metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dioxido{4,4′,6,6′-tetra­bromo-2,2′-[2,2-di­methylpropane-1,3-diylbis(nitrilomethanylyl­idene)]diphenolato}molyb­denum(VI)

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, I. R. of IRAN, and bDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 26 July 2012; accepted 19 September 2012; online 26 September 2012)

The asymmetric unit of the title compound, [Mo(C19H16Br4N2O2)O2], comprises two mol­ecules. The coordination environments around the MoVI atoms are distorted octa­hedral, defined by two oxide ligands and an N2O2 donor set of the tetra­dentate Schiff base in each mol­ecule. The dihedral angles between the benzene rings in the mol­ecules are 76.2 (3) and 77.7 (3)°. An inter­esting feature of the crystal structure is the presence of Br⋯Br contacts [3.4407 (11), 3.5430 (11) and 3.6492 (10) Å], which are shorter than the sum of the van der Waals radius of Br atoms (3.70 Å). The crystal structure is further stabilized by inter­molcular C—H⋯Br and C—H⋯π inter­actions. The crystal under investigation was twinned by nonmerohedry in a 0.053 (1):0.947 (1) ratio.

Related literature

For the importance of molybdenum in molybdoenzymes, in coordination chemistry and in catalysis, see: Majumdar & Sarkar (2011[Majumdar, A. & Sarkar, S. (2011). Coord. Chem. Rev. 255, 1039-1054.]); Enemark et al. (2004[Enemark, J. H., Cooney, J. J. A., Wang, J.-J. & Holm, R. H. (2004). Chem. Rev. 104, 1175-1200.]); Holm et al. (1996[Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239-2314.]); Mancka & Plass (2007[Mancka, M. & Plass, W. (2007). Inorg. Chem. Commun. 10, 677-680.]). For background to Schiff base ligands and their complexes with MoO2-containing units, see: Kia & Fun (2009[Kia, R. & Fun, H.-K. (2009). Acta Cryst. E65, m192-m193.]); Kargar & Kia (2011[Kargar, H. & Kia, R. (2011). Acta Cryst. E67, m1348.]). For related structures, see: Abbasi et al. (2008[Abbasi, A., Sheikhshoaie, I., Saghaei, A. & Monadi, N. (2008). Acta Cryst. E64, m1036.]); Monadi et al. (2009[Monadi, N., Sheikhshoaie, I., Rezaeifard, A. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1124-m1125.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C19H16Br4N2O2)O2]

  • Mr = 751.92

  • Monoclinic, P 21 /c

  • a = 13.1915 (6) Å

  • b = 15.7890 (8) Å

  • c = 22.2514 (13) Å

  • β = 101.702 (3)°

  • V = 4538.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 7.65 mm−1

  • T = 296 K

  • 0.22 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.284, Tmax = 0.515

  • 11292 measured reflections

  • 11292 independent reflections

  • 6212 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.101

  • S = 1.01

  • 11292 reflections

  • 546 parameters

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −1.11 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—O4 1.697 (4)
Mo1—O3 1.699 (4)
Mo1—O2 1.941 (3)
Mo1—O1 2.080 (3)
Mo1—N1 2.149 (4)
Mo1—N2 2.338 (4)
Mo2—O8 1.692 (4)
Mo2—O7 1.697 (4)
Mo2—O5 1.936 (3)
Mo2—O6 2.081 (3)
Mo2—N4 2.157 (4)
Mo2—N3 2.329 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29C⋯Br7i 0.96 2.88 3.792 (6) 160
Symmetry code: (i) -x+2, -y, -z.

Table 3
C—H⋯π inter­actions (Å,°)

Cg1 is the centroid of the C24–C29 ring and Cg2 is the centroid of the C14–C19 ring.

C—H⋯Cg C—H H⋯Cg C⋯Cg C—H⋯Cg
C12—H12ACg1ii 0.97 2.73 3.481 (6) 135
C27—H27ACg2iii 0.97 2.58 3.375 (6) 140
Symmetry codes: (ii) x, [{3\over 2}] − y, −[{1\over 2}] + z; (iii) x, [{3\over 2}] − y, [{1\over 2}] + z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Molybdenum is unique among the heavier transition metals due to its role as a bio-catalysts in enzymatic reactions in several molybdoproteins (Majumdar & Sarkar, 2011). Therefore the coordination chemistry of molybdenum(VI) has attracted considerable attention due to its biological importance (Enemark et al., 2004; Holm et al., 1996). This element is also applied in various catalytic oxidation reactions (Mancka & Plass, 2007). In continuation of our work on the crystal structure of Schiff base ligands derived from different substituted salicylaldehyde and amine precursors and their complexes (Kargar & Kia, 2011; Kia & Fun, 2009) we determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises two crystallographically independent molcules. For each molecule, the MoVI atom is coordinated by two oxide O atoms and by two O and two N atoms of the tetradentate Schiff base ligand in a distorted octahedral environment. The dihedral angles between the phenyl rings in the molecules are 76.2 (3) and 77.7 (3)°. The bond lengths and angles are within the normal ranges and comparable to previously reported structures (Abbasi et al., 2008; Monadi et al., 2009). The Mo1—N2 and Mo2—N3 bond lengths trans to the terminal oxido groups are significantly longer than the Mo1—N1 and Mo2—N4 bonds, a result attributed to the trans effect of the oxido group (Table 1). An interesting feature of the crystal structure are Br···Br contacts [Br3···Br3iv = 3.4420 (17) Å, (iv) 1 - x, 2 - y, 1 - z; Br6···Br6v = 3.5421 (17) Å, (v) -x, 2 - y, 1 - z; Br1···Br5v = 3.6492 (10) Å, (vi) 1 - x, 1/2 + y, 1/2 - z], which are shorter than the sum of the van der Waals radius of Br atoms [3.70 Å] (Bondi, 1964). The crystal structure is further stabilized by intermolecular C—H···Br and C—H···π interactions (Table 2, Fig. 2).

Related literature top

For the importance of molybdenum in molybdoenzymes, in coordination chemistry and in catalysis, see: Majumdar & Sarkar (2011); Enemark et al. (2004); Holm et al. (1996); Mancka & Plass (2007). For background to Schiff base ligands and their complexes with MoO2-containing units, see: Kia & Fun (2009); Kargar & Kia (2011). For related structures, see: Abbasi et al. (2008); Monadi et al. (2009). For van der Waals radii, see: Bondi (1964).

Experimental top

The title dioxidomolybdenum(VI) complex was prepared by mixing MoO2(acac)2 with the ligand, bis(3,5-dibromosalicylidene)-2,2-dimethyl-1,3-propandiamine, in a 1:1 molar ratio using 50 ml of methanol as solvent, followed by refluxing the solution for 2 h. The small dark-yellow crystals that had formed were filtered off and recrystallized from acetonitrile.

Refinement top

The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3 H atoms, respectively, with Uiso(H) = kUeq(C), k = 1.2 for CH, CH2 and 1.5 for CH3. The crystal is a non-merohdral twin with a refined BASF ratio of 0.053 (1)/0.947 (1). The twin matrix, [1.002, 0.00, 0.006; 0.000, -1, 0.000; -0.667, 0.000, -1.002], was obtained by TWINROTMAT routine in PLATON (Spek, 2009). The highest peak (1.28 e Å-3), and deepest hole (-1.11 e Å-3), are located 1.00 Å and 0.89 Å from Br6, respectively.

Structure description top

Molybdenum is unique among the heavier transition metals due to its role as a bio-catalysts in enzymatic reactions in several molybdoproteins (Majumdar & Sarkar, 2011). Therefore the coordination chemistry of molybdenum(VI) has attracted considerable attention due to its biological importance (Enemark et al., 2004; Holm et al., 1996). This element is also applied in various catalytic oxidation reactions (Mancka & Plass, 2007). In continuation of our work on the crystal structure of Schiff base ligands derived from different substituted salicylaldehyde and amine precursors and their complexes (Kargar & Kia, 2011; Kia & Fun, 2009) we determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises two crystallographically independent molcules. For each molecule, the MoVI atom is coordinated by two oxide O atoms and by two O and two N atoms of the tetradentate Schiff base ligand in a distorted octahedral environment. The dihedral angles between the phenyl rings in the molecules are 76.2 (3) and 77.7 (3)°. The bond lengths and angles are within the normal ranges and comparable to previously reported structures (Abbasi et al., 2008; Monadi et al., 2009). The Mo1—N2 and Mo2—N3 bond lengths trans to the terminal oxido groups are significantly longer than the Mo1—N1 and Mo2—N4 bonds, a result attributed to the trans effect of the oxido group (Table 1). An interesting feature of the crystal structure are Br···Br contacts [Br3···Br3iv = 3.4420 (17) Å, (iv) 1 - x, 2 - y, 1 - z; Br6···Br6v = 3.5421 (17) Å, (v) -x, 2 - y, 1 - z; Br1···Br5v = 3.6492 (10) Å, (vi) 1 - x, 1/2 + y, 1/2 - z], which are shorter than the sum of the van der Waals radius of Br atoms [3.70 Å] (Bondi, 1964). The crystal structure is further stabilized by intermolecular C—H···Br and C—H···π interactions (Table 2, Fig. 2).

For the importance of molybdenum in molybdoenzymes, in coordination chemistry and in catalysis, see: Majumdar & Sarkar (2011); Enemark et al. (2004); Holm et al. (1996); Mancka & Plass (2007). For background to Schiff base ligands and their complexes with MoO2-containing units, see: Kia & Fun (2009); Kargar & Kia (2011). For related structures, see: Abbasi et al. (2008); Monadi et al. (2009). For van der Waals radii, see: Bondi (1964).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The packing of the complex showing linking of molecules through intermolecular C—H···Br and Br···Br interactions (dashed lines).
Dioxido{4,4',6,6'-tetrabromo-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethanylylidene)]diphenolato}molybdenum(VI) top
Crystal data top
[Mo(C19H16Br4N2O2)O2]F(000) = 2864
Mr = 751.92Dx = 2.201 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3245 reflections
a = 13.1915 (6) Åθ = 2.6–28.4°
b = 15.7890 (8) ŵ = 7.65 mm1
c = 22.2514 (13) ÅT = 296 K
β = 101.702 (3)°Block, dark-yellow
V = 4538.2 (4) Å30.22 × 0.12 × 0.10 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD
diffractometer
11292 independent reflections
Radiation source: fine-focus sealed tube6212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(TWINABS; Bruker, 2005)
h = 1716
Tmin = 0.284, Tmax = 0.515k = 2121
11292 measured reflectionsl = 2629
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0281P)2 + 6.3956P]
where P = (Fo2 + 2Fc2)/3
11292 reflections(Δ/σ)max = 0.001
546 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 1.11 e Å3
Crystal data top
[Mo(C19H16Br4N2O2)O2]V = 4538.2 (4) Å3
Mr = 751.92Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.1915 (6) ŵ = 7.65 mm1
b = 15.7890 (8) ÅT = 296 K
c = 22.2514 (13) Å0.22 × 0.12 × 0.10 mm
β = 101.702 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
11292 independent reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2005)
6212 reflections with I > 2σ(I)
Tmin = 0.284, Tmax = 0.515Rint = 0.061
11292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.01Δρmax = 1.28 e Å3
11292 reflectionsΔρmin = 1.11 e Å3
546 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.80014 (4)0.41601 (3)0.37294 (2)0.03426 (13)
Br10.69649 (5)0.65616 (4)0.23848 (3)0.05079 (18)
Br20.61510 (6)0.83218 (4)0.44390 (3)0.0634 (2)
Br30.62244 (6)0.47603 (6)0.03994 (3)0.0773 (3)
Br40.97307 (5)0.51887 (5)0.22847 (3)0.05783 (19)
O10.7060 (3)0.5093 (2)0.32457 (16)0.0344 (9)
O20.8499 (3)0.4083 (2)0.29679 (16)0.0362 (9)
O30.8767 (3)0.4894 (3)0.41598 (17)0.0484 (11)
O40.8398 (3)0.3227 (3)0.40775 (18)0.0506 (11)
N10.6810 (3)0.4269 (3)0.42559 (19)0.0358 (11)
N20.6677 (3)0.3345 (3)0.3147 (2)0.0318 (10)
C10.6815 (4)0.5780 (4)0.3506 (2)0.0349 (13)
C20.6747 (4)0.6565 (4)0.3198 (2)0.0365 (14)
C30.6547 (4)0.7295 (4)0.3464 (3)0.0427 (15)
H30.65260.78030.32500.051*
C40.6370 (5)0.7287 (4)0.4061 (3)0.0432 (15)
C50.6359 (5)0.6547 (4)0.4367 (3)0.0456 (15)
H50.61990.65440.47560.055*
C60.6587 (4)0.5783 (3)0.4099 (3)0.0363 (13)
C70.6439 (4)0.4990 (4)0.4383 (3)0.0411 (14)
H70.60430.49940.46840.049*
C80.6367 (5)0.3499 (4)0.4466 (3)0.0432 (15)
H8A0.60040.36460.47900.052*
H8B0.69220.31130.46370.052*
C90.5615 (4)0.3055 (3)0.3947 (3)0.0379 (14)
C100.4717 (4)0.3638 (4)0.3669 (3)0.0535 (17)
H10A0.49780.41160.34810.080*
H10B0.43780.38310.39860.080*
H10C0.42330.33330.33650.080*
C110.5204 (5)0.2280 (4)0.4240 (3)0.062 (2)
H11A0.47840.19430.39260.093*
H11B0.47950.24660.45260.093*
H11C0.57760.19480.44520.093*
C120.6156 (4)0.2712 (3)0.3458 (3)0.0408 (14)
H12A0.66640.22960.36460.049*
H12B0.56480.24200.31510.049*
C130.6461 (4)0.3373 (3)0.2566 (2)0.0328 (13)
H130.59330.30220.23650.039*
C140.6976 (4)0.3913 (3)0.2187 (2)0.0322 (13)
C150.6479 (4)0.4054 (4)0.1582 (2)0.0383 (14)
H150.58360.38100.14310.046*
C160.6931 (4)0.4549 (4)0.1211 (2)0.0400 (14)
C170.7886 (4)0.4908 (4)0.1418 (3)0.0422 (15)
H170.81830.52540.11620.051*
C180.8396 (4)0.4747 (4)0.2012 (3)0.0356 (13)
C190.7963 (4)0.4249 (3)0.2405 (2)0.0341 (13)
Mo20.70727 (4)0.13032 (3)0.13118 (2)0.03377 (13)
Br50.52741 (5)0.01796 (5)0.26881 (3)0.0595 (2)
Br60.87859 (6)0.03688 (6)0.45921 (3)0.0780 (3)
Br70.89285 (7)0.28089 (5)0.04907 (4)0.0770 (3)
Br80.79532 (5)0.11866 (4)0.25519 (3)0.05139 (18)
O50.6550 (3)0.1341 (2)0.20641 (16)0.0375 (9)
O60.7997 (3)0.0337 (2)0.17652 (15)0.0352 (9)
O70.6303 (3)0.0596 (2)0.08586 (17)0.0455 (10)
O80.6704 (3)0.2251 (2)0.09839 (18)0.0486 (11)
N30.8393 (3)0.2063 (3)0.1937 (2)0.0335 (11)
N40.8290 (3)0.1228 (3)0.07968 (19)0.0361 (11)
C200.7057 (4)0.1136 (3)0.2630 (2)0.0311 (13)
C210.6602 (4)0.0609 (3)0.2998 (3)0.0346 (13)
C220.7109 (4)0.0386 (4)0.3582 (2)0.0400 (14)
H220.68000.00210.38190.048*
C230.8070 (4)0.0707 (4)0.3806 (3)0.0424 (15)
C240.8533 (4)0.1245 (4)0.3466 (3)0.0395 (14)
H240.91780.14740.36340.047*
C250.8051 (4)0.1456 (3)0.2871 (2)0.0317 (13)
C260.8593 (4)0.2006 (3)0.2517 (2)0.0338 (13)
H260.91270.23390.27310.041*
C270.8941 (4)0.2716 (3)0.1657 (2)0.0380 (14)
H27A0.94380.29890.19800.046*
H27B0.84430.31430.14750.046*
C280.9508 (4)0.2407 (4)0.1170 (3)0.0404 (14)
C290.9967 (5)0.3206 (4)0.0930 (3)0.0618 (19)
H29A1.03750.35090.12680.093*
H29B0.94160.35630.07230.093*
H29C1.03960.30440.06490.093*
C301.0372 (4)0.1792 (4)0.1436 (3)0.0540 (17)
H30A1.00790.12900.15750.081*
H30B1.08320.20540.17740.081*
H30C1.07500.16430.11250.081*
C310.8756 (5)0.2013 (4)0.0623 (3)0.0449 (15)
H31A0.82120.24170.04660.054*
H31B0.91260.18920.02970.054*
C320.8654 (4)0.0517 (4)0.0650 (2)0.0423 (15)
H320.90640.05300.03560.051*
C330.8481 (4)0.0292 (4)0.0903 (3)0.0391 (14)
C340.8719 (5)0.1031 (4)0.0602 (3)0.0480 (16)
H340.89060.09990.02210.058*
C350.8670 (5)0.1794 (4)0.0884 (3)0.0478 (16)
C360.8449 (4)0.1855 (4)0.1463 (3)0.0442 (15)
H360.84390.23820.16490.053*
C370.8244 (4)0.1138 (4)0.1763 (3)0.0376 (14)
C380.8211 (4)0.0338 (3)0.1483 (2)0.0328 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0350 (3)0.0377 (3)0.0285 (3)0.0038 (2)0.0026 (2)0.0013 (2)
Br10.0725 (5)0.0421 (4)0.0404 (4)0.0014 (3)0.0177 (3)0.0051 (3)
Br20.0913 (6)0.0364 (4)0.0697 (5)0.0113 (4)0.0332 (4)0.0066 (3)
Br30.0724 (5)0.1053 (7)0.0456 (4)0.0212 (5)0.0082 (4)0.0336 (4)
Br40.0410 (4)0.0710 (5)0.0613 (5)0.0173 (3)0.0100 (3)0.0028 (4)
O10.042 (2)0.029 (2)0.031 (2)0.0061 (18)0.0062 (17)0.0011 (17)
O20.028 (2)0.046 (3)0.034 (2)0.0075 (17)0.0056 (17)0.0007 (18)
O30.044 (2)0.062 (3)0.037 (2)0.011 (2)0.0017 (18)0.008 (2)
O40.052 (3)0.049 (3)0.046 (3)0.014 (2)0.001 (2)0.011 (2)
N10.048 (3)0.032 (3)0.026 (2)0.001 (2)0.006 (2)0.001 (2)
N20.038 (3)0.028 (3)0.032 (3)0.002 (2)0.013 (2)0.002 (2)
C10.036 (3)0.031 (3)0.035 (3)0.002 (3)0.003 (3)0.001 (3)
C20.045 (3)0.031 (3)0.034 (3)0.002 (3)0.010 (3)0.000 (3)
C30.044 (4)0.033 (4)0.052 (4)0.003 (3)0.014 (3)0.005 (3)
C40.053 (4)0.030 (4)0.050 (4)0.004 (3)0.018 (3)0.009 (3)
C50.057 (4)0.038 (4)0.045 (4)0.001 (3)0.017 (3)0.008 (3)
C60.043 (3)0.027 (3)0.039 (3)0.002 (3)0.012 (3)0.001 (3)
C70.054 (4)0.040 (4)0.032 (3)0.002 (3)0.013 (3)0.000 (3)
C80.057 (4)0.039 (4)0.035 (3)0.002 (3)0.014 (3)0.009 (3)
C90.048 (4)0.028 (3)0.040 (3)0.004 (3)0.016 (3)0.006 (3)
C100.045 (4)0.069 (5)0.048 (4)0.008 (3)0.014 (3)0.010 (3)
C110.080 (5)0.061 (5)0.053 (4)0.021 (4)0.030 (4)0.003 (3)
C120.050 (4)0.037 (4)0.038 (3)0.003 (3)0.015 (3)0.002 (3)
C130.029 (3)0.033 (3)0.038 (3)0.001 (2)0.008 (2)0.001 (2)
C140.036 (3)0.030 (3)0.033 (3)0.000 (2)0.011 (3)0.001 (2)
C150.039 (3)0.045 (4)0.032 (3)0.001 (3)0.008 (3)0.003 (3)
C160.040 (3)0.048 (4)0.032 (3)0.005 (3)0.006 (3)0.001 (3)
C170.050 (4)0.037 (4)0.042 (4)0.003 (3)0.014 (3)0.004 (3)
C180.030 (3)0.038 (4)0.040 (3)0.005 (3)0.009 (3)0.003 (3)
C190.034 (3)0.031 (3)0.037 (3)0.009 (3)0.006 (3)0.001 (3)
Mo20.0349 (3)0.0358 (3)0.0283 (3)0.0035 (2)0.0009 (2)0.0005 (2)
Br50.0416 (4)0.0721 (5)0.0635 (5)0.0158 (3)0.0073 (3)0.0017 (4)
Br60.0805 (5)0.1085 (7)0.0381 (4)0.0122 (5)0.0043 (4)0.0208 (4)
Br70.0985 (6)0.0559 (5)0.0780 (6)0.0189 (4)0.0208 (5)0.0274 (4)
Br80.0708 (5)0.0417 (4)0.0442 (4)0.0001 (3)0.0176 (3)0.0039 (3)
O50.035 (2)0.046 (2)0.031 (2)0.0027 (18)0.0050 (17)0.0014 (18)
O60.045 (2)0.032 (2)0.027 (2)0.0060 (18)0.0024 (17)0.0010 (16)
O70.047 (2)0.051 (3)0.034 (2)0.006 (2)0.0010 (18)0.0021 (19)
O80.051 (3)0.043 (3)0.048 (3)0.011 (2)0.001 (2)0.0092 (19)
N30.036 (3)0.031 (3)0.034 (3)0.002 (2)0.008 (2)0.001 (2)
N40.043 (3)0.038 (3)0.026 (2)0.002 (2)0.002 (2)0.000 (2)
C200.030 (3)0.029 (3)0.036 (3)0.008 (2)0.012 (3)0.006 (2)
C210.033 (3)0.034 (3)0.039 (3)0.000 (3)0.011 (3)0.003 (3)
C220.045 (4)0.041 (4)0.035 (3)0.001 (3)0.011 (3)0.004 (3)
C230.045 (4)0.049 (4)0.030 (3)0.005 (3)0.000 (3)0.003 (3)
C240.036 (3)0.042 (4)0.040 (3)0.001 (3)0.005 (3)0.006 (3)
C250.033 (3)0.035 (3)0.028 (3)0.003 (3)0.006 (2)0.001 (2)
C260.029 (3)0.036 (3)0.036 (3)0.004 (3)0.007 (2)0.005 (2)
C270.045 (3)0.029 (3)0.039 (3)0.002 (3)0.006 (3)0.003 (2)
C280.041 (3)0.043 (4)0.038 (3)0.010 (3)0.011 (3)0.002 (3)
C290.083 (5)0.057 (5)0.050 (4)0.024 (4)0.024 (4)0.005 (3)
C300.047 (4)0.067 (5)0.050 (4)0.002 (4)0.015 (3)0.001 (3)
C310.059 (4)0.042 (4)0.034 (3)0.003 (3)0.012 (3)0.005 (3)
C320.046 (4)0.055 (4)0.026 (3)0.003 (3)0.007 (3)0.003 (3)
C330.041 (3)0.042 (4)0.035 (3)0.001 (3)0.008 (3)0.005 (3)
C340.052 (4)0.051 (4)0.043 (4)0.007 (3)0.013 (3)0.010 (3)
C350.047 (4)0.042 (4)0.052 (4)0.009 (3)0.005 (3)0.023 (3)
C360.047 (4)0.032 (4)0.051 (4)0.007 (3)0.003 (3)0.006 (3)
C370.036 (3)0.038 (4)0.037 (3)0.004 (3)0.006 (3)0.000 (3)
C380.029 (3)0.033 (3)0.036 (3)0.002 (3)0.003 (2)0.003 (3)
Geometric parameters (Å, º) top
Mo1—O41.697 (4)Mo2—O81.692 (4)
Mo1—O31.699 (4)Mo2—O71.697 (4)
Mo1—O21.941 (3)Mo2—O51.936 (3)
Mo1—O12.080 (3)Mo2—O62.081 (3)
Mo1—N12.149 (4)Mo2—N42.157 (4)
Mo1—N22.338 (4)Mo2—N32.329 (4)
Br1—C21.889 (5)Br5—C211.874 (5)
Br2—C41.887 (5)Br6—C231.889 (5)
Br3—C161.887 (5)Br7—C351.890 (6)
Br4—C181.877 (5)Br8—C371.874 (6)
O1—C11.301 (6)O5—C201.341 (6)
O2—C191.335 (6)O6—C381.297 (6)
N1—C71.292 (7)N3—C261.266 (6)
N1—C81.466 (7)N3—C271.469 (6)
N2—C131.268 (6)N4—C321.290 (7)
N2—C121.464 (6)N4—C311.471 (7)
C1—C21.409 (7)C20—C211.386 (7)
C1—C61.413 (7)C20—C251.405 (7)
C2—C31.345 (7)C21—C221.381 (7)
C3—C41.395 (8)C22—C231.363 (7)
C3—H30.9300C22—H220.9300
C4—C51.354 (8)C23—C241.361 (8)
C5—C61.405 (7)C24—C251.387 (7)
C5—H50.9300C24—H240.9300
C6—C71.434 (8)C25—C261.455 (7)
C7—H70.9300C26—H260.9300
C8—C91.533 (8)C27—C281.516 (7)
C8—H8A0.9700C27—H27A0.9700
C8—H8B0.9700C27—H27B0.9700
C9—C121.517 (7)C28—C301.523 (8)
C9—C101.528 (8)C28—C311.537 (7)
C9—C111.536 (7)C28—C291.541 (8)
C10—H10A0.9600C29—H29A0.9600
C10—H10B0.9600C29—H29B0.9600
C10—H10C0.9600C29—H29C0.9600
C11—H11A0.9600C30—H30A0.9600
C11—H11B0.9600C30—H30B0.9600
C11—H11C0.9600C30—H30C0.9600
C12—H12A0.9700C31—H31A0.9700
C12—H12B0.9700C31—H31B0.9700
C13—C141.460 (7)C32—C331.432 (8)
C13—H130.9300C32—H320.9300
C14—C151.390 (7)C33—C381.410 (7)
C14—C191.398 (7)C33—C341.411 (8)
C15—C161.360 (8)C34—C351.366 (8)
C15—H150.9300C34—H340.9300
C16—C171.372 (7)C35—C361.382 (8)
C17—C181.380 (7)C36—C371.367 (7)
C17—H170.9300C36—H360.9300
C18—C191.382 (7)C37—C381.404 (7)
O4—Mo1—O3103.99 (19)O8—Mo2—O7103.94 (19)
O4—Mo1—O2102.49 (17)O8—Mo2—O5102.94 (17)
O3—Mo1—O2105.50 (17)O7—Mo2—O5105.01 (17)
O4—Mo1—O1161.28 (17)O8—Mo2—O6161.06 (17)
O3—Mo1—O191.90 (17)O7—Mo2—O691.52 (16)
O2—Mo1—O182.25 (14)O5—Mo2—O683.09 (14)
O4—Mo1—N190.71 (18)O8—Mo2—N489.96 (18)
O3—Mo1—N193.14 (18)O7—Mo2—N493.90 (18)
O2—Mo1—N1153.52 (15)O5—Mo2—N4153.52 (15)
O1—Mo1—N178.43 (15)O6—Mo2—N477.96 (15)
O4—Mo1—N284.34 (17)O8—Mo2—N385.22 (17)
O3—Mo1—N2168.34 (17)O7—Mo2—N3168.14 (17)
O2—Mo1—N280.14 (15)O5—Mo2—N379.74 (15)
O1—Mo1—N278.61 (14)O6—Mo2—N378.15 (14)
N1—Mo1—N278.44 (15)N4—Mo2—N378.40 (16)
C1—O1—Mo1122.4 (3)C20—O5—Mo2127.4 (3)
C19—O2—Mo1126.8 (3)C38—O6—Mo2122.1 (3)
C7—N1—C8117.8 (5)C26—N3—C27117.6 (5)
C7—N1—Mo1122.8 (4)C26—N3—Mo2123.2 (4)
C8—N1—Mo1119.4 (4)C27—N3—Mo2118.8 (3)
C13—N2—C12118.3 (5)C32—N4—C31118.1 (5)
C13—N2—Mo1122.4 (4)C32—N4—Mo2122.6 (4)
C12—N2—Mo1119.0 (3)C31—N4—Mo2119.3 (4)
O1—C1—C2121.0 (5)O5—C20—C21120.4 (5)
O1—C1—C6122.5 (5)O5—C20—C25121.4 (5)
C2—C1—C6116.5 (5)C21—C20—C25118.2 (5)
C3—C2—C1122.6 (5)C22—C21—C20121.5 (5)
C3—C2—Br1120.3 (4)C22—C21—Br5119.5 (4)
C1—C2—Br1117.1 (4)C20—C21—Br5119.0 (4)
C2—C3—C4119.8 (6)C23—C22—C21119.1 (5)
C2—C3—H3120.1C23—C22—H22120.5
C4—C3—H3120.1C21—C22—H22120.5
C5—C4—C3120.6 (5)C24—C23—C22121.2 (5)
C5—C4—Br2120.3 (5)C24—C23—Br6119.7 (4)
C3—C4—Br2119.1 (5)C22—C23—Br6119.1 (5)
C4—C5—C6120.1 (6)C23—C24—C25120.6 (5)
C4—C5—H5120.0C23—C24—H24119.7
C6—C5—H5120.0C25—C24—H24119.7
C5—C6—C1120.3 (5)C24—C25—C20119.3 (5)
C5—C6—C7120.2 (5)C24—C25—C26118.6 (5)
C1—C6—C7118.9 (5)C20—C25—C26122.1 (5)
N1—C7—C6125.5 (5)N3—C26—C25124.8 (5)
N1—C7—H7117.2N3—C26—H26117.6
C6—C7—H7117.2C25—C26—H26117.6
N1—C8—C9112.2 (4)N3—C27—C28115.7 (4)
N1—C8—H8A109.2N3—C27—H27A108.4
C9—C8—H8A109.2C28—C27—H27A108.4
N1—C8—H8B109.2N3—C27—H27B108.4
C9—C8—H8B109.2C28—C27—H27B108.4
H8A—C8—H8B107.9H27A—C27—H27B107.4
C12—C9—C10111.3 (5)C27—C28—C30111.5 (5)
C12—C9—C8112.2 (5)C27—C28—C31111.4 (5)
C10—C9—C8111.0 (5)C30—C28—C31111.2 (5)
C12—C9—C11106.2 (5)C27—C28—C29105.7 (5)
C10—C9—C11109.9 (5)C30—C28—C29109.9 (5)
C8—C9—C11105.9 (5)C31—C28—C29107.0 (5)
C9—C10—H10A109.5C28—C29—H29A109.5
C9—C10—H10B109.5C28—C29—H29B109.5
H10A—C10—H10B109.5H29A—C29—H29B109.5
C9—C10—H10C109.5C28—C29—H29C109.5
H10A—C10—H10C109.5H29A—C29—H29C109.5
H10B—C10—H10C109.5H29B—C29—H29C109.5
C9—C11—H11A109.5C28—C30—H30A109.5
C9—C11—H11B109.5C28—C30—H30B109.5
H11A—C11—H11B109.5H30A—C30—H30B109.5
C9—C11—H11C109.5C28—C30—H30C109.5
H11A—C11—H11C109.5H30A—C30—H30C109.5
H11B—C11—H11C109.5H30B—C30—H30C109.5
N2—C12—C9115.4 (4)N4—C31—C28111.7 (4)
N2—C12—H12A108.4N4—C31—H31A109.3
C9—C12—H12A108.4C28—C31—H31A109.3
N2—C12—H12B108.4N4—C31—H31B109.3
C9—C12—H12B108.4C28—C31—H31B109.3
H12A—C12—H12B107.5H31A—C31—H31B108.0
N2—C13—C14125.0 (5)N4—C32—C33125.5 (6)
N2—C13—H13117.5N4—C32—H32117.3
C14—C13—H13117.5C33—C32—H32117.3
C15—C14—C19119.8 (5)C38—C33—C34120.9 (6)
C15—C14—C13117.9 (5)C38—C33—C32119.7 (5)
C19—C14—C13122.1 (5)C34—C33—C32118.8 (6)
C16—C15—C14120.1 (5)C35—C34—C33118.4 (6)
C16—C15—H15120.0C35—C34—H34120.8
C14—C15—H15120.0C33—C34—H34120.8
C15—C16—C17121.4 (5)C34—C35—C36121.9 (6)
C15—C16—Br3119.4 (4)C34—C35—Br7120.4 (5)
C17—C16—Br3119.3 (4)C36—C35—Br7117.7 (5)
C16—C17—C18118.7 (5)C37—C36—C35119.8 (6)
C16—C17—H17120.7C37—C36—H36120.1
C18—C17—H17120.7C35—C36—H36120.1
C17—C18—C19121.8 (5)C36—C37—C38121.4 (6)
C17—C18—Br4119.0 (4)C36—C37—Br8121.4 (5)
C19—C18—Br4119.2 (4)C38—C37—Br8117.2 (4)
O2—C19—C18119.9 (5)O6—C38—C37121.1 (5)
O2—C19—C14122.0 (5)O6—C38—C33121.4 (5)
C18—C19—C14118.2 (5)C37—C38—C33117.4 (5)
O4—Mo1—O1—C1110.4 (6)O8—Mo2—O5—C20132.9 (4)
O3—Mo1—O1—C138.0 (4)O7—Mo2—O5—C20118.5 (4)
O2—Mo1—O1—C1143.4 (4)O6—Mo2—O5—C2028.8 (4)
N1—Mo1—O1—C154.8 (4)N4—Mo2—O5—C2015.6 (7)
N2—Mo1—O1—C1135.2 (4)N3—Mo2—O5—C2050.3 (4)
O4—Mo1—O2—C19132.3 (4)O8—Mo2—O6—C38108.5 (6)
O3—Mo1—O2—C19119.2 (4)O7—Mo2—O6—C3836.6 (4)
O1—Mo1—O2—C1929.3 (4)O5—Mo2—O6—C38141.5 (4)
N1—Mo1—O2—C1914.0 (7)N4—Mo2—O6—C3857.1 (4)
N2—Mo1—O2—C1950.4 (4)N3—Mo2—O6—C38137.6 (4)
O4—Mo1—N1—C7153.6 (4)O8—Mo2—N3—C26129.6 (4)
O3—Mo1—N1—C749.5 (5)O7—Mo2—N3—C2689.3 (9)
O2—Mo1—N1—C785.8 (6)O5—Mo2—N3—C2625.5 (4)
O1—Mo1—N1—C741.8 (4)O6—Mo2—N3—C2659.6 (4)
N2—Mo1—N1—C7122.3 (4)N4—Mo2—N3—C26139.5 (4)
O4—Mo1—N1—C828.5 (4)O8—Mo2—N3—C2742.9 (4)
O3—Mo1—N1—C8132.5 (4)O7—Mo2—N3—C2798.3 (9)
O2—Mo1—N1—C892.2 (5)O5—Mo2—N3—C27147.0 (4)
O1—Mo1—N1—C8136.2 (4)O6—Mo2—N3—C27128.0 (4)
N2—Mo1—N1—C855.6 (4)N4—Mo2—N3—C2748.1 (4)
O4—Mo1—N2—C13129.3 (4)O8—Mo2—N4—C32153.0 (4)
O3—Mo1—N2—C1394.4 (9)O7—Mo2—N4—C3249.0 (4)
O2—Mo1—N2—C1325.6 (4)O5—Mo2—N4—C3287.0 (6)
O1—Mo1—N2—C1358.4 (4)O6—Mo2—N4—C3241.7 (4)
N1—Mo1—N2—C13138.8 (4)N3—Mo2—N4—C32121.9 (4)
O4—Mo1—N2—C1243.7 (4)O8—Mo2—N4—C3129.4 (4)
O3—Mo1—N2—C1292.6 (9)O7—Mo2—N4—C31133.3 (4)
O2—Mo1—N2—C12147.4 (4)O5—Mo2—N4—C3190.7 (5)
O1—Mo1—N2—C12128.6 (4)O6—Mo2—N4—C31135.9 (4)
N1—Mo1—N2—C1248.2 (4)N3—Mo2—N4—C3155.8 (4)
Mo1—O1—C1—C2142.0 (4)Mo2—O5—C20—C21131.8 (4)
Mo1—O1—C1—C639.2 (7)Mo2—O5—C20—C2549.1 (7)
O1—C1—C2—C3176.6 (5)O5—C20—C21—C22179.7 (5)
C6—C1—C2—C34.5 (8)C25—C20—C21—C221.2 (8)
O1—C1—C2—Br12.7 (7)O5—C20—C21—Br50.6 (7)
C6—C1—C2—Br1176.2 (4)C25—C20—C21—Br5179.7 (4)
C1—C2—C3—C41.7 (9)C20—C21—C22—C231.5 (8)
Br1—C2—C3—C4178.9 (4)Br5—C21—C22—C23179.3 (4)
C2—C3—C4—C52.6 (9)C21—C22—C23—C240.3 (9)
C2—C3—C4—Br2177.2 (4)C21—C22—C23—Br6177.6 (4)
C3—C4—C5—C63.9 (9)C22—C23—C24—C252.4 (9)
Br2—C4—C5—C6175.9 (4)Br6—C23—C24—C25175.5 (4)
C4—C5—C6—C11.0 (9)C23—C24—C25—C202.7 (8)
C4—C5—C6—C7171.5 (6)C23—C24—C25—C26177.5 (5)
O1—C1—C6—C5178.0 (5)O5—C20—C25—C24178.2 (5)
C2—C1—C6—C53.1 (8)C21—C20—C25—C240.9 (8)
O1—C1—C6—C711.3 (8)O5—C20—C25—C261.6 (8)
C2—C1—C6—C7167.6 (5)C21—C20—C25—C26179.3 (5)
C8—N1—C7—C6164.2 (5)C27—N3—C26—C25173.6 (5)
Mo1—N1—C7—C613.8 (8)Mo2—N3—C26—C251.1 (7)
C5—C6—C7—N1165.1 (6)C24—C25—C26—N3159.7 (5)
C1—C6—C7—N124.2 (9)C20—C25—C26—N320.5 (8)
C7—N1—C8—C9102.4 (6)C26—N3—C27—C28126.3 (5)
Mo1—N1—C8—C975.6 (5)Mo2—N3—C27—C2860.9 (6)
N1—C8—C9—C1265.7 (6)N3—C27—C28—C3063.3 (6)
N1—C8—C9—C1059.6 (6)N3—C27—C28—C3161.6 (6)
N1—C8—C9—C11178.8 (5)N3—C27—C28—C29177.4 (5)
C13—N2—C12—C9126.7 (5)C32—N4—C31—C28101.6 (6)
Mo1—N2—C12—C960.1 (6)Mo2—N4—C31—C2876.1 (5)
C10—C9—C12—N264.8 (6)C27—C28—C31—N466.6 (6)
C8—C9—C12—N260.4 (6)C30—C28—C31—N458.5 (6)
C11—C9—C12—N2175.6 (5)C29—C28—C31—N4178.5 (5)
C12—N2—C13—C14174.3 (5)C31—N4—C32—C33164.0 (5)
Mo1—N2—C13—C141.2 (7)Mo2—N4—C32—C3313.7 (8)
N2—C13—C14—C15162.1 (5)N4—C32—C33—C3823.1 (9)
N2—C13—C14—C1921.1 (8)N4—C32—C33—C34165.3 (5)
C19—C14—C15—C162.8 (8)C38—C33—C34—C350.8 (9)
C13—C14—C15—C16179.7 (5)C32—C33—C34—C35172.3 (5)
C14—C15—C16—C170.9 (9)C33—C34—C35—C363.5 (9)
C14—C15—C16—Br3178.1 (4)C33—C34—C35—Br7177.5 (4)
C15—C16—C17—C181.2 (9)C34—C35—C36—C371.8 (9)
Br3—C16—C17—C18179.8 (4)Br7—C35—C36—C37179.2 (4)
C16—C17—C18—C191.4 (9)C35—C36—C37—C382.6 (9)
C16—C17—C18—Br4176.8 (4)C35—C36—C37—Br8179.3 (4)
Mo1—O2—C19—C18133.1 (4)Mo2—O6—C38—C37140.7 (4)
Mo1—O2—C19—C1449.0 (7)Mo2—O6—C38—C3343.2 (6)
C17—C18—C19—O2177.4 (5)C36—C37—C38—O6178.7 (5)
Br4—C18—C19—O20.7 (7)Br8—C37—C38—O60.6 (7)
C17—C18—C19—C140.5 (8)C36—C37—C38—C335.1 (8)
Br4—C18—C19—C14178.7 (4)Br8—C37—C38—C33176.8 (4)
C15—C14—C19—O2175.3 (5)C34—C33—C38—O6179.6 (5)
C13—C14—C19—O21.4 (8)C32—C33—C38—O68.2 (8)
C15—C14—C19—C182.6 (8)C34—C33—C38—C373.3 (8)
C13—C14—C19—C18179.3 (5)C32—C33—C38—C37168.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29C···Br7i0.962.883.792 (6)160
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Mo(C19H16Br4N2O2)O2]
Mr751.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.1915 (6), 15.7890 (8), 22.2514 (13)
β (°) 101.702 (3)
V3)4538.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)7.65
Crystal size (mm)0.22 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(TWINABS; Bruker, 2005)
Tmin, Tmax0.284, 0.515
No. of measured, independent and
observed [I > 2σ(I)] reflections
11292, 11292, 6212
Rint0.061
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.101, 1.01
No. of reflections11292
No. of parameters546
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 1.11

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Mo1—O41.697 (4)Mo2—O81.692 (4)
Mo1—O31.699 (4)Mo2—O71.697 (4)
Mo1—O21.941 (3)Mo2—O51.936 (3)
Mo1—O12.080 (3)Mo2—O62.081 (3)
Mo1—N12.149 (4)Mo2—N42.157 (4)
Mo1—N22.338 (4)Mo2—N32.329 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29C···Br7i0.962.883.792 (6)159.7
Symmetry code: (i) x+2, y, z.
C—H···π interactions (Å,°) top
Cg1 is the centroid of the C24–C29 ring and Cg2 is the centroid of the C14–C19 ring.
C—H···CgC—HH···CgC···CgC—H···Cg
C12—H12A···Cg1ii0.972.733.481 (6)135
C27—H27A···Cg2iii0.972.583.375(s.u.?)140
Symmetry codes: (ii) x, 3/2 - y, -1/2 + z; (iii) x, 3/2 - y, 1/2 + z.
 

Acknowledgements

HK thanks PNU for financial support. MNT thanks the GC University of Sargodha, Pakistan, for research facilities.

References

First citationAbbasi, A., Sheikhshoaie, I., Saghaei, A. & Monadi, N. (2008). Acta Cryst. E64, m1036.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEnemark, J. H., Cooney, J. J. A., Wang, J.-J. & Holm, R. H. (2004). Chem. Rev. 104, 1175–1200.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHolm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKargar, H. & Kia, R. (2011). Acta Cryst. E67, m1348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R. & Fun, H.-K. (2009). Acta Cryst. E65, m192–m193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMajumdar, A. & Sarkar, S. (2011). Coord. Chem. Rev. 255, 1039–1054.  Web of Science CrossRef CAS Google Scholar
First citationMancka, M. & Plass, W. (2007). Inorg. Chem. Commun. 10, 677–680.  Web of Science CSD CrossRef CAS Google Scholar
First citationMonadi, N., Sheikhshoaie, I., Rezaeifard, A. & Stoeckli-Evans, H. (2009). Acta Cryst. E65, m1124–m1125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds