metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two coordination modes of CuII in a binuclear complex with N-(pyridin-2-yl­carbon­yl)pyridine-2-carboxamidate ligands

aFacultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel Flores, 81223 Los Mochis, Sinaloa, México, bInstituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México, D.F., 04510, México, cCentro de Investigaciones Químicas, Universidad Autónoma del estado de Morelos, Av. Universidad 1001, 62209 Cuernavaca, Morelos, México, and dCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500 Tijuana, BC, México
*Correspondence e-mail: gaxiolajose@yahoo.com.mx

(Received 2 August 2012; accepted 6 September 2012; online 19 September 2012)

In the title dinuclear complex, (acetonitrile-1κN)[μ-N-(pyri­din-2-ylcarbonyl)pyridine-2-carboxamidato-1:2κ5N,N′,N′′:O,O′][N-(pyridin-2-ylcarbonyl)pyridine-2-carboxamidato-2κ3N,N′,N′′]bis(trifluoromethanesulfonato-1κO)dicopper(II), [Cu2(C12H8N3O2)2(CF3O3S)2(CH3CN)], one of the CuII ions is five-coordinated in a distorted square-pyramidal N3O2 environment provided by two N-(pyridin-2-ylcarbon­yl)pyridine-2-carboxamidate (bpca) ligands, while the second CuII ion is six-coordinated in a distorted octa­hedral N4O2 environment provided by one bpca ligand, two trifluoro­methansulfonate ligands and one acetonitrile mol­ecule. Weak inter­molecular C—H⋯O and C—H⋯F hydrogen bonds and ππ stacking inter­actions with centroid–centroid distances of 3.6799 (15) and 3.8520 (16) Å stabilize the crystal packing and lead to a three-dimensional network.

Related literature

For complexes of divalent metal ions with the N-(pyridin-2-ylcarbon­yl)pyridine-2-carboxamidate (bpca) ligand, see: Chowdhury et al. (2007[Chowdhury, H., Rahaman, S. H., Ghosh, R., Sarkar, S. K., Fun, H.-K. & Ghosh, B. K. (2007). J. Mol. Struct. 826, 170-176.]); Folgado et al. (1988[Folgado, J. V., Beltran-Porter, D., Burriel, R., Fuertes, A. & Miravitlles, C. (1988). J. Chem. Soc. Dalton Trans. pp. 3041-3045.]); Ha (2010[Ha, K. (2010). Z. Kristallogr. New Cryst. Struct. 225, 789-790.], 2011[Ha, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 55-56.]); Halder et al. (2010[Halder, D., Zangrando, E. & Kanti Paine, T. (2010). Polyhedron, 29, 434-440.]); Miguel et al. (2009[Miguel, P. J. S., Roitzsch, M., Yin, L., Lax, P. M., Holland, L., Krizanovic, O., Lutterbeck, M., Shurmann, E., Fusch, E. C. & Lippert, B. (2009). Dalton Trans. pp. 10774-10786.]). For complexes of trivalent metal ions with the bpca ligand, see: Li et al. (2011[Li, X.-F., Qiu, T.-B., Hu, L.-X. & Hu, C.-Y. (2011). Acta Cryst. E67, m1765-m1766.]); Sugimoto et al. (2002[Sugimoto, H., Takahira, T., Yoshimura, T., Shiro, M., Yamasaki, M., Miyake, H., Umakoshi, K. & Sasaki, Y. (2002). Inorg. Chim. Acta, 337, 203-211.]); Wocadlo et al. (1993[Wocadlo, S., Massa, W. & Folgado, J. V. (1993). Inorg. Chim. Acta, 207, 199-206.]). For electrochemical and magnetic studies for example complexes of Cu(II), see: Cangussu de Castro Gomes et al. (2008[Cangussu de Castro Gomes, D. C., Marilena Toma, L., Stumpf, H. O., Adams, H., Thomas, J. A., Lloret, F. & Julve, M. (2008). Polyhedron, 27, 559-573.]); Kajiwara et al. (2002[Kajiwara, T., Senbsui, R., Noguchi, T., Kamiyama, A. & Ito, T. (2002). Inorg. Chim. Acta, 337, 299-307.]). For the synthesis of the ligand, see: Larter et al. (1998[Larter, M. L., Phillips, M., Ortega, F., Aguirre, G., Somanathan, R. & Walsh, P. J. (1998). Tetrahedron Lett. 39, 4785-4788.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C12H8N3O2)2(CF3O3S)2(C2H3N)]

  • Mr = 918.70

  • Triclinic, [P \overline 1]

  • a = 8.9726 (7) Å

  • b = 10.0569 (8) Å

  • c = 18.3689 (15) Å

  • α = 82.573 (1)°

  • β = 83.802 (1)°

  • γ = 82.222 (1)°

  • V = 1621.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 100 K

  • 0.32 × 0.24 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.638, Tmax = 0.768

  • 15254 measured reflections

  • 5686 independent reflections

  • 5292 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.04

  • 5686 reflections

  • 497 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O9i 0.95 2.57 3.448 (3) 154
C4—H4⋯O1ii 0.95 2.53 3.210 (4) 128
C10—H10⋯F5iii 0.95 2.54 3.239 (3) 130
C21—H21⋯O1iv 0.95 2.48 3.257 (3) 140
C21—H21⋯O2iv 0.95 2.37 3.203 (3) 147
C22—H22⋯O10v 0.95 2.48 3.400 (3) 163
Symmetry codes: (i) x+1, y-1, z; (ii) -x+2, -y, -z+1; (iii) -x+1, -y+2, -z+1; (iv) -x+2, -y+1, -z+1; (v) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-(pyridin-2-ylcarbonyl)pyridine-2-carboxamidate (bpca) is a rigid tridentate ligand that can act as a bridging ligand to produce supramolecular structures based on organic-inorganic coordination frameworks (Halder et al., 2010). This ligand exhibits various coordination modes. It can also appear as a regular tridentate chelating ligand via its two pyridine and one amine N atoms, or in a bidentate manner through the carboxyl groups. The bpca ligand forms coordination complexes with a large number of divalent metal ions, e.g. Pd(II) (Ha, 2010; Miguel et al., 2009), Pt(II) (Ha, 2011), Cu(II) (Folgado et al., 1988; Chowdhury et al., 2007), or with trivalent metals ions, e.g. Fe(III) (Wocadlo et al., 1993; Li et al., 2011), Cr(III) (Kajiwara et al., 2002), Co(III), Re(III) (Sugimoto et al., 2002)]. Mono and multinuclear complexes with bpca have been the subject of various electrochemical and magnetic studies, for example of complexes of Cu(II) (Cangussu de Castro Gomes et al., 2008; Chowdhury et al., 2007) and Co(III) (Kajiwara et al., 2002). In this context we report here the crystal structure for the dinuclear copper complex [Cu2(C12H8N3O2)2(CF3SO3)2(CH3CN)], or [(bpca)Cu(µ-bpca)Cu(OSO2CF3)2(NCCH3)]. An ORTEP-style plot of the molecular structure including the atom numbering is shown in Figure 1.

The above mentioned complex presents the copper(II) ion Cu1 in a five-coordinate environment in a somewhat distorted square pyramidal geometry. The coordination includes two bpca ligands. One ligand acts as a tridentate N,N'N''-chelate through two pyridine nitrogen atoms (Cu—N1 = 1.978 (2) and Cu—N3 = 1.988 (2) Å) and one amide nitrogen atom in basal positions (Cu—N2 = 1.922 (2) Å); the forth basal position is occupied by one carbonyl O atom (O4) from the bridging ligand with a Cu—O distance of 1.977 (18) while the second carbonyl O atom (O3) is at the apical site at a distance of 2.2452 (18). The six-coordinate Cu2 ion is found in a distorted octahedral geometry, defined by the N atoms of the bridging bpca ligand and one acetonitrile molecule in equatorial positions and two trifluoromethansulfonate O atoms with distances Cu—O of 2.439 (2) and 2.482 (2) Å in axial positions. The angles between the copper atoms and the bpca ligands vary in the range of 81.49 (9) - 82.83 (9) ° evidencing the small bite angle of the corresponding five membered chelate rings.

In the crystal lattice, the dinuclear units are packed through intermolecular C—H···A (A = O, F) hydrogen bonds (Table 1) between the pyridine ring hydrogen atoms and the carbonyl oxygen atoms (O1, O2) of the bpca ligand, the sulfonyl oxygen (O9, O10) and the fluor atom (F5) of the trifluoromethansulfonate ligands. The pyridine rings interact also via ππ stacking interactions, with CgCg distances of 3.6799 (15) Å for the interaction between the tridentate bpca ligands, and of 3.8520 (16) Å for the interactions between the bridging bpca ligands (Fig. 2).

Related literature top

For complexes of divalent metal ions with the N-(pyridin-2-ylcarbonyl)pyridine-2-carboxamidate (bpca) ligand, see: Chowdhury et al. (2007); Folgado et al. (1988); Ha (2010, 2011); Halder et al. (2010); Miguel et al. (2009). For complexes of trivalent metal ions with the bpca ligand, see: Li et al. (2011); Sugimoto et al. (2002); Wocadlo et al. (1993). For electrochemical and magnetic studies for example complexes of Cu(II), see: Cangussu de Castro Gomes et al. (2008); Kajiwara et al. (2002). For the synthesis of the ligand, see: Larter et al. (1998).

Experimental top

The starting material trans-(±)-2,4,5-tris(pyridine-2-yl)-2-imidazoline was synthesized according to a previously reported procedure (Larter et al., 1998). For the preparation of the title compound, a mixture of trans-(±)-2,4,5-tris(pyridine-2-yl)-2-imidazoline (0.086 g, 0.1382 mmol) and Cu(OSO2CF3)2 (0.050 g, 0.1382 mmol) was dissolved in acetonitrile (5 ml) and stirred for 24 h at room temperature to afford a green solution. The product was crystallized at room temperature by gas phase diffusion of diethyl ether into the reaction mixture, producing green crystals which were separated and further dried under vacuum. Yield: 24%. IR (KBr): 3082, 3030, 1707, 1672, 1626, 1587, 1544, 1462, 1380, 1323, 1264, 1239, 1144, 1013, 740 cm-1. MS [FAB+, m/z (%)]: 729 (2) [(M+H)-OSO2CF3—NCCH3]+.

Refinement top

H atoms were included in calculated positions (C—H = 0.95 Å for aromatic H, C—H=0.98 Å for methyl H), and refined using a riding model, with Uiso(H) = 1.2Ueq and Uiso(H) = 1.5Ueq for methyl H atoms.

Structure description top

N-(pyridin-2-ylcarbonyl)pyridine-2-carboxamidate (bpca) is a rigid tridentate ligand that can act as a bridging ligand to produce supramolecular structures based on organic-inorganic coordination frameworks (Halder et al., 2010). This ligand exhibits various coordination modes. It can also appear as a regular tridentate chelating ligand via its two pyridine and one amine N atoms, or in a bidentate manner through the carboxyl groups. The bpca ligand forms coordination complexes with a large number of divalent metal ions, e.g. Pd(II) (Ha, 2010; Miguel et al., 2009), Pt(II) (Ha, 2011), Cu(II) (Folgado et al., 1988; Chowdhury et al., 2007), or with trivalent metals ions, e.g. Fe(III) (Wocadlo et al., 1993; Li et al., 2011), Cr(III) (Kajiwara et al., 2002), Co(III), Re(III) (Sugimoto et al., 2002)]. Mono and multinuclear complexes with bpca have been the subject of various electrochemical and magnetic studies, for example of complexes of Cu(II) (Cangussu de Castro Gomes et al., 2008; Chowdhury et al., 2007) and Co(III) (Kajiwara et al., 2002). In this context we report here the crystal structure for the dinuclear copper complex [Cu2(C12H8N3O2)2(CF3SO3)2(CH3CN)], or [(bpca)Cu(µ-bpca)Cu(OSO2CF3)2(NCCH3)]. An ORTEP-style plot of the molecular structure including the atom numbering is shown in Figure 1.

The above mentioned complex presents the copper(II) ion Cu1 in a five-coordinate environment in a somewhat distorted square pyramidal geometry. The coordination includes two bpca ligands. One ligand acts as a tridentate N,N'N''-chelate through two pyridine nitrogen atoms (Cu—N1 = 1.978 (2) and Cu—N3 = 1.988 (2) Å) and one amide nitrogen atom in basal positions (Cu—N2 = 1.922 (2) Å); the forth basal position is occupied by one carbonyl O atom (O4) from the bridging ligand with a Cu—O distance of 1.977 (18) while the second carbonyl O atom (O3) is at the apical site at a distance of 2.2452 (18). The six-coordinate Cu2 ion is found in a distorted octahedral geometry, defined by the N atoms of the bridging bpca ligand and one acetonitrile molecule in equatorial positions and two trifluoromethansulfonate O atoms with distances Cu—O of 2.439 (2) and 2.482 (2) Å in axial positions. The angles between the copper atoms and the bpca ligands vary in the range of 81.49 (9) - 82.83 (9) ° evidencing the small bite angle of the corresponding five membered chelate rings.

In the crystal lattice, the dinuclear units are packed through intermolecular C—H···A (A = O, F) hydrogen bonds (Table 1) between the pyridine ring hydrogen atoms and the carbonyl oxygen atoms (O1, O2) of the bpca ligand, the sulfonyl oxygen (O9, O10) and the fluor atom (F5) of the trifluoromethansulfonate ligands. The pyridine rings interact also via ππ stacking interactions, with CgCg distances of 3.6799 (15) Å for the interaction between the tridentate bpca ligands, and of 3.8520 (16) Å for the interactions between the bridging bpca ligands (Fig. 2).

For complexes of divalent metal ions with the N-(pyridin-2-ylcarbonyl)pyridine-2-carboxamidate (bpca) ligand, see: Chowdhury et al. (2007); Folgado et al. (1988); Ha (2010, 2011); Halder et al. (2010); Miguel et al. (2009). For complexes of trivalent metal ions with the bpca ligand, see: Li et al. (2011); Sugimoto et al. (2002); Wocadlo et al. (1993). For electrochemical and magnetic studies for example complexes of Cu(II), see: Cangussu de Castro Gomes et al. (2008); Kajiwara et al. (2002). For the synthesis of the ligand, see: Larter et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 40% probability level.
[Figure 2] Fig. 2. A part of the crystal packing of the title compound, showing intermolecular C—H···O and π···π interactions. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
(Acetonitrile-1κN)[µ-N-(pyridin-2-ylcarbonyl)pyridine-2-carboxamidato-1:2κ5N,N',N'':O,O'][N-(pyridin-2-ylcarbonyl)pyridine-2-carboxamidato- 2κ3N,N',N'']bis(trifluoromethanesulfonato-1κO)dicopper(II) top
Crystal data top
[Cu2(C12H8N3O2)2(CF3SO3)2(C2H3N)]Z = 2
Mr = 918.70F(000) = 920
Triclinic, P1Dx = 1.882 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9726 (7) ÅCell parameters from 6358 reflections
b = 10.0569 (8) Åθ = 2.2–28.3°
c = 18.3689 (15) ŵ = 1.55 mm1
α = 82.573 (1)°T = 100 K
β = 83.802 (1)°Rectangular prism, green
γ = 82.222 (1)°0.32 × 0.24 × 0.18 mm
V = 1621.6 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5686 independent reflections
Radiation source: fine-focus sealed tube5292 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.638, Tmax = 0.768k = 1111
15254 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0451P)2 + 2.0646P]
where P = (Fo2 + 2Fc2)/3
5686 reflections(Δ/σ)max = 0.008
497 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cu2(C12H8N3O2)2(CF3SO3)2(C2H3N)]γ = 82.222 (1)°
Mr = 918.70V = 1621.6 (2) Å3
Triclinic, P1Z = 2
a = 8.9726 (7) ÅMo Kα radiation
b = 10.0569 (8) ŵ = 1.55 mm1
c = 18.3689 (15) ÅT = 100 K
α = 82.573 (1)°0.32 × 0.24 × 0.18 mm
β = 83.802 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5686 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5292 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.768Rint = 0.024
15254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.04Δρmax = 0.83 e Å3
5686 reflectionsΔρmin = 0.50 e Å3
497 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.84461 (3)0.49089 (3)0.586455 (16)0.01596 (10)
Cu20.71274 (4)0.65971 (3)0.851929 (17)0.02035 (10)
S10.90238 (8)0.33964 (7)0.90897 (4)0.02539 (16)
S20.55073 (7)0.99281 (7)0.74959 (4)0.02062 (15)
F10.7268 (3)0.1888 (2)0.99513 (11)0.0517 (6)
F20.8668 (3)0.08502 (19)0.91195 (12)0.0532 (6)
F30.6749 (2)0.2241 (2)0.88165 (13)0.0564 (6)
F40.8208 (2)1.0523 (2)0.76493 (11)0.0508 (5)
F50.7233 (2)1.15490 (17)0.66873 (11)0.0381 (4)
F60.8107 (2)0.94594 (19)0.67342 (11)0.0416 (5)
N10.9880 (2)0.3263 (2)0.60772 (11)0.0176 (4)
N20.8212 (2)0.4073 (2)0.50069 (11)0.0170 (4)
N30.6971 (2)0.6358 (2)0.54179 (11)0.0175 (4)
N40.5243 (2)0.5723 (2)0.85181 (12)0.0197 (5)
N50.7535 (2)0.5968 (2)0.75566 (12)0.0201 (5)
N60.9188 (2)0.7201 (2)0.82471 (12)0.0191 (5)
N70.6692 (3)0.7400 (2)0.94561 (12)0.0237 (5)
O10.8791 (2)0.20122 (18)0.45319 (10)0.0241 (4)
O20.6910 (2)0.44173 (19)0.39529 (10)0.0236 (4)
O30.6675 (2)0.45898 (18)0.68097 (9)0.0202 (4)
O40.9287 (2)0.59552 (18)0.65287 (10)0.0200 (4)
O50.7980 (2)0.4528 (2)0.92880 (11)0.0309 (5)
O61.0187 (2)0.2967 (2)0.95778 (12)0.0374 (5)
O70.9513 (2)0.3449 (2)0.83152 (11)0.0367 (5)
O80.5841 (3)0.8840 (2)0.80548 (13)0.0442 (6)
O90.4725 (2)1.1139 (2)0.77653 (12)0.0339 (5)
O100.4920 (2)0.9585 (2)0.68607 (12)0.0342 (5)
C11.0716 (3)0.2935 (3)0.66516 (15)0.0228 (6)
H11.06660.35520.70060.027*
C21.1649 (3)0.1725 (3)0.67427 (16)0.0264 (6)
H21.22390.15140.71520.032*
C31.1708 (3)0.0831 (3)0.62301 (15)0.0246 (6)
H31.23440.00050.62810.030*
C41.0842 (3)0.1154 (3)0.56420 (15)0.0211 (6)
H41.08670.05460.52840.025*
C50.9936 (3)0.2380 (3)0.55840 (14)0.0176 (5)
C60.8920 (3)0.2789 (2)0.49648 (14)0.0175 (5)
C70.7229 (3)0.4747 (3)0.45235 (14)0.0181 (5)
C80.6495 (3)0.6052 (3)0.47920 (13)0.0171 (5)
C90.5377 (3)0.6875 (3)0.44324 (14)0.0201 (5)
H90.50690.66500.39890.024*
C100.4715 (3)0.8028 (3)0.47282 (15)0.0228 (6)
H100.39490.86160.44890.027*
C110.5179 (3)0.8319 (3)0.53755 (15)0.0223 (6)
H110.47160.90970.55940.027*
C120.6315 (3)0.7474 (3)0.57013 (14)0.0207 (6)
H120.66450.76900.61410.025*
C130.4100 (3)0.5647 (3)0.90416 (15)0.0232 (6)
H130.41280.60600.94760.028*
C140.2871 (3)0.4986 (3)0.89746 (15)0.0243 (6)
H140.20680.49510.93560.029*
C150.2829 (3)0.4384 (3)0.83506 (15)0.0258 (6)
H150.19900.39370.82910.031*
C160.4027 (3)0.4434 (3)0.78055 (15)0.0230 (6)
H160.40310.40120.73710.028*
C170.5205 (3)0.5109 (3)0.79105 (14)0.0187 (5)
C180.6545 (3)0.5187 (3)0.73564 (14)0.0187 (5)
C190.8827 (3)0.6220 (2)0.71644 (13)0.0166 (5)
C200.9778 (3)0.6941 (2)0.75634 (14)0.0176 (5)
C211.1151 (3)0.7301 (3)0.72523 (14)0.0201 (5)
H211.15310.71010.67700.024*
C221.1966 (3)0.7964 (3)0.76622 (15)0.0232 (6)
H221.29180.82300.74660.028*
C231.1370 (3)0.8229 (3)0.83589 (15)0.0252 (6)
H231.19090.86810.86490.030*
C240.9979 (3)0.7832 (3)0.86351 (15)0.0233 (6)
H240.95790.80180.91170.028*
C250.6605 (3)0.7991 (3)0.99484 (16)0.0266 (6)
C260.6546 (4)0.8740 (3)1.05813 (17)0.0329 (7)
H26A0.75700.87261.07240.049*
H26B0.59190.83211.09950.049*
H26C0.61100.96771.04510.049*
C270.7879 (4)0.2023 (3)0.92485 (18)0.0374 (7)
C280.7356 (3)1.0402 (3)0.71278 (16)0.0254 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01840 (17)0.01472 (17)0.01487 (17)0.00005 (12)0.00226 (12)0.00360 (12)
Cu20.02125 (18)0.02642 (19)0.01445 (17)0.00578 (14)0.00002 (12)0.00476 (13)
S10.0219 (3)0.0308 (4)0.0235 (4)0.0026 (3)0.0030 (3)0.0034 (3)
S20.0196 (3)0.0222 (3)0.0200 (3)0.0035 (3)0.0015 (3)0.0011 (3)
F10.0657 (14)0.0437 (12)0.0441 (12)0.0192 (10)0.0183 (10)0.0058 (9)
F20.0772 (16)0.0270 (10)0.0535 (13)0.0020 (10)0.0004 (11)0.0113 (9)
F30.0441 (12)0.0621 (14)0.0711 (15)0.0188 (11)0.0180 (11)0.0151 (12)
F40.0324 (11)0.0827 (16)0.0427 (11)0.0211 (10)0.0145 (9)0.0035 (11)
F50.0342 (10)0.0265 (9)0.0497 (11)0.0080 (8)0.0021 (8)0.0093 (8)
F60.0282 (10)0.0393 (11)0.0543 (12)0.0005 (8)0.0117 (8)0.0110 (9)
N10.0170 (11)0.0177 (11)0.0173 (11)0.0013 (9)0.0005 (8)0.0009 (9)
N20.0201 (11)0.0147 (11)0.0160 (10)0.0000 (9)0.0023 (8)0.0034 (8)
N30.0207 (11)0.0159 (11)0.0153 (10)0.0013 (9)0.0000 (8)0.0012 (8)
N40.0212 (11)0.0215 (11)0.0160 (11)0.0038 (9)0.0004 (9)0.0003 (9)
N50.0198 (11)0.0267 (12)0.0150 (11)0.0057 (9)0.0001 (9)0.0051 (9)
N60.0200 (11)0.0203 (11)0.0168 (11)0.0011 (9)0.0036 (9)0.0017 (9)
N70.0284 (13)0.0250 (12)0.0177 (12)0.0045 (10)0.0005 (9)0.0036 (10)
O10.0318 (11)0.0180 (9)0.0230 (10)0.0017 (8)0.0063 (8)0.0066 (8)
O20.0283 (10)0.0242 (10)0.0186 (10)0.0030 (8)0.0063 (8)0.0070 (8)
O30.0218 (9)0.0218 (9)0.0180 (9)0.0059 (8)0.0003 (7)0.0037 (8)
O40.0204 (9)0.0214 (9)0.0194 (9)0.0044 (7)0.0000 (7)0.0066 (7)
O50.0397 (12)0.0265 (11)0.0255 (11)0.0026 (9)0.0018 (9)0.0025 (8)
O60.0278 (11)0.0557 (15)0.0284 (11)0.0046 (10)0.0080 (9)0.0005 (10)
O70.0315 (12)0.0515 (14)0.0247 (11)0.0044 (10)0.0033 (9)0.0016 (10)
O80.0366 (13)0.0437 (14)0.0445 (14)0.0016 (11)0.0006 (10)0.0184 (11)
O90.0334 (12)0.0347 (12)0.0344 (12)0.0005 (9)0.0019 (9)0.0150 (9)
O100.0265 (11)0.0491 (13)0.0312 (11)0.0105 (10)0.0000 (9)0.0169 (10)
C10.0234 (14)0.0253 (14)0.0195 (13)0.0017 (11)0.0030 (11)0.0023 (11)
C20.0222 (14)0.0305 (16)0.0252 (14)0.0008 (12)0.0060 (11)0.0009 (12)
C30.0209 (14)0.0205 (14)0.0289 (15)0.0035 (11)0.0001 (11)0.0024 (11)
C40.0194 (13)0.0186 (13)0.0242 (14)0.0009 (10)0.0007 (11)0.0022 (11)
C50.0172 (13)0.0169 (12)0.0178 (13)0.0043 (10)0.0023 (10)0.0006 (10)
C60.0190 (13)0.0161 (13)0.0167 (12)0.0018 (10)0.0008 (10)0.0017 (10)
C70.0180 (13)0.0180 (13)0.0171 (13)0.0025 (10)0.0018 (10)0.0004 (10)
C80.0194 (13)0.0164 (13)0.0150 (12)0.0027 (10)0.0003 (10)0.0005 (10)
C90.0206 (13)0.0205 (13)0.0183 (13)0.0024 (11)0.0005 (10)0.0002 (10)
C100.0219 (14)0.0209 (14)0.0224 (14)0.0013 (11)0.0005 (11)0.0027 (11)
C110.0262 (14)0.0150 (13)0.0229 (14)0.0010 (11)0.0046 (11)0.0013 (10)
C120.0267 (14)0.0173 (13)0.0182 (13)0.0008 (11)0.0017 (11)0.0047 (10)
C130.0265 (14)0.0235 (14)0.0178 (13)0.0005 (11)0.0014 (11)0.0011 (11)
C140.0231 (14)0.0257 (14)0.0215 (14)0.0013 (11)0.0031 (11)0.0012 (11)
C150.0226 (14)0.0289 (15)0.0258 (15)0.0089 (12)0.0003 (11)0.0017 (12)
C160.0258 (14)0.0237 (14)0.0196 (13)0.0045 (11)0.0020 (11)0.0015 (11)
C170.0203 (13)0.0180 (13)0.0169 (13)0.0009 (10)0.0016 (10)0.0004 (10)
C180.0203 (13)0.0182 (13)0.0169 (13)0.0008 (10)0.0038 (10)0.0010 (10)
C190.0197 (13)0.0141 (12)0.0152 (12)0.0006 (10)0.0024 (10)0.0010 (10)
C200.0211 (13)0.0147 (12)0.0162 (12)0.0015 (10)0.0040 (10)0.0007 (10)
C210.0212 (13)0.0194 (13)0.0192 (13)0.0004 (10)0.0031 (10)0.0019 (10)
C220.0208 (14)0.0225 (14)0.0266 (14)0.0054 (11)0.0036 (11)0.0000 (11)
C230.0303 (15)0.0233 (14)0.0245 (14)0.0070 (12)0.0085 (12)0.0028 (11)
C240.0273 (15)0.0250 (14)0.0191 (13)0.0046 (11)0.0056 (11)0.0035 (11)
C250.0262 (15)0.0247 (15)0.0270 (16)0.0023 (12)0.0002 (12)0.0009 (13)
C260.0398 (18)0.0337 (17)0.0271 (16)0.0023 (14)0.0038 (13)0.0124 (13)
C270.0411 (19)0.0339 (18)0.0372 (18)0.0062 (14)0.0011 (15)0.0063 (14)
C280.0231 (14)0.0252 (15)0.0277 (15)0.0035 (12)0.0039 (11)0.0002 (12)
Geometric parameters (Å, º) top
Cu1—N21.922 (2)C1—C21.382 (4)
Cu1—O41.9772 (18)C1—H10.9500
Cu1—N11.978 (2)C2—C31.376 (4)
Cu1—N31.988 (2)C2—H20.9500
Cu1—O32.2452 (18)C3—C41.378 (4)
Cu2—N51.936 (2)C3—H30.9500
Cu2—N71.973 (2)C4—C51.381 (4)
Cu2—N42.008 (2)C4—H40.9500
Cu2—N62.016 (2)C5—C61.515 (4)
Cu2—O52.439 (2)C7—C81.505 (3)
S1—O51.432 (2)C8—C91.380 (4)
S1—O61.435 (2)C9—C101.378 (4)
S1—O71.439 (2)C9—H90.9500
S1—C271.807 (3)C10—C111.379 (4)
S2—O81.424 (2)C10—H100.9500
S2—O101.430 (2)C11—C121.373 (4)
S2—O91.439 (2)C11—H110.9500
S2—C281.823 (3)C12—H120.9500
F1—C271.344 (4)C13—C141.387 (4)
F2—C271.326 (4)C13—H130.9500
F3—C271.332 (4)C14—C151.370 (4)
F4—C281.316 (3)C14—H140.9500
F5—C281.320 (3)C15—C161.389 (4)
F6—C281.332 (3)C15—H150.9500
N1—C51.341 (3)C16—C171.374 (4)
N1—C11.341 (3)C16—H160.9500
N2—C61.367 (3)C17—C181.493 (4)
N2—C71.371 (3)C19—C201.493 (4)
N3—C121.335 (3)C20—C211.375 (4)
N3—C81.354 (3)C21—C221.388 (4)
N4—C131.331 (4)C21—H210.9500
N4—C171.349 (3)C22—C231.377 (4)
N5—C191.333 (3)C22—H220.9500
N5—C181.370 (3)C23—C241.385 (4)
N6—C241.327 (3)C23—H230.9500
N6—C201.353 (3)C24—H240.9500
N7—C251.135 (4)C25—C261.457 (4)
O1—C61.209 (3)C26—H26A0.9800
O2—C71.213 (3)C26—H26B0.9800
O3—C181.222 (3)C26—H26C0.9800
O4—C191.246 (3)
N2—Cu1—O4160.54 (8)O2—C7—C8120.4 (2)
N2—Cu1—N182.83 (9)N2—C7—C8110.6 (2)
O4—Cu1—N194.22 (8)N3—C8—C9121.9 (2)
N2—Cu1—N382.65 (9)N3—C8—C7116.0 (2)
O4—Cu1—N399.18 (8)C9—C8—C7122.1 (2)
N1—Cu1—N3165.44 (9)C10—C9—C8118.7 (2)
N2—Cu1—O3115.15 (8)C10—C9—H9120.6
O4—Cu1—O384.30 (7)C8—C9—H9120.6
N1—Cu1—O399.70 (8)C9—C10—C11119.2 (2)
N3—Cu1—O387.33 (8)C9—C10—H10120.4
N5—Cu2—N7175.01 (10)C11—C10—H10120.4
N5—Cu2—N481.63 (9)C12—C11—C10119.4 (2)
N7—Cu2—N4100.19 (9)C12—C11—H11120.3
N5—Cu2—N681.49 (9)C10—C11—H11120.3
N7—Cu2—N696.84 (9)N3—C12—C11122.0 (2)
N4—Cu2—N6162.92 (9)N3—C12—H12119.0
N5—Cu2—O599.74 (8)C11—C12—H12119.0
N7—Cu2—O585.09 (8)N4—C13—C14122.3 (3)
N4—Cu2—O584.15 (8)N4—C13—H13118.9
N6—Cu2—O596.16 (8)C14—C13—H13118.9
O5—S1—O6114.89 (13)C15—C14—C13119.1 (3)
O5—S1—O7114.47 (13)C15—C14—H14120.5
O6—S1—O7115.54 (13)C13—C14—H14120.5
O5—S1—C27102.93 (14)C14—C15—C16119.3 (3)
O6—S1—C27103.22 (15)C14—C15—H15120.3
O7—S1—C27103.38 (15)C16—C15—H15120.3
O8—S2—O10115.97 (15)C17—C16—C15118.3 (3)
O8—S2—O9114.56 (14)C17—C16—H16120.9
O10—S2—O9113.69 (13)C15—C16—H16120.9
O8—S2—C28103.89 (13)N4—C17—C16122.8 (2)
O10—S2—C28102.71 (13)N4—C17—C18115.7 (2)
O9—S2—C28103.82 (13)C16—C17—C18121.5 (2)
C5—N1—C1118.9 (2)O3—C18—N5127.5 (2)
C5—N1—Cu1113.08 (17)O3—C18—C17121.2 (2)
C1—N1—Cu1128.01 (18)N5—C18—C17111.3 (2)
C6—N2—C7124.7 (2)O4—C19—N5128.4 (2)
C6—N2—Cu1117.27 (17)O4—C19—C20118.8 (2)
C7—N2—Cu1117.67 (17)N5—C19—C20112.7 (2)
C12—N3—C8118.8 (2)N6—C20—C21123.2 (2)
C12—N3—Cu1127.81 (18)N6—C20—C19115.0 (2)
C8—N3—Cu1112.95 (17)C21—C20—C19121.8 (2)
C13—N4—C17118.3 (2)C20—C21—C22118.1 (2)
C13—N4—Cu2128.22 (19)C20—C21—H21120.9
C17—N4—Cu2113.47 (17)C22—C21—H21120.9
C19—N5—C18124.5 (2)C23—C22—C21118.8 (3)
C19—N5—Cu2117.75 (17)C23—C22—H22120.6
C18—N5—Cu2117.49 (17)C21—C22—H22120.6
C24—N6—C20118.2 (2)C22—C23—C24119.7 (3)
C24—N6—Cu2128.81 (19)C22—C23—H23120.2
C20—N6—Cu2112.96 (17)C24—C23—H23120.2
C25—N7—Cu2169.2 (2)N6—C24—C23122.0 (3)
C18—O3—Cu1123.40 (17)N6—C24—H24119.0
C19—O4—Cu1130.64 (17)C23—C24—H24119.0
S1—O5—Cu2128.85 (12)N7—C25—C26178.2 (3)
N1—C1—C2121.9 (3)C25—C26—H26A109.5
N1—C1—H1119.0C25—C26—H26B109.5
C2—C1—H1119.0H26A—C26—H26B109.5
C3—C2—C1118.7 (3)C25—C26—H26C109.5
C3—C2—H2120.6H26A—C26—H26C109.5
C1—C2—H2120.6H26B—C26—H26C109.5
C2—C3—C4119.8 (3)F2—C27—F3107.4 (3)
C2—C3—H3120.1F2—C27—F1107.6 (3)
C4—C3—H3120.1F3—C27—F1107.6 (3)
C3—C4—C5118.5 (3)F2—C27—S1112.3 (2)
C3—C4—H4120.7F3—C27—S1111.2 (2)
C5—C4—H4120.7F1—C27—S1110.5 (2)
N1—C5—C4122.2 (2)F4—C28—F5108.4 (2)
N1—C5—C6116.2 (2)F4—C28—F6106.6 (2)
C4—C5—C6121.6 (2)F5—C28—F6107.3 (2)
O1—C6—N2128.9 (2)F4—C28—S2112.5 (2)
O1—C6—C5121.0 (2)F5—C28—S2111.41 (19)
N2—C6—C5110.1 (2)F6—C28—S2110.37 (19)
O2—C7—N2129.0 (2)
N2—Cu1—N1—C53.42 (18)N1—C5—C6—N24.8 (3)
O4—Cu1—N1—C5164.09 (17)C4—C5—C6—N2176.5 (2)
N3—Cu1—N1—C57.1 (4)C6—N2—C7—O27.3 (4)
O3—Cu1—N1—C5110.98 (17)Cu1—N2—C7—O2179.8 (2)
N2—Cu1—N1—C1179.3 (2)C6—N2—C7—C8172.0 (2)
O4—Cu1—N1—C118.6 (2)Cu1—N2—C7—C80.9 (3)
N3—Cu1—N1—C1175.6 (3)C12—N3—C8—C91.4 (4)
O3—Cu1—N1—C166.4 (2)Cu1—N3—C8—C9174.49 (19)
O4—Cu1—N2—C688.9 (3)C12—N3—C8—C7177.1 (2)
N1—Cu1—N2—C66.56 (18)Cu1—N3—C8—C74.1 (3)
N3—Cu1—N2—C6174.4 (2)O2—C7—C8—N3177.3 (2)
O3—Cu1—N2—C690.82 (19)N2—C7—C8—N33.3 (3)
O4—Cu1—N2—C797.7 (3)O2—C7—C8—C94.1 (4)
N1—Cu1—N2—C7179.96 (19)N2—C7—C8—C9175.3 (2)
N3—Cu1—N2—C70.96 (18)N3—C8—C9—C101.0 (4)
O3—Cu1—N2—C782.58 (19)C7—C8—C9—C10177.4 (2)
N2—Cu1—N3—C12175.1 (2)C8—C9—C10—C110.5 (4)
O4—Cu1—N3—C1224.5 (2)C9—C10—C11—C121.7 (4)
N1—Cu1—N3—C12178.7 (3)C8—N3—C12—C110.2 (4)
O3—Cu1—N3—C1259.3 (2)Cu1—N3—C12—C11172.1 (2)
N2—Cu1—N3—C82.79 (17)C10—C11—C12—N31.3 (4)
O4—Cu1—N3—C8163.21 (17)C17—N4—C13—C141.4 (4)
N1—Cu1—N3—C86.4 (4)Cu2—N4—C13—C14178.7 (2)
O3—Cu1—N3—C8113.00 (17)N4—C13—C14—C150.3 (4)
N5—Cu2—N4—C13179.7 (2)C13—C14—C15—C160.9 (4)
N7—Cu2—N4—C134.4 (2)C14—C15—C16—C171.0 (4)
N6—Cu2—N4—C13171.5 (3)C13—N4—C17—C161.3 (4)
O5—Cu2—N4—C1379.6 (2)Cu2—N4—C17—C16179.0 (2)
N5—Cu2—N4—C172.86 (18)C13—N4—C17—C18177.8 (2)
N7—Cu2—N4—C17178.15 (18)Cu2—N4—C17—C180.1 (3)
N6—Cu2—N4—C176.0 (4)C15—C16—C17—N40.1 (4)
O5—Cu2—N4—C1797.92 (18)C15—C16—C17—C18178.9 (2)
N4—Cu2—N5—C19179.5 (2)Cu1—O3—C18—N510.9 (4)
N6—Cu2—N5—C192.17 (19)Cu1—O3—C18—C17169.94 (17)
O5—Cu2—N5—C1997.01 (19)C19—N5—C18—O31.1 (4)
N4—Cu2—N5—C185.51 (19)Cu2—N5—C18—O3172.5 (2)
N6—Cu2—N5—C18171.9 (2)C19—N5—C18—C17179.7 (2)
O5—Cu2—N5—C1877.03 (19)Cu2—N5—C18—C176.7 (3)
N5—Cu2—N6—C24179.7 (2)N4—C17—C18—O3175.1 (2)
N7—Cu2—N6—C245.0 (2)C16—C17—C18—O34.0 (4)
N4—Cu2—N6—C24170.9 (3)N4—C17—C18—N54.2 (3)
O5—Cu2—N6—C2480.8 (2)C16—C17—C18—N5176.7 (2)
N5—Cu2—N6—C202.40 (17)Cu1—O4—C19—N56.8 (4)
N7—Cu2—N6—C20172.86 (18)Cu1—O4—C19—C20174.63 (16)
N4—Cu2—N6—C2011.3 (4)C18—N5—C19—O49.3 (4)
O5—Cu2—N6—C20101.37 (17)Cu2—N5—C19—O4177.1 (2)
N4—Cu2—N7—C25158.9 (13)C18—N5—C19—C20172.1 (2)
N6—Cu2—N7—C2522.3 (13)Cu2—N5—C19—C201.5 (3)
O5—Cu2—N7—C25117.9 (13)C24—N6—C20—C210.1 (4)
N2—Cu1—O3—C18170.46 (19)Cu2—N6—C20—C21178.0 (2)
O4—Cu1—O3—C189.6 (2)C24—N6—C20—C19179.6 (2)
N1—Cu1—O3—C18103.0 (2)Cu2—N6—C20—C192.3 (3)
N3—Cu1—O3—C1889.9 (2)O4—C19—C20—N6179.4 (2)
N2—Cu1—O4—C19178.8 (2)N5—C19—C20—N60.6 (3)
N1—Cu1—O4—C19100.9 (2)O4—C19—C20—C210.9 (4)
N3—Cu1—O4—C1984.8 (2)N5—C19—C20—C21179.7 (2)
O3—Cu1—O4—C191.5 (2)N6—C20—C21—C220.1 (4)
O6—S1—O5—Cu2130.69 (15)C19—C20—C21—C22179.8 (2)
O7—S1—O5—Cu26.5 (2)C20—C21—C22—C230.1 (4)
C27—S1—O5—Cu2117.89 (17)C21—C22—C23—C240.0 (4)
N5—Cu2—O5—S122.78 (18)C20—N6—C24—C230.2 (4)
N7—Cu2—O5—S1155.98 (17)Cu2—N6—C24—C23177.5 (2)
N4—Cu2—O5—S1103.22 (17)C22—C23—C24—N60.2 (4)
N6—Cu2—O5—S159.61 (17)O5—S1—C27—F2177.7 (2)
C5—N1—C1—C21.0 (4)O6—S1—C27—F257.9 (3)
Cu1—N1—C1—C2178.2 (2)O7—S1—C27—F262.9 (3)
N1—C1—C2—C30.5 (4)O5—S1—C27—F361.9 (3)
C1—C2—C3—C40.2 (4)O6—S1—C27—F3178.2 (2)
C2—C3—C4—C50.2 (4)O7—S1—C27—F357.5 (3)
C1—N1—C5—C40.9 (4)O5—S1—C27—F157.5 (3)
Cu1—N1—C5—C4178.5 (2)O6—S1—C27—F162.3 (3)
C1—N1—C5—C6177.7 (2)O7—S1—C27—F1176.9 (2)
Cu1—N1—C5—C60.1 (3)O8—S2—C28—F447.3 (2)
C3—C4—C5—N10.3 (4)O10—S2—C28—F4168.5 (2)
C3—C4—C5—C6178.3 (2)O9—S2—C28—F472.8 (2)
C7—N2—C6—O12.7 (4)O8—S2—C28—F5169.3 (2)
Cu1—N2—C6—O1170.2 (2)O10—S2—C28—F569.5 (2)
C7—N2—C6—C5179.3 (2)O9—S2—C28—F549.2 (2)
Cu1—N2—C6—C57.8 (3)O8—S2—C28—F671.6 (2)
N1—C5—C6—O1173.4 (2)O10—S2—C28—F649.6 (2)
C4—C5—C6—O15.3 (4)O9—S2—C28—F6168.27 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O9i0.952.573.448 (3)154
C4—H4···O1ii0.952.533.210 (4)128
C10—H10···F5iii0.952.543.239 (3)130
C21—H21···O1iv0.952.483.257 (3)140
C21—H21···O2iv0.952.373.203 (3)147
C22—H22···O10v0.952.483.400 (3)163
Symmetry codes: (i) x+1, y1, z; (ii) x+2, y, z+1; (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C12H8N3O2)2(CF3SO3)2(C2H3N)]
Mr918.70
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.9726 (7), 10.0569 (8), 18.3689 (15)
α, β, γ (°)82.573 (1), 83.802 (1), 82.222 (1)
V3)1621.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.32 × 0.24 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.638, 0.768
No. of measured, independent and
observed [I > 2σ(I)] reflections
15254, 5686, 5292
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.04
No. of reflections5686
No. of parameters497
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.50

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O9i0.952.573.448 (3)154
C4—H4···O1ii0.952.533.210 (4)128
C10—H10···F5iii0.952.543.239 (3)130
C21—H21···O1iv0.952.483.257 (3)140
C21—H21···O2iv0.952.373.203 (3)147
C22—H22···O10v0.952.483.400 (3)163
Symmetry codes: (i) x+1, y1, z; (ii) x+2, y, z+1; (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1; (v) x+1, y, z.
 

Acknowledgements

This work was supported by the Universidad Autónoma de Sinaloa, México (DGIP.PROFAPI-2010–024).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationCangussu de Castro Gomes, D. C., Marilena Toma, L., Stumpf, H. O., Adams, H., Thomas, J. A., Lloret, F. & Julve, M. (2008). Polyhedron, 27, 559–573.  Google Scholar
First citationChowdhury, H., Rahaman, S. H., Ghosh, R., Sarkar, S. K., Fun, H.-K. & Ghosh, B. K. (2007). J. Mol. Struct. 826, 170–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationFolgado, J. V., Beltran-Porter, D., Burriel, R., Fuertes, A. & Miravitlles, C. (1988). J. Chem. Soc. Dalton Trans. pp. 3041–3045.  CSD CrossRef Web of Science Google Scholar
First citationHa, K. (2010). Z. Kristallogr. New Cryst. Struct. 225, 789–790.  CAS Google Scholar
First citationHa, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 55–56.  CAS Google Scholar
First citationHalder, D., Zangrando, E. & Kanti Paine, T. (2010). Polyhedron, 29, 434–440.  Web of Science CSD CrossRef CAS Google Scholar
First citationKajiwara, T., Senbsui, R., Noguchi, T., Kamiyama, A. & Ito, T. (2002). Inorg. Chim. Acta, 337, 299–307.  Web of Science CSD CrossRef CAS Google Scholar
First citationLarter, M. L., Phillips, M., Ortega, F., Aguirre, G., Somanathan, R. & Walsh, P. J. (1998). Tetrahedron Lett. 39, 4785–4788.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X.-F., Qiu, T.-B., Hu, L.-X. & Hu, C.-Y. (2011). Acta Cryst. E67, m1765–m1766.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiguel, P. J. S., Roitzsch, M., Yin, L., Lax, P. M., Holland, L., Krizanovic, O., Lutterbeck, M., Shurmann, E., Fusch, E. C. & Lippert, B. (2009). Dalton Trans. pp. 10774–10786.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugimoto, H., Takahira, T., Yoshimura, T., Shiro, M., Yamasaki, M., Miyake, H., Umakoshi, K. & Sasaki, Y. (2002). Inorg. Chim. Acta, 337, 203–211.  Web of Science CSD CrossRef CAS Google Scholar
First citationWocadlo, S., Massa, W. & Folgado, J. V. (1993). Inorg. Chim. Acta, 207, 199–206.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds