2'-bipyridine. The supramolecular assembly in the title compound is completed by O—H···O hydrogen bonds between the coordinating water molecules and oxalate and nitrate O atoms (Table 1), resulting in the formation of layers parallel to (010) (Fig. 2). The structure is further extended by ππ stacking interactions between 2,2'-bipyridine molecules of adjacent layers. They overlap with a centroid-to-centroid distance of 3.584 (2) Å.

Related literature top

For general background to this class of compounds, see: Fan & Zhu (2006); Hamilton et al. (2004); Hagrman & Zubieta (2000); Li et al. (2002).

Experimental top

A mixture of oxalic acid (0.0634 g, 0.5 mmol), 2,2'-bipyridine (0.0781 g, 0.5mmol), Pb(NO3)2 (0.3312 g, 1mmol), NaOH (0.0400 g, 1mmol), water (10 ml) and ethanol (5 ml) was placed in a Parr Teflon-lined stainless steel vessel (25 cm3). The vessel was then sealed and heated at 403 K for 3 days. Afterwards the mixture was slowly cooled to room temperature, colorless block-shaped crystals of the complex were obtained. Elemental analysis calculated (%wt): C 27.11; H 2.07; N 8.62; found (%wt): C 27.06; H 2.03; N 8.51.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms. H atoms of the water molecule were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and with Uiso(H) = 1.2Ueq(O). The maximum remaining electron density is found 0.97 Å from Pb1, and the minimum density 0.91 Å from the same atom.

Structure description top

Complexes containing PbII (Fan & Zhu et al., 2006) are interesting because of the variety of their structures and their potential applications, especially in environmental protection, e.g heavy metal removal. It is known that the introduction of chelating ligands such as 2,2'-bipyridine causes the passivation of metal sites via the N donors of the organic groups and may induce new structural evolution (Hamilton et al., 2004; Hagrman & Zubieta, 2000; Li et al., 2002).

In the title binuclear lead(II) compound, [Pb2(C2O4)(NO3)2(H2O)2(C10H8N2)2], a centrosymmetric molcule is present, with the centre of symmetry at the mid-point of the C—C oxalate bond (Fig. 1). The PbII ion is hepta-coordinated in an irregular fashion by one water molecule, two nitrate oxygen atoms, two oxalate oxygen atoms, and two nitrogen atoms from 2,2'-bipyridine. The supramolecular assembly in the title compound is completed by O—H···O hydrogen bonds between the coordinating water molecules and oxalate and nitrate O atoms (Table 1), resulting in the formation of layers parallel to (010) (Fig. 2). The structure is further extended by ππ stacking interactions between 2,2'-bipyridine molecules of adjacent layers. They overlap with a centroid-to-centroid distance of 3.584 (2) Å.

For general background to this class of compounds, see: Fan & Zhu (2006); Hamilton et al. (2004); Hagrman & Zubieta (2000); Li et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment around PbII in the title compound with the atom-labeling scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level. [Symmetry code: (i) -x+1, -y+1, -z+1.]
[Figure 2] Fig. 2. O—H···O hydrogen bonding (purple dashed lines) and ππ stacking interactions (blue dashed lines) in the structure of the title compound. All H atoms were omitted for clarity.
µ-Oxalato-κ4O1,O2:O1',O2'- bis[aqua(2,2'-bipyridine-κN)(nitrato-κ2O,O')lead(II)] top
Crystal data top
[Pb2(C2O4)(NO3)2(C10H8N2)2(H2O)2]F(000) = 908
Mr = 974.82Dx = 2.422 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3490 reflections
a = 9.5791 (19) Åθ = 2.3–28.3°
b = 20.6330 (14) ŵ = 12.66 mm1
c = 6.7649 (15) ÅT = 296 K
β = 91.687 (1)°Block, colorless
V = 1336.5 (4) Å30.29 × 0.28 × 0.26 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2336 independent reflections
Radiation source: fine-focus sealed tube2082 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1110
Tmin = 0.120, Tmax = 0.137k = 2424
7096 measured reflectionsl = 78
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.035P)2 + 5.1328P]
where P = (Fo2 + 2Fc2)/3
2336 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 2.68 e Å3
0 restraintsΔρmin = 1.19 e Å3
Crystal data top
[Pb2(C2O4)(NO3)2(C10H8N2)2(H2O)2]V = 1336.5 (4) Å3
Mr = 974.82Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.5791 (19) ŵ = 12.66 mm1
b = 20.6330 (14) ÅT = 296 K
c = 6.7649 (15) Å0.29 × 0.28 × 0.26 mm
β = 91.687 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2336 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2082 reflections with I > 2σ(I)
Tmin = 0.120, Tmax = 0.137Rint = 0.038
7096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.07Δρmax = 2.68 e Å3
2336 reflectionsΔρmin = 1.19 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.68880 (3)0.537173 (12)0.87652 (4)0.03036 (13)
N10.7954 (9)0.3925 (3)0.8164 (10)0.0504 (18)
N20.6271 (6)0.6548 (3)0.8129 (9)0.0345 (14)
N30.8863 (6)0.6061 (3)0.7555 (8)0.0317 (13)
O10.6656 (8)0.4032 (3)0.7926 (12)0.0678 (18)
O20.8406 (9)0.3377 (3)0.8302 (12)0.084 (2)
O30.8765 (6)0.4408 (3)0.8182 (10)0.0563 (16)
O50.6731 (5)0.5291 (2)0.5190 (8)0.0393 (13)
O60.5602 (5)0.4830 (3)0.2626 (7)0.0411 (12)
O70.8279 (6)0.5894 (3)1.2112 (8)0.0463 (13)
H7A0.82890.56001.29930.056*
H7B0.91230.59561.18050.056*
C10.4989 (8)0.6777 (4)0.8412 (12)0.0449 (19)
H10.42750.64800.86070.054*
C20.4664 (9)0.7424 (4)0.8432 (13)0.052 (2)
H20.37550.75620.86330.062*
C30.5712 (9)0.7861 (4)0.8148 (12)0.049 (2)
H30.55210.83030.81550.058*
C40.7051 (9)0.7647 (4)0.7851 (12)0.0408 (18)
H40.77720.79400.76610.049*
C50.7308 (8)0.6978 (3)0.7841 (10)0.0332 (16)
C60.8707 (7)0.6707 (3)0.7405 (10)0.0294 (15)
C70.9824 (8)0.7097 (4)0.6843 (12)0.0425 (18)
H70.97150.75440.67370.051*
C81.1074 (8)0.6813 (4)0.6453 (13)0.051 (2)
H81.18280.70670.60910.061*
C91.1214 (8)0.6160 (4)0.6595 (13)0.047 (2)
H91.20560.59610.63150.057*
C101.0100 (8)0.5801 (4)0.7156 (11)0.0384 (17)
H101.02060.53540.72670.046*
C110.5660 (7)0.5032 (3)0.4367 (11)0.0319 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.02946 (19)0.03118 (19)0.03045 (19)0.00956 (10)0.00100 (11)0.00129 (10)
N10.066 (5)0.037 (4)0.048 (4)0.001 (4)0.006 (3)0.002 (3)
N20.032 (3)0.036 (3)0.035 (3)0.003 (3)0.002 (3)0.002 (3)
N30.031 (3)0.029 (3)0.035 (3)0.007 (2)0.002 (2)0.001 (3)
O10.063 (5)0.044 (4)0.097 (5)0.009 (3)0.001 (4)0.006 (4)
O20.119 (7)0.032 (4)0.101 (6)0.018 (4)0.009 (5)0.004 (4)
O30.043 (3)0.042 (3)0.083 (5)0.008 (3)0.005 (3)0.006 (3)
O50.027 (3)0.051 (3)0.040 (3)0.011 (2)0.003 (2)0.001 (2)
O60.029 (3)0.065 (3)0.030 (3)0.013 (2)0.004 (2)0.012 (3)
O70.040 (3)0.055 (3)0.044 (3)0.005 (3)0.003 (2)0.006 (3)
C10.032 (4)0.062 (6)0.041 (5)0.001 (4)0.005 (3)0.001 (4)
C20.043 (5)0.066 (6)0.047 (5)0.023 (4)0.005 (4)0.008 (4)
C30.065 (6)0.039 (5)0.041 (5)0.017 (4)0.007 (4)0.005 (4)
C40.049 (5)0.038 (4)0.035 (4)0.006 (4)0.001 (3)0.002 (3)
C50.041 (4)0.030 (4)0.028 (4)0.000 (3)0.001 (3)0.005 (3)
C60.034 (4)0.028 (4)0.026 (4)0.005 (3)0.000 (3)0.000 (3)
C70.042 (4)0.036 (4)0.050 (5)0.016 (3)0.004 (3)0.004 (3)
C80.034 (4)0.061 (6)0.058 (6)0.019 (4)0.011 (4)0.001 (4)
C90.035 (4)0.057 (5)0.051 (5)0.000 (4)0.015 (3)0.003 (4)
C100.037 (4)0.036 (4)0.042 (5)0.000 (3)0.006 (3)0.004 (3)
C110.026 (4)0.033 (4)0.037 (4)0.001 (3)0.003 (3)0.001 (3)
Geometric parameters (Å, º) top
Pb1—O52.425 (5)C1—C21.371 (12)
Pb1—N32.522 (5)C1—H10.9300
Pb1—N22.532 (6)C2—C31.368 (12)
Pb1—O6i2.572 (5)C2—H20.9300
Pb1—O32.718 (6)C3—C41.377 (11)
Pb1—O72.809 (6)C3—H30.9300
N1—O21.214 (9)C4—C51.401 (10)
N1—O31.263 (9)C4—H40.9300
N1—O11.269 (10)C5—C61.490 (10)
N2—C11.334 (9)C6—C71.401 (9)
N2—C51.351 (9)C7—C81.366 (11)
N3—C101.336 (9)C7—H70.9300
N3—C61.344 (9)C8—C91.358 (12)
O5—C111.270 (9)C8—H80.9300
O6—C111.249 (9)C9—C101.362 (11)
O6—Pb1i2.572 (5)C9—H90.9300
O7—H7A0.8500C10—H100.9300
O7—H7B0.8499C11—C11i1.554 (13)
O5—Pb1—N374.93 (17)C2—C1—H1118.1
O5—Pb1—N283.62 (18)C3—C2—C1118.2 (8)
N3—Pb1—N265.04 (19)C3—C2—H2120.9
O5—Pb1—O6i66.07 (16)C1—C2—H2120.9
N3—Pb1—O6i131.97 (18)C2—C3—C4120.0 (8)
N2—Pb1—O6i83.30 (19)C2—C3—H3120.0
O5—Pb1—O380.03 (19)C4—C3—H3120.0
N3—Pb1—O381.95 (18)C3—C4—C5118.8 (8)
N2—Pb1—O3146.01 (19)C3—C4—H4120.6
O6i—Pb1—O3116.03 (18)C5—C4—H4120.6
O5—Pb1—O7147.62 (16)N2—C5—C4121.1 (7)
N3—Pb1—O772.69 (17)N2—C5—C6116.8 (6)
N2—Pb1—O782.64 (18)C4—C5—C6122.0 (7)
O6i—Pb1—O7140.35 (16)N3—C6—C7120.5 (7)
O3—Pb1—O795.61 (18)N3—C6—C5117.1 (6)
O2—N1—O3121.0 (8)C7—C6—C5122.4 (6)
O2—N1—O1121.2 (8)C8—C7—C6119.1 (7)
O3—N1—O1117.7 (7)C8—C7—H7120.4
C1—N2—C5118.2 (7)C6—C7—H7120.4
C1—N2—Pb1121.7 (5)C9—C8—C7119.8 (7)
C5—N2—Pb1119.0 (5)C9—C8—H8120.1
C10—N3—C6118.7 (6)C7—C8—H8120.1
C10—N3—Pb1121.2 (5)C8—C9—C10118.9 (8)
C6—N3—Pb1120.0 (4)C8—C9—H9120.5
N1—O3—Pb199.7 (5)C10—C9—H9120.5
C11—O5—Pb1119.4 (4)N3—C10—C9123.0 (7)
C11—O6—Pb1i114.5 (4)N3—C10—H10118.5
Pb1—O7—H7A106.6C9—C10—H10118.5
Pb1—O7—H7B107.0O6—C11—O5124.5 (6)
H7A—O7—H7B106.7O6—C11—C11i118.5 (8)
N2—C1—C2123.8 (8)O5—C11—C11i117.0 (8)
N2—C1—H1118.1
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O5ii0.852.232.875 (7)133
O7—H7B···O3iii0.852.162.912 (8)148
Symmetry codes: (ii) x, y, z+1; (iii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Pb2(C2O4)(NO3)2(C10H8N2)2(H2O)2]
Mr974.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.5791 (19), 20.6330 (14), 6.7649 (15)
β (°) 91.687 (1)
V3)1336.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)12.66
Crystal size (mm)0.29 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.120, 0.137
No. of measured, independent and
observed [I > 2σ(I)] reflections
7096, 2336, 2082
Rint0.038
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.07
No. of reflections2336
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.68, 1.19

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O5i0.852.232.875 (7)132.6
O7—H7B···O3ii0.852.162.912 (8)147.7
Symmetry codes: (i) x, y, z+1; (ii) x+2, y+1, z+2.
 

Acknowledgements

This work was supported by the Innovation Project of Guangxi University for Nationalities.

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, S. R. & Zhu, L. G. (2006). Inorg. Chem. 45, 7935–7942.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHagrman, P. J. & Zubieta, J. (2000). Inorg. Chem. 39, 3252–3260.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHamilton, B. H., Kelley, K. A., Wagler, T. A., Espe, M. P. & Ziegler, C. J. (2004). Inorg. Chem. 43, 50–56.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, Y. G., Wang, E. B., Zhang, H., Luan, G. L. & Hu, C. W. (2002). J. Solid State Chem. 163, 10–16.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds