inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Robertsite, Ca2MnIII3O2(PO4)3·3H2O

aDepartment of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, USA, and bDuke University Medical Center, Box 3921, Durham, North Carolina 27710, USA
*Correspondence e-mail: mabadean@terra.com.br

(Received 13 August 2012; accepted 30 August 2012; online 15 September 2012)

Robertsite, ideally Ca2Mn3O2(PO4)3·3H2O [calcium manganese(III) tris­(orthophosphate) trihydrate], can be associated with the arseniosiderite structural group characterized by the general formula Ca2A3O2(TO4)3·nH2O, with A = Fe, Mn; T = As, P; and n = 2 or 3. In this study, single-crystal X-ray diffraction data were used to determine the robertsite structure from a twinned crystal from the type locality, the Tip Top mine, Custer County, South Dakota, USA, and to refine anisotropic displacement parameters for all atoms. The general structural feature of robertsite resembles that of the other two members of the arseniosiderite group, the structures of which have previously been reported. It is characterized by sheets of [MnO6] octa­hedra in the form of nine-membered pseudo-trigonal rings. Located at the center of each nine-membered ring is a PO4 tetra­hedron, and the other eight PO4 tetra­hedra sandwich the Mn–oxide sheets. The six different Ca2+ ions are seven-coordinated in form of distorted penta­gonal bipyramids, [CaO5(H2O)2], if Ca—O distances less than 2.85 Å are considered. Along with hydrogen bonding involving the water mol­ecules, they hold the manganese–phosphate sheets together. All nine [MnO6] octa­hedra are distorted by the Jahn–Teller effect.

Related literature

For information on the arseniosiderite group minerals, see: Moore & Ito (1974[Moore, P. B. & Ito, J. (1974). Am. Mineral. 59, 48-59.]); Moore & Araki (1977[Moore, P. B. & Araki, T. (1977). Inorg. Chem. 16, 1096-1106.]); van Kauwenbergh et al. (1988[Kauwenbergh, S. J. van, Cooper-Fleck, M. & Williams, M. R. (1988). Mineral. Mag. 52, 505-508.]); Voloshin et al. (1982)[Voloshin, A. V., Men'shikov, Yu. P., Polezhaeva, L. I. & Lentsi, A. A. (1982). Mineral. Zh. 4, 90-95.]. For details of sailaufite, see: Wildner et al. (2003[Wildner, M., Tillmanns, E., Andrut, M. & Lorenz, J. (2003). Eur. J. Mineral. 15, 555-564.]). For studies on pararobertsite, see: Roberts et al. (1989[Roberts, A. C., Sturman, B. D., Dunn, P. J. & Roberts, W. L. (1989). Can. Mineral. 27, 451-455.]); Kampf (2000[Kampf, A. R. (2000). Am. Mineral. 85, 1302-1306.]). For research involving Mn3+ pairing in phosphate minerals, see: Fransolet (2000[Fransolet, A. M. (2000). Can. Mineral. 38, 893-898.]). For information on crystalline manganese phosphate-based adsorbers, see: Kulprathipanja et al. (2001[Kulprathipanja, S., Lewis, G. J. & Willis, R. R. (2001). US Patent No. 6 190 562.]).

Experimental

Crystal data
  • Ca2Mn3O2(PO4)3·3H2O

  • Mr = 615.94

  • Monoclinic, Aa

  • a = 17.3400 (9) Å

  • b = 19.4464 (10) Å

  • c = 11.2787 (6) Å

  • β = 96.634 (3)°

  • V = 3777.7 (3) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 4.26 mm−1

  • T = 293 K

  • 0.07 × 0.06 × 0.06 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.755, Tmax = 0.784

  • 28397 measured reflections

  • 12635 independent reflections

  • 9678 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.107

  • S = 1.02

  • 12635 reflections

  • 677 parameters

  • 2 restraints

  • Δρmax = 1.74 e Å−3

  • Δρmin = −1.09 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 5755 Friedel pairs

  • Flack parameter: 0.676 (18)

Table 1
Hydrogen-bond geometry (Å)

DA DA
Ow1⋯O17 2.964 (7)
Ow1⋯O33 2.889 (8)
Ow2⋯O33 2.815 (7)
Ow2⋯Ow8 2.655 (8)
Ow3⋯O1i 2.957 (4)
Ow3⋯O17 2.821 (6)
Ow4⋯O29 2.764 (7)
Ow4⋯Ow9 2.631 (8)
Ow5⋯Ow7ii 2.682 (8)
Ow5⋯O25iii 2.792 (7)
Ow6⋯O13iv 2.977 (6)
Ow6⋯Ow9ii 2.651 (7)
Ow7⋯O9v 2.768 (7)
Ow7⋯Ow3vi 2.645 (7)
Ow8⋯O13 2.710 (8)
Ow8⋯Ow1 2.635 (7)
Ow9⋯O12v 2.989 (7)
Ow9⋯O21vii 2.743 (8)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) [x+{\script{1\over 2}}, -y+1, z]; (iv) [x, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) x, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003[Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247-250.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Robertsite is a member of the arseniosiderite-type compounds adopting a sheet structure that is characterized by layers of nine-membered pseudo-trigonal rings of octahedra. They exhibit the general formula Ca2A3O2(TO4)3.nH2O, with A = Fe, Mn; T = As, P; and n = 2 or 3. There are five members of this group in the current list of minerals approved by the International Mineralogical Association (IMA), including arseniosiderite, [Ca2Fe3+3O2(AsO4)3.3H2O], kolfanite, [Ca2Fe3+3O2(AsO4)3.2H2O], mitridatite, [Ca2Fe3+3O2(PO4)3.3H2O], sailaufite, (Ca,Na)2Mn3+3O2(AsO4)2CO3.3H2O, and robertsite [Ca2Mn3+3O2(PO4)3.3H2O]. Because of ubiquitous twinning in this group, only the structures of mitridatite (Moore & Araki, 1977) and sailaufite (Wildner et al., 2003) have previously been reported. Arseniosiderite, mitridatite and robertsite exhibit monoclinic symmetry with space group Aa. Kolfanite can also be assigned in space group Aa, but with weak unindexed reflections (Voloshin et al., 1982). Sailaufite has been reported in space group Cm and a doubled cell presumably due to ordering of the carbonate group that substitutes the tetrahedral group.

Robertsite and pararobertsite (Roberts et al., 1989; Kampf, 2000), are dimorphs with composition Ca2Mn3+3O2(PO4)3.3H2O, and are the only phosphate minerals known to date with Ca2+ and Mn3+ cations (Fransolet, 2000). They occur in altered pegmatites and sedimentary phosphate ores as typical products of weathering (van Kauwenbergh et al., 1988), and are thus important to our understanding of the alteration processes of primary phosphate minerals. Crystalline manganese phosphates are also of particular interest for technological applications. For example, they have been studied as potential adsorbers of metal contaminants, such as Ag, Hg, and Pd, from industrial waste (Kulprathipanja et al., 2001). Robertsite was previously investigated by Moore & Ito (1974) using powder X-ray diffraction, but its crystal structure was not refined owing to the rarity of suitable single crystals. This study presents the first crystal structure determination of robertsite. The single-crystal data was obtained from a sample from the Tip Top mine.

The structure of robertsite is built from sheets of [MnO6] octahedra sandwiched between layers of PO4 tetrahedra. The [MnO6] octahedra share edges to form nine-membered pseudo-trigonal rings that pack in monolayers (Fig. 1). The Mn3+ cations sit on their own Kagome net, as a result of the repulsion between them (Kampf, 2000). All [MnO6] octahedra are distorted, characteristic of the Jahn-Teller effects for high-spin Mn3+ with d4 electromic configuration. Among the nine [MnO6] octahedra, that of Mn7 is flattened, while the others are elongated. For example, the Mn1 cation is surrounded by four short equatorial O atoms at 1.967 (5), 1.992 (5), 1.956 (4), and 1.862 (4) Å and by two axial O atoms at 2.137 (4) and 2.138 (4) Å. In contrast, the two-axial O atoms, O7 and O23, bonded to Mn7 are at 1.952 (5) and 1.898 (5) Å, respectively, whereas the four equatorial O atoms are at approximately 2.05 Å. Situated at the center of each nine-membered ring is a PO4 tetrahedron. The sheets of [MnO6] octahedra and PO4 tetrahedra are stacked together along the a axis by water molecules and a double layer of Ca2+ cations. All Ca2+ cations can be described as seven-coordinated, [CaO5(H2O)2], in form of pentagonal bipyramidal polyhedra, if distances less than 2.85 Å are considered. Each [CaO5(H2O)2] polyhedron shares an edge with another one to form [Ca2O10(H2O)2] dimers, which may be the reason for the symmetry reduction from trigonal to monoclinic for this mineral (Fig. 2). In addition, one-third of the water molecules are loosely bonded in cavities of the structure. Although H atoms were excluded from the refinement, it is obvious from O···O distances that medium-strong hydrogen bonds are present in the structure. In Table 1, a possible hydrogen-bonding scheme devised from O···O distances is presented.

Figure 3 displays the Raman spectrum of robertsite, along with that of parabobertsite for comparison. Evidently, the two spectra are similar. The major Raman bands for the two minerals can be grouped into four different regions. The bands in the high-frequency region (800–1250 cm-1) are attributed to the P—O symmetric and asymmetric stretching modes within the PO4 group. The bands in the middle-frequency region (520–790 cm-1) originate from the O—P—O bending vibrations. The bands between 250 and 520 cm-1 may be ascribed to the stretching vibrations of the Mn—O bonds. The bands below 250 cm-1 are of a complex nature, mostly resulting from Mn–O and Ca—O interactions, lattice vibrations and librations, as well as rotational and translational motions of PO4. Noticeably, many Raman bands for pararobertsite are split compared to those for robertsite, related to the lowering of symmetry (P21/c for pararobertsite versus Aa for robertsite).

Related literature top

For information on the arseniosiderite group minerals, see: Moore & Ito (1974); Moore & Araki (1977); van Kauwenbergh et al. (1988); Voloshin et al., 1982). For details of sailaufite, see: Wildner et al. (2003). For studies on pararobertsite, see: Roberts et al. (1989); Kampf (2000). For research involving Mn3+ pairing in phosphate minerals, see: Fransolet (2000). For information on crystalline manganese phosphate-based absorbers, see: Kulprathipanja et al. (2001).

Experimental top

The robertsite specimen used in this study comes from the type locality, the Tip Top mine, Custer County, South Dakota and is in the collection of the RRUFF project (deposition No. R120040; http://rruff.info). The chemical composition, Ca1.93(Mn2.92Fe0.07)Σ=2.99O1.84(PO4)3.04.2.72H2O, from the type specimen was reported by Moore & Ito (1974).

The Raman spectra of robertsite and pararobertsite (R120119) were collected from a randomly oriented crystal at 100% power on a Thermo Almega microRaman system, using a solid-state laser with a wavenumber of 532 nm, and a thermoelectrically cooled CCD detector. The laser is partially polarized with 4 cm-1 resolution and a spot size of 1 µm.

Refinement top

Due to the similar scattering power of Mn and Fe, any minor Fe was treated as Mn and therefore the ideal chemical formula was assumed during the refinement. The structure, in space group Aa, was refined on basis of data from a crystal twinned by inversion with a ratio of 0.676 (18):0.324 (18) for the twin components. The maximum residual electron density in the difference Fourier maps was located at (0.0711, 0.2978, 0.8376), 0.71 Å from Ca2 and the minimum at (0.1865, 0.4867, 0.0185) 0.68 Å from P7. H-atoms from water molecules could not be assigned reliably and were excluded from refinement. To keep consistent with the previous report on mitridatite (Moore & Araki, 1977), the non-standard space group setting of space group No. 9 in Aa was adopted here, instead of the conventional Cc setting.

Structure description top

Robertsite is a member of the arseniosiderite-type compounds adopting a sheet structure that is characterized by layers of nine-membered pseudo-trigonal rings of octahedra. They exhibit the general formula Ca2A3O2(TO4)3.nH2O, with A = Fe, Mn; T = As, P; and n = 2 or 3. There are five members of this group in the current list of minerals approved by the International Mineralogical Association (IMA), including arseniosiderite, [Ca2Fe3+3O2(AsO4)3.3H2O], kolfanite, [Ca2Fe3+3O2(AsO4)3.2H2O], mitridatite, [Ca2Fe3+3O2(PO4)3.3H2O], sailaufite, (Ca,Na)2Mn3+3O2(AsO4)2CO3.3H2O, and robertsite [Ca2Mn3+3O2(PO4)3.3H2O]. Because of ubiquitous twinning in this group, only the structures of mitridatite (Moore & Araki, 1977) and sailaufite (Wildner et al., 2003) have previously been reported. Arseniosiderite, mitridatite and robertsite exhibit monoclinic symmetry with space group Aa. Kolfanite can also be assigned in space group Aa, but with weak unindexed reflections (Voloshin et al., 1982). Sailaufite has been reported in space group Cm and a doubled cell presumably due to ordering of the carbonate group that substitutes the tetrahedral group.

Robertsite and pararobertsite (Roberts et al., 1989; Kampf, 2000), are dimorphs with composition Ca2Mn3+3O2(PO4)3.3H2O, and are the only phosphate minerals known to date with Ca2+ and Mn3+ cations (Fransolet, 2000). They occur in altered pegmatites and sedimentary phosphate ores as typical products of weathering (van Kauwenbergh et al., 1988), and are thus important to our understanding of the alteration processes of primary phosphate minerals. Crystalline manganese phosphates are also of particular interest for technological applications. For example, they have been studied as potential adsorbers of metal contaminants, such as Ag, Hg, and Pd, from industrial waste (Kulprathipanja et al., 2001). Robertsite was previously investigated by Moore & Ito (1974) using powder X-ray diffraction, but its crystal structure was not refined owing to the rarity of suitable single crystals. This study presents the first crystal structure determination of robertsite. The single-crystal data was obtained from a sample from the Tip Top mine.

The structure of robertsite is built from sheets of [MnO6] octahedra sandwiched between layers of PO4 tetrahedra. The [MnO6] octahedra share edges to form nine-membered pseudo-trigonal rings that pack in monolayers (Fig. 1). The Mn3+ cations sit on their own Kagome net, as a result of the repulsion between them (Kampf, 2000). All [MnO6] octahedra are distorted, characteristic of the Jahn-Teller effects for high-spin Mn3+ with d4 electromic configuration. Among the nine [MnO6] octahedra, that of Mn7 is flattened, while the others are elongated. For example, the Mn1 cation is surrounded by four short equatorial O atoms at 1.967 (5), 1.992 (5), 1.956 (4), and 1.862 (4) Å and by two axial O atoms at 2.137 (4) and 2.138 (4) Å. In contrast, the two-axial O atoms, O7 and O23, bonded to Mn7 are at 1.952 (5) and 1.898 (5) Å, respectively, whereas the four equatorial O atoms are at approximately 2.05 Å. Situated at the center of each nine-membered ring is a PO4 tetrahedron. The sheets of [MnO6] octahedra and PO4 tetrahedra are stacked together along the a axis by water molecules and a double layer of Ca2+ cations. All Ca2+ cations can be described as seven-coordinated, [CaO5(H2O)2], in form of pentagonal bipyramidal polyhedra, if distances less than 2.85 Å are considered. Each [CaO5(H2O)2] polyhedron shares an edge with another one to form [Ca2O10(H2O)2] dimers, which may be the reason for the symmetry reduction from trigonal to monoclinic for this mineral (Fig. 2). In addition, one-third of the water molecules are loosely bonded in cavities of the structure. Although H atoms were excluded from the refinement, it is obvious from O···O distances that medium-strong hydrogen bonds are present in the structure. In Table 1, a possible hydrogen-bonding scheme devised from O···O distances is presented.

Figure 3 displays the Raman spectrum of robertsite, along with that of parabobertsite for comparison. Evidently, the two spectra are similar. The major Raman bands for the two minerals can be grouped into four different regions. The bands in the high-frequency region (800–1250 cm-1) are attributed to the P—O symmetric and asymmetric stretching modes within the PO4 group. The bands in the middle-frequency region (520–790 cm-1) originate from the O—P—O bending vibrations. The bands between 250 and 520 cm-1 may be ascribed to the stretching vibrations of the Mn—O bonds. The bands below 250 cm-1 are of a complex nature, mostly resulting from Mn–O and Ca—O interactions, lattice vibrations and librations, as well as rotational and translational motions of PO4. Noticeably, many Raman bands for pararobertsite are split compared to those for robertsite, related to the lowering of symmetry (P21/c for pararobertsite versus Aa for robertsite).

For information on the arseniosiderite group minerals, see: Moore & Ito (1974); Moore & Araki (1977); van Kauwenbergh et al. (1988); Voloshin et al., 1982). For details of sailaufite, see: Wildner et al. (2003). For studies on pararobertsite, see: Roberts et al. (1989); Kampf (2000). For research involving Mn3+ pairing in phosphate minerals, see: Fransolet (2000). For information on crystalline manganese phosphate-based absorbers, see: Kulprathipanja et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The projection of the [Mn9O6(PO4)]12 sheet in robertsite viewed down the a axis. The MnO6 octahedra and the PO4 tetrahedra are yellow and blue, respectively.
[Figure 2] Fig. 2. The [Ca2O10(H2O)2] dimers in the robertsite structure.
[Figure 3] Fig. 3. Raman spectra of robertsite and pararobertsite.
Dicalcium trimanganese dioxide tris(phosphate) trihydrate top
Crystal data top
Ca2Mn3O2(PO4)3·3H2OF(000) = 3600
Mr = 615.94pseudohexagonal
Monoclinic, AaDx = 3.238 Mg m3
Hall symbol: A -2yaMo Kα radiation, λ = 0.71073 Å
a = 17.3400 (9) ÅCell parameters from 5282 reflections
b = 19.4464 (10) Åθ = 2.4–31.7°
c = 11.2787 (6) ŵ = 4.26 mm1
β = 96.634 (3)°T = 293 K
V = 3777.7 (3) Å3Block, brown
Z = 120.07 × 0.06 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
12635 independent reflections
Radiation source: fine-focus sealed tube9678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scanθmax = 32.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2626
Tmin = 0.755, Tmax = 0.784k = 2429
28397 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0478P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max = 0.001
S = 1.02Δρmax = 1.74 e Å3
12635 reflectionsΔρmin = 1.09 e Å3
677 parametersAbsolute structure: Flack (1983), 5755 Friedel pairs
2 restraintsAbsolute structure parameter: 0.676 (18)
0 constraints
Crystal data top
Ca2Mn3O2(PO4)3·3H2OV = 3777.7 (3) Å3
Mr = 615.94Z = 12
Monoclinic, AaMo Kα radiation
a = 17.3400 (9) ŵ = 4.26 mm1
b = 19.4464 (10) ÅT = 293 K
c = 11.2787 (6) Å0.07 × 0.06 × 0.06 mm
β = 96.634 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
12635 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
9678 reflections with I > 2σ(I)
Tmin = 0.755, Tmax = 0.784Rint = 0.037
28397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0452 restraints
wR(F2) = 0.107Δρmax = 1.74 e Å3
S = 1.02Δρmin = 1.09 e Å3
12635 reflectionsAbsolute structure: Flack (1983), 5755 Friedel pairs
677 parametersAbsolute structure parameter: 0.676 (18)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.58062 (8)0.03854 (7)0.82279 (11)0.0137 (3)
Ca20.58141 (8)0.17089 (7)0.36808 (11)0.0124 (3)
Ca30.57448 (8)0.37140 (7)0.83846 (13)0.0179 (3)
Ca40.41585 (9)0.29044 (7)0.23054 (12)0.0119 (3)
Ca50.41628 (8)0.49350 (7)0.68142 (11)0.0165 (3)
Ca60.41167 (8)0.15870 (8)0.70426 (13)0.0227 (3)
Mn10.25209 (6)0.46201 (6)0.50350 (8)0.0086 (2)
Mn20.24576 (6)0.20322 (5)0.29198 (8)0.0083 (2)
Mn30.24562 (6)0.22294 (5)0.79390 (8)0.00849 (19)
Mn40.24453 (7)0.04194 (5)0.27166 (8)0.00814 (19)
Mn50.24564 (6)0.05107 (5)0.76962 (8)0.00691 (19)
Mn60.25012 (6)0.37523 (5)0.27271 (8)0.00717 (19)
Mn70.25291 (6)0.38379 (5)0.77123 (8)0.00791 (19)
Mn80.25065 (6)0.29440 (5)0.03965 (7)0.0095 (2)
Mn90.23926 (6)0.12877 (5)0.53689 (7)0.0081 (2)
P10.10655 (11)0.28822 (8)0.18234 (14)0.0097 (3)
P20.10885 (11)0.46008 (8)0.64796 (14)0.0081 (3)
P30.10188 (10)0.14070 (8)0.68711 (14)0.0076 (3)
P40.39169 (10)0.46640 (8)0.35583 (14)0.0081 (3)
P50.38516 (11)0.12096 (8)0.39767 (15)0.0090 (3)
P60.39221 (11)0.30491 (9)0.89494 (14)0.0108 (3)
P70.20597 (11)0.45712 (8)0.01054 (14)0.0089 (3)
P80.28687 (10)0.12488 (8)0.04287 (13)0.0126 (3)
P90.28811 (10)0.29252 (8)0.54105 (14)0.0127 (3)
O10.0210 (3)0.2875 (2)0.1690 (4)0.0178 (10)
O20.1379 (3)0.2231 (2)0.2543 (4)0.0135 (10)
O30.1394 (3)0.3527 (2)0.2542 (4)0.0135 (10)
O40.1381 (3)0.2862 (2)0.0600 (4)0.0132 (10)
O50.0237 (3)0.4560 (2)0.6302 (4)0.0152 (10)
O60.1364 (3)0.5263 (2)0.7164 (4)0.0131 (10)
O70.1426 (3)0.3972 (2)0.7196 (4)0.0110 (9)
O80.1411 (3)0.4594 (2)0.5248 (4)0.0135 (10)
O90.0155 (3)0.1437 (2)0.6814 (4)0.0148 (10)
O100.1370 (3)0.2045 (2)0.7596 (4)0.0134 (10)
O110.1339 (3)0.0742 (2)0.7528 (4)0.0116 (9)
O120.1277 (3)0.1421 (2)0.5601 (4)0.0112 (9)
O130.4788 (3)0.4702 (2)0.3630 (4)0.0145 (10)
O140.3614 (3)0.3989 (2)0.2923 (4)0.0090 (9)
O150.3540 (3)0.5296 (2)0.2856 (4)0.0111 (10)
O160.3643 (3)0.4666 (2)0.4812 (4)0.0124 (9)
O170.4724 (3)0.1198 (3)0.4171 (4)0.0168 (11)
O180.3551 (3)0.1868 (2)0.3275 (4)0.0082 (9)
O190.3541 (3)0.0575 (2)0.3226 (4)0.0088 (9)
O200.3502 (3)0.1198 (2)0.5191 (4)0.0124 (10)
O210.4794 (3)0.3056 (2)0.9025 (5)0.0190 (11)
O220.3572 (3)0.2402 (2)0.8253 (4)0.0114 (9)
O230.3593 (3)0.3692 (2)0.8256 (4)0.0117 (10)
O240.3642 (3)0.3047 (2)0.0216 (4)0.0157 (10)
O250.1216 (3)0.4394 (2)0.9774 (4)0.0171 (10)
O260.2491 (3)0.3998 (2)0.0859 (4)0.0129 (10)
O270.2220 (3)0.5242 (2)0.0796 (4)0.0134 (10)
O280.2486 (3)0.4628 (2)0.8960 (4)0.0152 (10)
O290.3736 (3)0.1122 (3)0.0715 (4)0.0210 (11)
O300.2470 (3)0.0691 (2)0.9604 (4)0.0141 (9)
O310.2625 (3)0.1932 (2)0.9804 (4)0.0215 (10)
O320.2460 (3)0.1243 (2)0.1567 (4)0.0168 (9)
O330.3751 (3)0.2796 (3)0.5684 (4)0.0242 (11)
O340.2656 (3)0.3556 (2)0.4631 (4)0.0167 (10)
O350.2452 (3)0.2315 (2)0.4746 (4)0.0159 (9)
O360.2496 (3)0.3018 (2)0.6558 (4)0.0156 (9)
O370.2128 (3)0.1183 (2)0.3716 (4)0.0155 (10)
O380.2705 (3)0.1411 (2)0.7083 (4)0.0094 (9)
O390.2767 (3)0.2855 (2)0.2121 (4)0.0085 (9)
O400.2210 (3)0.3076 (2)0.8749 (4)0.0123 (9)
O410.2217 (3)0.4622 (2)0.3310 (4)0.0105 (9)
O420.2790 (3)0.4644 (2)0.6681 (4)0.0144 (10)
Ow10.4965 (3)0.2707 (2)0.4139 (4)0.0188 (11)
Ow20.4817 (3)0.3812 (2)0.6588 (4)0.0243 (13)
Ow30.4978 (3)0.0622 (2)0.6478 (4)0.0163 (10)
Ow40.4916 (3)0.1935 (2)0.1817 (4)0.0175 (11)
Ow50.5066 (3)0.4716 (2)0.8740 (4)0.0161 (10)
Ow60.4881 (4)0.1223 (2)0.8902 (4)0.0232 (12)
Ow70.4218 (4)0.4531 (2)0.0558 (5)0.0209 (11)
Ow80.5761 (4)0.3807 (3)0.4894 (5)0.0324 (14)
Ow90.5819 (4)0.2115 (3)0.0122 (5)0.0358 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0091 (6)0.0167 (6)0.0148 (6)0.0031 (5)0.0010 (5)0.0005 (5)
Ca20.0095 (6)0.0146 (6)0.0129 (5)0.0000 (5)0.0001 (5)0.0005 (5)
Ca30.0098 (6)0.0196 (6)0.0236 (6)0.0037 (5)0.0009 (5)0.0084 (5)
Ca40.0088 (6)0.0119 (6)0.0145 (6)0.0011 (5)0.0008 (5)0.0008 (5)
Ca50.0086 (6)0.0254 (7)0.0155 (6)0.0027 (5)0.0013 (5)0.0090 (5)
Ca60.0070 (6)0.0360 (8)0.0246 (7)0.0014 (6)0.0000 (5)0.0201 (6)
Mn10.0078 (5)0.0103 (4)0.0073 (4)0.0007 (4)0.0009 (3)0.0002 (3)
Mn20.0077 (5)0.0054 (4)0.0113 (4)0.0002 (4)0.0012 (4)0.0006 (3)
Mn30.0076 (5)0.0058 (4)0.0116 (4)0.0015 (4)0.0010 (4)0.0019 (4)
Mn40.0079 (5)0.0077 (4)0.0084 (4)0.0001 (4)0.0003 (3)0.0004 (4)
Mn50.0075 (5)0.0058 (4)0.0075 (4)0.0007 (4)0.0010 (3)0.0000 (3)
Mn60.0065 (5)0.0060 (4)0.0087 (4)0.0008 (4)0.0002 (3)0.0004 (3)
Mn70.0084 (5)0.0066 (4)0.0084 (4)0.0005 (4)0.0005 (3)0.0013 (3)
Mn80.0098 (5)0.0082 (5)0.0092 (4)0.0021 (3)0.0038 (4)0.0029 (3)
Mn90.0075 (5)0.0077 (4)0.0090 (4)0.0006 (3)0.0002 (3)0.0016 (3)
P10.0081 (8)0.0072 (7)0.0131 (7)0.0006 (6)0.0024 (6)0.0020 (6)
P20.0069 (7)0.0096 (7)0.0073 (6)0.0018 (6)0.0011 (5)0.0006 (5)
P30.0061 (7)0.0058 (7)0.0107 (6)0.0007 (5)0.0003 (6)0.0006 (5)
P40.0067 (7)0.0086 (7)0.0086 (6)0.0009 (6)0.0007 (5)0.0009 (5)
P50.0086 (8)0.0060 (7)0.0120 (7)0.0002 (6)0.0001 (6)0.0007 (6)
P60.0093 (8)0.0103 (7)0.0122 (7)0.0023 (6)0.0015 (6)0.0047 (6)
P70.0105 (9)0.0081 (7)0.0081 (6)0.0008 (6)0.0012 (6)0.0008 (6)
P80.0108 (8)0.0156 (8)0.0112 (7)0.0001 (6)0.0004 (6)0.0038 (6)
P90.0098 (8)0.0152 (7)0.0125 (7)0.0012 (6)0.0005 (6)0.0020 (6)
O10.010 (2)0.014 (2)0.028 (3)0.0019 (18)0.0028 (19)0.0032 (18)
O20.013 (2)0.006 (2)0.021 (2)0.0005 (17)0.0004 (19)0.0025 (16)
O30.012 (2)0.006 (2)0.022 (2)0.0023 (17)0.0002 (18)0.0019 (16)
O40.009 (2)0.016 (2)0.014 (2)0.0021 (17)0.0033 (17)0.0022 (16)
O50.010 (2)0.017 (2)0.019 (2)0.0008 (18)0.0036 (19)0.0007 (18)
O60.013 (3)0.009 (2)0.016 (2)0.0003 (17)0.0028 (18)0.0007 (16)
O70.012 (2)0.0086 (19)0.0120 (19)0.0049 (16)0.0013 (17)0.0003 (15)
O80.009 (2)0.018 (2)0.012 (2)0.0045 (17)0.0041 (17)0.0030 (16)
O90.009 (2)0.014 (2)0.021 (2)0.0013 (18)0.0010 (18)0.0009 (17)
O100.010 (2)0.012 (2)0.018 (2)0.0022 (17)0.0026 (18)0.0027 (16)
O110.013 (2)0.008 (2)0.015 (2)0.0011 (17)0.0040 (18)0.0020 (16)
O120.007 (2)0.015 (2)0.0115 (19)0.0003 (17)0.0004 (16)0.0048 (16)
O130.006 (2)0.016 (2)0.022 (2)0.0022 (17)0.0015 (18)0.0011 (17)
O140.004 (2)0.011 (2)0.0118 (19)0.0009 (16)0.0015 (16)0.0052 (15)
O150.008 (2)0.011 (2)0.014 (2)0.0006 (16)0.0025 (17)0.0037 (16)
O160.013 (2)0.0106 (19)0.0125 (19)0.0006 (16)0.0018 (17)0.0000 (16)
O170.006 (2)0.022 (3)0.022 (2)0.0027 (19)0.0000 (19)0.0058 (19)
O180.006 (2)0.0079 (19)0.0111 (18)0.0001 (16)0.0010 (16)0.0026 (15)
O190.008 (2)0.0077 (19)0.0109 (19)0.0005 (16)0.0006 (16)0.0032 (15)
O200.014 (2)0.014 (2)0.0096 (19)0.0039 (18)0.0027 (17)0.0004 (16)
O210.007 (2)0.018 (2)0.031 (3)0.0003 (18)0.0004 (19)0.0054 (19)
O220.009 (2)0.010 (2)0.015 (2)0.0006 (16)0.0016 (17)0.0078 (16)
O230.010 (2)0.012 (2)0.0131 (19)0.0044 (16)0.0000 (17)0.0006 (15)
O240.020 (3)0.018 (2)0.0088 (19)0.0033 (19)0.0033 (17)0.0060 (16)
O250.016 (3)0.015 (2)0.021 (2)0.001 (2)0.003 (2)0.0009 (18)
O260.019 (3)0.011 (2)0.0078 (19)0.0009 (19)0.0038 (18)0.0015 (17)
O270.018 (2)0.009 (2)0.012 (2)0.0071 (17)0.0014 (18)0.0016 (15)
O280.019 (3)0.016 (2)0.011 (2)0.002 (2)0.0075 (19)0.0013 (18)
O290.008 (2)0.026 (2)0.027 (3)0.0065 (19)0.0070 (19)0.009 (2)
O300.014 (2)0.014 (2)0.014 (2)0.0024 (17)0.0003 (17)0.0057 (16)
O310.026 (3)0.016 (2)0.023 (2)0.0009 (19)0.002 (2)0.0011 (19)
O320.014 (2)0.023 (2)0.014 (2)0.0051 (18)0.0009 (17)0.0058 (17)
O330.010 (2)0.034 (3)0.027 (3)0.003 (2)0.005 (2)0.004 (2)
O340.027 (3)0.012 (2)0.0115 (19)0.0068 (18)0.0014 (18)0.0029 (15)
O350.014 (2)0.012 (2)0.021 (2)0.0047 (17)0.0007 (18)0.0015 (17)
O360.011 (2)0.018 (2)0.017 (2)0.0004 (17)0.0024 (17)0.0048 (17)
O370.013 (2)0.018 (2)0.014 (2)0.0048 (18)0.0029 (18)0.0045 (17)
O380.007 (2)0.0105 (19)0.0115 (19)0.0017 (16)0.0019 (16)0.0034 (16)
O390.009 (2)0.0048 (17)0.0112 (18)0.0014 (15)0.0012 (16)0.0004 (15)
O400.012 (2)0.010 (2)0.0134 (19)0.0045 (17)0.0019 (17)0.0073 (16)
O410.011 (2)0.0119 (19)0.0090 (18)0.0010 (17)0.0009 (17)0.0032 (15)
O420.008 (2)0.027 (2)0.0075 (18)0.0011 (18)0.0023 (17)0.0029 (17)
Ow10.027 (3)0.014 (2)0.014 (2)0.004 (2)0.004 (2)0.0036 (18)
Ow20.027 (3)0.019 (2)0.025 (2)0.002 (2)0.004 (2)0.0063 (19)
Ow30.018 (2)0.017 (2)0.012 (2)0.001 (2)0.0034 (18)0.0009 (18)
Ow40.022 (3)0.015 (2)0.014 (2)0.003 (2)0.0015 (19)0.0037 (17)
Ow50.019 (3)0.014 (2)0.016 (2)0.001 (2)0.0055 (19)0.0038 (17)
Ow60.032 (3)0.021 (3)0.017 (2)0.001 (2)0.004 (2)0.0049 (19)
Ow70.026 (3)0.014 (2)0.024 (2)0.005 (2)0.008 (2)0.0063 (19)
Ow80.038 (4)0.028 (3)0.030 (3)0.011 (2)0.004 (3)0.008 (2)
Ow90.048 (4)0.026 (3)0.036 (3)0.018 (3)0.014 (3)0.010 (2)
Geometric parameters (Å, º) top
Ca1—O13i2.296 (5)Mn4—O42viii2.038 (5)
Ca1—Ow32.348 (5)Mn4—O322.062 (5)
Ca1—O8ii2.396 (5)Mn4—O28viii2.079 (5)
Ca1—O41ii2.437 (5)Mn5—O15i1.913 (5)
Ca1—Ow62.467 (6)Mn5—O41i1.924 (4)
Ca1—O3ii2.508 (5)Mn5—O381.949 (4)
Ca1—O11iii2.540 (5)Mn5—O111.976 (5)
Ca2—O172.261 (5)Mn5—O302.178 (4)
Ca2—O4ii2.420 (5)Mn5—O27i2.199 (5)
Ca2—O40iv2.449 (5)Mn6—O411.901 (5)
Ca2—O7iv2.469 (5)Mn6—O391.949 (4)
Ca2—Ow42.507 (5)Mn6—O31.957 (5)
Ca2—Ow12.525 (5)Mn6—O141.971 (5)
Ca2—O25iv2.531 (5)Mn6—O262.158 (5)
Ca3—O212.270 (5)Mn6—O342.166 (4)
Ca3—Ow52.335 (5)Mn7—O231.898 (5)
Ca3—O37ii2.393 (6)Mn7—O71.952 (5)
Ca3—O2ii2.394 (5)Mn7—O402.004 (5)
Ca3—Ow22.445 (5)Mn7—O422.034 (5)
Ca3—O12ii2.576 (4)Mn7—O362.055 (4)
Ca3—O6v2.710 (5)Mn7—O282.090 (5)
Ca3—Mn2ii3.4002 (18)Mn8—O40ix1.888 (4)
Ca3—Mn9ii3.4199 (17)Mn8—O391.953 (4)
Ca3—P63.540 (2)Mn8—O41.997 (5)
Ca3—Mn4ii3.5519 (19)Mn8—O242.013 (5)
Ca3—Ca53.896 (2)Mn8—O31ix2.096 (5)
Ca4—O9iv2.271 (6)Mn8—O262.116 (5)
Ca4—Ow12.389 (5)Mn9—O371.878 (4)
Ca4—Ow42.398 (5)Mn9—O381.961 (4)
Ca4—O392.400 (5)Mn9—O201.964 (5)
Ca4—O242.438 (5)Mn9—O121.999 (5)
Ca4—O142.444 (5)Mn9—O27i2.119 (4)
Ca4—O182.575 (5)Mn9—O352.125 (4)
Ca5—O5v2.240 (5)P1—O11.474 (6)
Ca5—O19vi2.375 (5)P1—O41.542 (5)
Ca5—O162.391 (5)P1—O31.565 (5)
Ca5—O422.434 (5)P1—O21.567 (5)
Ca5—Ow22.488 (5)P2—O51.469 (6)
Ca5—Ow52.562 (5)P2—O71.542 (5)
Ca5—O29vi2.684 (5)P2—O61.549 (5)
Ca6—O1ii2.241 (5)P2—O81.557 (5)
Ca6—O202.357 (5)P3—O91.492 (6)
Ca6—O222.359 (5)P3—O121.549 (5)
Ca6—Ow62.452 (5)P3—O111.561 (5)
Ca6—O382.478 (5)P3—O101.570 (5)
Ca6—Ow32.526 (5)P4—O131.506 (6)
Ca6—O332.838 (5)P4—O161.542 (5)
Ca6—O15i2.892 (5)P4—O141.558 (5)
Mn1—O421.862 (4)P4—O151.563 (5)
Mn1—O411.956 (4)P5—O171.503 (5)
Mn1—O81.967 (5)P5—O191.558 (5)
Mn1—O161.992 (5)P5—O201.561 (5)
Mn1—O342.137 (4)P5—O181.563 (5)
Mn1—O30vii2.138 (4)P6—O211.505 (5)
Mn2—O21.909 (5)P6—O231.547 (5)
Mn2—O181.919 (5)P6—O24x1.561 (5)
Mn2—O391.942 (4)P6—O221.568 (5)
Mn2—O371.994 (5)P7—O25ix1.507 (6)
Mn2—O352.133 (5)P7—O271.528 (5)
Mn2—O322.164 (4)P7—O261.542 (5)
Mn3—O101.913 (5)P7—O28ix1.564 (5)
Mn3—O381.936 (4)P8—O291.521 (5)
Mn3—O401.954 (4)P8—O321.537 (5)
Mn3—O221.956 (5)P8—O30ix1.540 (4)
Mn3—O312.168 (5)P8—O31ix1.540 (5)
Mn3—O362.192 (4)P9—O331.525 (5)
Mn4—O6viii1.931 (5)P9—O341.534 (4)
Mn4—O191.944 (5)P9—O361.534 (5)
Mn4—O371.981 (5)P9—O351.547 (4)
O42—Mn1—O41178.1 (2)O40—Mn7—O42176.3 (2)
O42—Mn1—O890.9 (2)O23—Mn7—O3692.47 (19)
O41—Mn1—O888.1 (2)O7—Mn7—O3687.76 (18)
O42—Mn1—O1689.4 (2)O40—Mn7—O3678.86 (17)
O41—Mn1—O1691.7 (2)O42—Mn7—O36103.18 (18)
O8—Mn1—O16178.9 (2)O23—Mn7—O2890.1 (2)
O42—Mn1—O34102.50 (19)O7—Mn7—O2889.6 (2)
O41—Mn1—O3479.25 (17)O40—Mn7—O2896.68 (18)
O8—Mn1—O3497.7 (2)O42—Mn7—O2881.14 (17)
O16—Mn1—O3483.30 (19)O36—Mn7—O28174.9 (2)
O42—Mn1—O30vii101.58 (19)O40ix—Mn8—O39176.3 (2)
O41—Mn1—O30vii76.85 (17)O40ix—Mn8—O488.0 (2)
O8—Mn1—O30vii92.17 (19)O39—Mn8—O489.7 (2)
O16—Mn1—O30vii86.73 (18)O40ix—Mn8—O2492.6 (2)
O34—Mn1—O30vii153.77 (17)O39—Mn8—O2489.62 (19)
O2—Mn2—O18177.7 (2)O4—Mn8—O24178.60 (19)
O2—Mn2—O3992.6 (2)O40ix—Mn8—O31ix80.77 (18)
O18—Mn2—O3985.1 (2)O39—Mn8—O31ix102.39 (18)
O2—Mn2—O3786.8 (2)O4—Mn8—O31ix95.48 (19)
O18—Mn2—O3795.5 (2)O24—Mn8—O31ix85.9 (2)
O39—Mn2—O37179.1 (2)O40ix—Mn8—O2695.79 (18)
O2—Mn2—O3592.82 (19)O39—Mn8—O2681.27 (17)
O18—Mn2—O3587.48 (18)O4—Mn8—O2690.5 (2)
O39—Mn2—O35105.53 (17)O24—Mn8—O2688.2 (2)
O37—Mn2—O3575.24 (17)O31ix—Mn8—O26173.0 (2)
O2—Mn2—O3293.90 (19)O37—Mn9—O38177.9 (2)
O18—Mn2—O3286.98 (18)O37—Mn9—O2091.1 (2)
O39—Mn2—O32103.55 (18)O38—Mn9—O2087.09 (19)
O37—Mn2—O3275.77 (18)O37—Mn9—O1290.9 (2)
O35—Mn2—O32149.79 (17)O38—Mn9—O1290.9 (2)
O10—Mn3—O3890.9 (2)O20—Mn9—O12177.1 (2)
O10—Mn3—O4089.4 (2)O37—Mn9—O27i95.57 (19)
O38—Mn3—O40177.80 (19)O38—Mn9—O27i85.62 (17)
O10—Mn3—O22178.4 (2)O20—Mn9—O27i95.9 (2)
O38—Mn3—O2287.6 (2)O12—Mn9—O27i86.0 (2)
O40—Mn3—O2292.1 (2)O37—Mn9—O3577.82 (18)
O10—Mn3—O3199.5 (2)O38—Mn9—O35101.11 (18)
O38—Mn3—O31104.59 (18)O20—Mn9—O3587.99 (19)
O40—Mn3—O3177.50 (18)O12—Mn9—O3590.35 (18)
O22—Mn3—O3181.37 (19)O27i—Mn9—O35172.40 (18)
O10—Mn3—O3695.68 (18)O1—P1—O4111.4 (3)
O38—Mn3—O36101.16 (17)O1—P1—O3111.3 (3)
O40—Mn3—O3676.65 (17)O4—P1—O3109.8 (3)
O22—Mn3—O3684.06 (18)O1—P1—O2109.3 (3)
O31—Mn3—O36149.72 (17)O4—P1—O2107.8 (3)
O6viii—Mn4—O19178.4 (2)O3—P1—O2107.2 (3)
O6viii—Mn4—O3788.8 (2)O5—P2—O7110.0 (3)
O19—Mn4—O3792.4 (2)O5—P2—O6111.1 (3)
O6viii—Mn4—O42viii92.1 (2)O7—P2—O6108.7 (3)
O19—Mn4—O42viii86.7 (2)O5—P2—O8109.7 (3)
O37—Mn4—O42viii178.9 (2)O7—P2—O8107.9 (3)
O6viii—Mn4—O3290.06 (19)O6—P2—O8109.3 (3)
O19—Mn4—O3289.03 (19)O9—P3—O12110.8 (3)
O37—Mn4—O3278.44 (18)O9—P3—O11110.7 (3)
O42viii—Mn4—O32100.86 (18)O12—P3—O11109.1 (3)
O6viii—Mn4—O28viii93.3 (2)O9—P3—O10108.5 (3)
O19—Mn4—O28viii87.7 (2)O12—P3—O10109.4 (3)
O37—Mn4—O28viii99.29 (19)O11—P3—O10108.2 (3)
O42viii—Mn4—O28viii81.34 (18)O13—P4—O16111.3 (3)
O32—Mn4—O28viii175.9 (2)O13—P4—O14110.4 (3)
O15i—Mn5—O41i91.2 (2)O16—P4—O14107.5 (3)
O15i—Mn5—O3888.6 (2)O13—P4—O15110.4 (3)
O41i—Mn5—O38179.6 (3)O16—P4—O15107.9 (3)
O15i—Mn5—O11179.5 (2)O14—P4—O15109.3 (3)
O41i—Mn5—O1189.4 (2)O17—P5—O19110.2 (3)
O38—Mn5—O1190.9 (2)O17—P5—O20111.0 (3)
O15i—Mn5—O3092.51 (18)O19—P5—O20108.7 (3)
O41i—Mn5—O3076.54 (17)O17—P5—O18110.9 (3)
O38—Mn5—O30103.22 (17)O19—P5—O18107.5 (3)
O11—Mn5—O3087.52 (18)O20—P5—O18108.4 (3)
O15i—Mn5—O27i96.3 (2)O21—P6—O23109.3 (3)
O41i—Mn5—O27i96.52 (17)O21—P6—O24x111.4 (3)
O38—Mn5—O27i83.76 (17)O23—P6—O24x109.2 (3)
O11—Mn5—O27i83.68 (19)O21—P6—O22111.3 (3)
O30—Mn5—O27i168.88 (19)O23—P6—O22107.3 (3)
O41—Mn6—O39178.6 (3)O24x—P6—O22108.2 (3)
O41—Mn6—O386.9 (2)O25ix—P7—O27115.8 (3)
O39—Mn6—O391.8 (2)O25ix—P7—O26111.5 (3)
O41—Mn6—O1492.5 (2)O27—P7—O26106.8 (3)
O39—Mn6—O1488.88 (19)O25ix—P7—O28ix110.4 (3)
O3—Mn6—O14179.3 (2)O27—P7—O28ix106.6 (3)
O41—Mn6—O2699.65 (18)O26—P7—O28ix105.1 (3)
O39—Mn6—O2680.28 (17)O29—P8—O32111.2 (3)
O3—Mn6—O2692.8 (2)O29—P8—O30ix112.2 (3)
O14—Mn6—O2687.44 (19)O32—P8—O30ix106.3 (3)
O41—Mn6—O3479.70 (17)O29—P8—O31ix116.7 (3)
O39—Mn6—O34100.54 (17)O32—P8—O31ix105.1 (3)
O3—Mn6—O3494.25 (19)O30ix—P8—O31ix104.6 (3)
O14—Mn6—O3485.51 (19)O33—P9—O34115.3 (3)
O26—Mn6—O34172.9 (2)O33—P9—O36111.4 (3)
O23—Mn7—O7178.2 (2)O34—P9—O36106.5 (3)
O23—Mn7—O4091.4 (2)O33—P9—O35112.4 (3)
O7—Mn7—O4086.90 (19)O34—P9—O35105.0 (2)
O23—Mn7—O4291.6 (2)O36—P9—O35105.5 (3)
O7—Mn7—O4290.1 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y, z; (iv) x+1/2, y+1/2, z1/2; (v) x+1/2, y+1, z; (vi) x, y+1/2, z+1/2; (vii) x, y+1/2, z1/2; (viii) x, y1/2, z1/2; (ix) x, y, z1; (x) x, y, z+1.
Hydrogen-bond geometry (Å) top
D—H···AD···A
Ow1···O172.964 (7)
Ow1···O332.889 (8)
Ow2···O332.815 (7)
Ow2···Ow82.655 (8)
Ow3···O1ii2.957 (4)
Ow3···O172.821 (6)
Ow4···O292.764 (7)
Ow4···Ow92.631 (8)
Ow5···Ow7x2.682 (8)
Ow5···O25v2.792 (7)
Ow6···O13i2.977 (6)
Ow6···Ow9x2.651 (7)
Ow7···O9iv2.768 (7)
Ow7···Ow3vii2.645 (7)
Ow8···O132.710 (8)
Ow8···Ow12.635 (7)
Ow9···O12iv2.989 (7)
Ow9···O21ix2.743 (8)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z1/2; (v) x+1/2, y+1, z; (vii) x, y+1/2, z1/2; (ix) x, y, z1; (x) x, y, z+1.

Experimental details

Crystal data
Chemical formulaCa2Mn3O2(PO4)3·3H2O
Mr615.94
Crystal system, space groupMonoclinic, Aa
Temperature (K)293
a, b, c (Å)17.3400 (9), 19.4464 (10), 11.2787 (6)
β (°) 96.634 (3)
V3)3777.7 (3)
Z12
Radiation typeMo Kα
µ (mm1)4.26
Crystal size (mm)0.07 × 0.06 × 0.06
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.755, 0.784
No. of measured, independent and
observed [I > 2σ(I)] reflections
28397, 12635, 9678
Rint0.037
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.107, 1.02
No. of reflections12635
No. of parameters677
No. of restraints2
Δρmax, Δρmin (e Å3)1.74, 1.09
Absolute structureFlack (1983), 5755 Friedel pairs
Absolute structure parameter0.676 (18)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XtalDraw (Downs & Hall-Wallace, 2003), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD···A
Ow1···O172.964 (7)
Ow1···O332.889 (8)
Ow2···O332.815 (7)
Ow2···Ow82.655 (8)
Ow3···O1i2.957 (4)
Ow3···O172.821 (6)
Ow4···O292.764 (7)
Ow4···Ow92.631 (8)
Ow5···Ow7ii2.682 (8)
Ow5···O25iii2.792 (7)
Ow6···O13iv2.977 (6)
Ow6···Ow9ii2.651 (7)
Ow7···O9v2.768 (7)
Ow7···Ow3vi2.645 (7)
Ow8···O132.710 (8)
Ow8···Ow12.635 (7)
Ow9···O12v2.989 (7)
Ow9···O21vii2.743 (8)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x+1/2, y+1, z; (iv) x, y1/2, z+1/2; (v) x+1/2, y+1/2, z1/2; (vi) x, y+1/2, z1/2; (vii) x, y, z1.
 

Acknowledgements

We are very grateful to A. R. Kampf and T. A. Loomis for providing the rare pararobertsite samples to the RRUFF project. Support of this study was given by the Arizona Science Foundation, CNPq 202469/2011-5 from the Brazilian government, and NASA NNX11AN75A, Mars Science Laboratory Investigations. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National Aeronautics and Space Administration.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowns, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247–250.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFransolet, A. M. (2000). Can. Mineral. 38, 893–898.  Web of Science CrossRef CAS Google Scholar
First citationKampf, A. R. (2000). Am. Mineral. 85, 1302–1306.  CAS Google Scholar
First citationKauwenbergh, S. J. van, Cooper-Fleck, M. & Williams, M. R. (1988). Mineral. Mag. 52, 505–508.  Google Scholar
First citationKulprathipanja, S., Lewis, G. J. & Willis, R. R. (2001). US Patent No. 6 190 562.  Google Scholar
First citationMoore, P. B. & Araki, T. (1977). Inorg. Chem. 16, 1096–1106.  CrossRef CAS Web of Science Google Scholar
First citationMoore, P. B. & Ito, J. (1974). Am. Mineral. 59, 48–59.  CAS Google Scholar
First citationRoberts, A. C., Sturman, B. D., Dunn, P. J. & Roberts, W. L. (1989). Can. Mineral. 27, 451–455.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVoloshin, A. V., Men'shikov, Yu. P., Polezhaeva, L. I. & Lentsi, A. A. (1982). Mineral. Zh. 4, 90–95.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWildner, M., Tillmanns, E., Andrut, M. & Lorenz, J. (2003). Eur. J. Mineral. 15, 555–564.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds