metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(18-Crown-6)potassium [(1,2,5,6-η)-cyclo­octa-1,5-diene][(1,2,3,4-η)-naph­tha­lene]­ferrate(−I)

aDepartment of Chemistry, 207 Pleasant Street SE, University of Minnesota, Minneapolis, MN 55455, USA
*Correspondence e-mail: brennessel@chem.rochester.edu

(Received 23 August 2012; accepted 27 August 2012; online 1 September 2012)

The title salt, [K(C12H24O6)][Fe(C8H12)(C10H8)], is the only known naphthalene complex containing iron in a formally negative oxidation state. Each (naphthalene)(1,5-cod)ferrate(−I) anion is in contact with one (18-crown-6)potassium cation via K⋯C contacts to the outer four carbon atoms of the naphthalene ligand (cod = 1,5-cyclo­octa­diene, 18-crown-6 = 1,4,7,10,13,16-hexa­oxacyclo­octa­deca­ne). When using the midpoints of the coordinating olefin bonds, the overall geometry of the coordination sphere around iron can be best described as distorted tetra­hedral. The naphthalene fold angle between the plane of the iron-coordinating butadiene unit and the plane containing the exo-benzene moiety is 19.2 (1)°.

Related literature

For the known complexes that contain iron in a formally negative oxidation state with solely olefinic ligands, see: Jonas (1979[Jonas, K. (1979). US Patent No. 4 169 845.], 1981[Jonas, K. (1981). Adv. Organomet. Chem. 19, 97-122.]); Jonas et al. (1979[Jonas, K., Schieferstein, L., Krüger, C. & Tsay, Y.-H. (1979). Angew. Chem. Int. Ed. Engl. 18, 550-551.]); Jonas & Krüger (1980[Jonas, K. & Krüger, C. (1980). Angew. Chem. Int. Ed. Engl. 19, 520-537.]); Brennessel et al. (2007[Brennessel, W. W., Jilek, R. E. & Ellis, J. E. (2007). Angew. Chem. Int. Ed. 46, 6132-6136.]). For the various syntheses of the cobalt analog of the title complex, see: Brennessel et al. (2006[Brennessel, W. W., Young, V. G. Jr & Ellis, J. E. (2006). Angew. Chem. Int. Ed. 45, 7268-7271.]); Brennessel & Ellis (2012[Brennessel, W. W. & Ellis, J. E. (2012). Inorg. Chem. 51, 9076-9094.]). For an example of a diamagnetic, formally Fe(0) naphthalene­ferrate(−I), see: Schnökelborg et al. (2012[Schnökelborg, E.-M., Khusniyarov, M. M., de Bruin, B., Hartl, F., Langer, T., Eul, M., Schulz, S., Pöttgen, R. & Wolf, R. (2012). Inorg. Chem. 51, 6719-6730.]). For details of the preparation and purification of reagents and solvents, and for descriptions of the equipment and techniques, see: Brennessel (2009[Brennessel, W. W. (2009). PhD dissertation, University of Minnesota, Minneapolis, MN, USA.]). For a discussion of polyaromatic hydro­carbons and their Dewar's resonance energies, see: Milun et al. (1972[Milun, M., Sobotka, Ž. & Trinajstić, N. (1972). J. Org. Chem. 37, 139-141.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C12H24O6)][Fe(C8H12)(C10H8)]

  • Mr = 595.60

  • Triclinic, [P \overline 1]

  • a = 9.244 (1) Å

  • b = 10.5285 (12) Å

  • c = 15.971 (2) Å

  • α = 76.085 (2)°

  • β = 89.651 (2)°

  • γ = 74.949 (2)°

  • V = 1454.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 173 K

  • 0.42 × 0.32 × 0.22 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.666, Tmax = 0.746

  • 17413 measured reflections

  • 6610 independent reflections

  • 5576 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.073

  • S = 1.04

  • 6610 reflections

  • 423 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

To date there are very few reported complexes of iron in a formally negative oxidation state and supported solely by olefinic ligands. In the 1970s Klaus Jonas and coworkers devised a way to synthesize (L)2Li2Fe(CC)2, where L = tetramethylethylenediamine and CC = 2(ethylene) or 1,5-cyclooctadiene (cod) or L = 1,2-dimethoxyethane (dme) and CC = 1,5-cod (Jonas, 1979, 1981; Jonas et al., 1979; Jonas & Krüger, 1980), for which the cod complex is a direct derivative of the ethylene complex. Because ferrocene (FeCp2) was the starting material, the synthesis of the homoleptic ethylene complex required pressurized ethylene gas to fully displace both cyclopentadienyl ligands (5 atm prior to heating to 323 K in a closed vessel; Jonas, 1979). To avoid the need for the superambient pressures necessary with ferrocene, we devised syntheses from a ferrous halide, FeBr2. Recently we reported the syntheses of new ferrate anions bis(anthracene)ferrate(-I), bis(butadiene)ferrate(-I), and mixed-ligand (anthracene)(1,5-cod)ferrate(-I) (Brennessel et al., 2007). The title complex is unique because it is the sole example of a naphthalene complex containing iron in a formally negative oxidation state. Only one other naphthaleneferrate(-I) has been reported in the primary literature, a diamagnetic formally Fe(0) complex, (18-crown-6)potassium (η5-C5Me5)(η4-naphthalene)ferrate(-I) (Schnökelborg et al., 2012). Several neutral and cationic heteroleptic naphthalene—iron complexes have also been structurally characterized, as discussed elsewhere (Brennessel, 2009).

Unlike what was observed in the cobalt system, in which the reduction of CoBr2 by three equivalents of potassium naphthalene in the presence of excess 1,5-cod led to the homoleptic 1,5-cod anion [Co(η4-1,5-cod)2]- (Brennessel et al., 2006; Brennessel & Ellis, 2012), only one molecule of 1,5-cod is found coordinating to the iron atom regardless of excess 1,5-cod. This was not the only product, since carbonylation of the bulk material showed νCO stretching frequencies corresponding to [Fe2(CO)8]2- (major) and [Fe(CO)4]2- (minor). If the naphthalene radical anion is reducing enough to afford an Fe(-II) species directly, then that species could be the precursor to the minor carbonylation product, the Fe(-II) carbonyl. However, since the yield of the title complex is modest (40–50%), there is likely excess reducing agent left over from the initial reduction which easily could have reduced the Fe(-I) carbonyl to Fe(-II). Unfortunately, it has proved very difficult to separate the title complex from the naphthalene radical anion, and no further optimizations or characterizations have been performed to date.

The bond lengths of the metal-coordinating olefins (C1C2 and C3C4, Figure 1) of the naphthalene ligand (1.424 (3) Å, avg.) are statistically identical to those found in the related anthracene-cod ferrate anion, [Fe(C14H10)(C8H12)]- (1.422 (4) Å, avg.; Brennessel et al., 2007), which suggests that naphthalene is performing an equivalent role in supporting the low-valent iron atom. Even so, anthracene quantitatively displaces naphthalene at room temperature in THF solution (i.e., the title complex can be converted to the anthracene-cod ferrate with ease), a result that can be justified with Dewar's resonance energies (Milun et al., 1972). Both the title complex and the anthracene-cod ferrate have an essentially tetrahedral geometry about their iron atoms and have similar polyaromatic hydrocarbon fold angles (for the title structure the fold angle between the planes defined by atoms C1, C2, C3, C4 and C1, C4, C5, C6, C7, C8, C9, C10, respectively, amounts to 19.2 (1) °.)

The packing of the molecular entities is shown in Figure 2.

Related literature top

For the known complexes that contain iron in a formally negative oxidation state with solely olefinic ligands, see: Jonas (1979, 1981); Jonas et al. (1979); Jonas & Krüger (1980); Brennessel et al. (2007). For the various syntheses of the cobalt analog of the title complex, see: Brennessel et al. (2006); Brennessel & Ellis (2012). For an example of a diamagnetic, formally Fe(0) naphthaleneferrate(-I), see: Schnökelborg et al. (2012). For details of the preparation and purification of reagents and solvents, and for descriptions of the equipment and techniques, see: Brennessel (2009). For a discussion of polyaromatic hydrocarbons and their Dewar's resonance energies, see: Milun et al. (1972).

Experimental top

Details on the preparation and purification of reagents and solvents, and descriptions of the equipment and techniques can be found elsewhere (Brennessel, 2009). Under argon, an orange slurry of anhydrous FeBr2 (0.500 g, 2.32 mmol) in THF (50 ml, 195 K) was added to a deep green solution of K[C10H8] (6.86 mmol) and excess 1,5-cyclooctadiene (0.882 g, 8.15 mmol) in THF (50 ml, 195 K). The resulting reddish-yellow solution was warmed slowly to room temperature, when it was filtered to remove KBr. 18-crown-6 (0.613 g, 2.32 mmol) in THF (30 ml) was added to the deep red filtrate and the solvent was removed in vacuo. Pentane (40 ml) was added and the solid was carefully scraped off the flask wall with the stir bar. The slurry was then filtered, and the product was washed with pentane (30 ml) and dried in vacuo, yielding a dark red solid (0.607 g, 44% assuming the uni-negative title complex: see Comment above). An analytically pure bulk sample has not been obtained to date. Dark red blocks were grown from a pentane-layered THF solution at 273 K.

Refinement top

Hydrogen atoms on the naphthalene ligand and on the metal-coordinating carbon atoms of the 1,5-cod ligand were found from a difference Fourier map, and their positional and isotropic displacement parameters were refined independently from those of their respective bonded carbon atoms. All other hydrogen atoms were placed geometrically, and refined relative to their respective bonded carbon atoms with a bond lengths of 0.99 Å and Uiso[H] = 1.2.Ueq[C].

Structure description top

To date there are very few reported complexes of iron in a formally negative oxidation state and supported solely by olefinic ligands. In the 1970s Klaus Jonas and coworkers devised a way to synthesize (L)2Li2Fe(CC)2, where L = tetramethylethylenediamine and CC = 2(ethylene) or 1,5-cyclooctadiene (cod) or L = 1,2-dimethoxyethane (dme) and CC = 1,5-cod (Jonas, 1979, 1981; Jonas et al., 1979; Jonas & Krüger, 1980), for which the cod complex is a direct derivative of the ethylene complex. Because ferrocene (FeCp2) was the starting material, the synthesis of the homoleptic ethylene complex required pressurized ethylene gas to fully displace both cyclopentadienyl ligands (5 atm prior to heating to 323 K in a closed vessel; Jonas, 1979). To avoid the need for the superambient pressures necessary with ferrocene, we devised syntheses from a ferrous halide, FeBr2. Recently we reported the syntheses of new ferrate anions bis(anthracene)ferrate(-I), bis(butadiene)ferrate(-I), and mixed-ligand (anthracene)(1,5-cod)ferrate(-I) (Brennessel et al., 2007). The title complex is unique because it is the sole example of a naphthalene complex containing iron in a formally negative oxidation state. Only one other naphthaleneferrate(-I) has been reported in the primary literature, a diamagnetic formally Fe(0) complex, (18-crown-6)potassium (η5-C5Me5)(η4-naphthalene)ferrate(-I) (Schnökelborg et al., 2012). Several neutral and cationic heteroleptic naphthalene—iron complexes have also been structurally characterized, as discussed elsewhere (Brennessel, 2009).

Unlike what was observed in the cobalt system, in which the reduction of CoBr2 by three equivalents of potassium naphthalene in the presence of excess 1,5-cod led to the homoleptic 1,5-cod anion [Co(η4-1,5-cod)2]- (Brennessel et al., 2006; Brennessel & Ellis, 2012), only one molecule of 1,5-cod is found coordinating to the iron atom regardless of excess 1,5-cod. This was not the only product, since carbonylation of the bulk material showed νCO stretching frequencies corresponding to [Fe2(CO)8]2- (major) and [Fe(CO)4]2- (minor). If the naphthalene radical anion is reducing enough to afford an Fe(-II) species directly, then that species could be the precursor to the minor carbonylation product, the Fe(-II) carbonyl. However, since the yield of the title complex is modest (40–50%), there is likely excess reducing agent left over from the initial reduction which easily could have reduced the Fe(-I) carbonyl to Fe(-II). Unfortunately, it has proved very difficult to separate the title complex from the naphthalene radical anion, and no further optimizations or characterizations have been performed to date.

The bond lengths of the metal-coordinating olefins (C1C2 and C3C4, Figure 1) of the naphthalene ligand (1.424 (3) Å, avg.) are statistically identical to those found in the related anthracene-cod ferrate anion, [Fe(C14H10)(C8H12)]- (1.422 (4) Å, avg.; Brennessel et al., 2007), which suggests that naphthalene is performing an equivalent role in supporting the low-valent iron atom. Even so, anthracene quantitatively displaces naphthalene at room temperature in THF solution (i.e., the title complex can be converted to the anthracene-cod ferrate with ease), a result that can be justified with Dewar's resonance energies (Milun et al., 1972). Both the title complex and the anthracene-cod ferrate have an essentially tetrahedral geometry about their iron atoms and have similar polyaromatic hydrocarbon fold angles (for the title structure the fold angle between the planes defined by atoms C1, C2, C3, C4 and C1, C4, C5, C6, C7, C8, C9, C10, respectively, amounts to 19.2 (1) °.)

The packing of the molecular entities is shown in Figure 2.

For the known complexes that contain iron in a formally negative oxidation state with solely olefinic ligands, see: Jonas (1979, 1981); Jonas et al. (1979); Jonas & Krüger (1980); Brennessel et al. (2007). For the various syntheses of the cobalt analog of the title complex, see: Brennessel et al. (2006); Brennessel & Ellis (2012). For an example of a diamagnetic, formally Fe(0) naphthaleneferrate(-I), see: Schnökelborg et al. (2012). For details of the preparation and purification of reagents and solvents, and for descriptions of the equipment and techniques, see: Brennessel (2009). For a discussion of polyaromatic hydrocarbons and their Dewar's resonance energies, see: Milun et al. (1972).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. Molecular structure of the anion showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing plot that features the cation-anion contacts.
(18-Crown-6)potassium [(1,2,5,6-η)-cycloocta-1,5-diene][(1,2,3,4-η)-naphthalene]ferrate(-I) top
Crystal data top
[K(C12H24O6)][Fe(C8H12)(C10H8)]Z = 2
Mr = 595.60F(000) = 634
Triclinic, P1Dx = 1.360 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.244 (1) ÅCell parameters from 3650 reflections
b = 10.5285 (12) Åθ = 2.3–27.5°
c = 15.971 (2) ŵ = 0.70 mm1
α = 76.085 (2)°T = 173 K
β = 89.651 (2)°Block, dark red
γ = 74.949 (2)°0.42 × 0.32 × 0.22 mm
V = 1454.4 (3) Å3
Data collection top
Siemens SMART CCD
diffractometer
6610 independent reflections
Radiation source: normal-focus sealed tube5576 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scans per φθmax = 27.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1211
Tmin = 0.666, Tmax = 0.746k = 1313
17413 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.4038P]
where P = (Fo2 + 2Fc2)/3
6610 reflections(Δ/σ)max = 0.001
423 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[K(C12H24O6)][Fe(C8H12)(C10H8)]γ = 74.949 (2)°
Mr = 595.60V = 1454.4 (3) Å3
Triclinic, P1Z = 2
a = 9.244 (1) ÅMo Kα radiation
b = 10.5285 (12) ŵ = 0.70 mm1
c = 15.971 (2) ÅT = 173 K
α = 76.085 (2)°0.42 × 0.32 × 0.22 mm
β = 89.651 (2)°
Data collection top
Siemens SMART CCD
diffractometer
6610 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
5576 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.746Rint = 0.025
17413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.32 e Å3
6610 reflectionsΔρmin = 0.29 e Å3
423 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.66405 (2)0.07626 (2)0.327243 (13)0.02107 (7)
C10.42748 (18)0.15429 (16)0.29524 (11)0.0273 (3)
H10.364 (2)0.1109 (18)0.2718 (11)0.033 (5)*
C20.46028 (19)0.12384 (16)0.38572 (11)0.0300 (4)
H20.420 (2)0.058 (2)0.4266 (13)0.041 (5)*
C30.5629 (2)0.18225 (16)0.41542 (11)0.0296 (4)
H30.597 (2)0.1600 (19)0.4752 (13)0.036 (5)*
C40.62680 (19)0.27169 (16)0.35391 (10)0.0271 (3)
H40.704 (2)0.3085 (17)0.3709 (11)0.029 (5)*
C50.57720 (19)0.45705 (16)0.21584 (11)0.0292 (4)
H50.644 (2)0.4972 (18)0.2374 (11)0.029 (5)*
C60.5125 (2)0.50782 (18)0.13140 (12)0.0347 (4)
H60.535 (2)0.583 (2)0.0952 (12)0.038 (5)*
C70.4159 (2)0.44642 (19)0.10107 (12)0.0363 (4)
H70.370 (2)0.4835 (19)0.0440 (13)0.038 (5)*
C80.38090 (19)0.33404 (17)0.15534 (11)0.0304 (4)
H80.312 (2)0.2921 (18)0.1354 (11)0.033 (5)*
C90.44646 (17)0.27912 (15)0.23910 (10)0.0245 (3)
C100.54882 (17)0.34143 (15)0.27027 (10)0.0241 (3)
C110.83151 (18)0.08378 (17)0.24371 (10)0.0252 (3)
H110.8227 (19)0.1757 (18)0.2129 (11)0.029 (5)*
C120.72907 (18)0.02003 (16)0.21617 (10)0.0249 (3)
H120.658 (2)0.0732 (18)0.1659 (11)0.030 (5)*
C130.7681 (2)0.13215 (17)0.22562 (11)0.0291 (4)
H13A0.681 (2)0.1568 (18)0.2049 (11)0.033 (5)*
H13B0.853 (2)0.1600 (18)0.1890 (12)0.034 (5)*
C140.8100 (2)0.21363 (17)0.32012 (12)0.0311 (4)
H14A0.916 (2)0.2459 (18)0.3285 (11)0.032 (5)*
H14B0.772 (2)0.2956 (19)0.3322 (12)0.036 (5)*
C150.74815 (18)0.12962 (16)0.38461 (10)0.0274 (3)
H150.6795 (19)0.1666 (17)0.4243 (11)0.025 (4)*
C160.83112 (19)0.05207 (17)0.41517 (11)0.0294 (4)
H160.813 (2)0.0428 (18)0.4740 (12)0.035 (5)*
C170.9833 (2)0.0384 (2)0.38516 (12)0.0369 (4)
H17A1.063 (2)0.122 (2)0.4099 (12)0.042 (5)*
H17B1.006 (2)0.033 (2)0.4088 (12)0.037 (5)*
C180.98569 (19)0.00363 (19)0.28624 (12)0.0321 (4)
H18A1.0232 (19)0.0742 (18)0.2615 (11)0.030 (5)*
H18B1.058 (2)0.0561 (19)0.2702 (12)0.038 (5)*
K10.20189 (4)0.61844 (4)0.21260 (2)0.02749 (9)
O10.15085 (12)0.44660 (11)0.36324 (7)0.0284 (2)
O20.03471 (13)0.48729 (11)0.21687 (7)0.0286 (2)
O30.02462 (13)0.65530 (12)0.05729 (7)0.0315 (3)
O40.18316 (13)0.85078 (12)0.06839 (7)0.0330 (3)
O50.37379 (13)0.80421 (11)0.21515 (7)0.0310 (3)
O60.29972 (12)0.64416 (11)0.37056 (7)0.0256 (2)
C190.02914 (19)0.38609 (17)0.36605 (11)0.0316 (4)
H19A0.06350.44770.37970.038*
H19B0.05150.29980.41140.038*
C200.00795 (19)0.35982 (16)0.27952 (11)0.0308 (4)
H20A0.10250.30250.26440.037*
H20B0.07100.31150.28080.037*
C210.06693 (19)0.47181 (18)0.13330 (11)0.0310 (4)
H21A0.15140.42980.13510.037*
H21B0.02190.41200.11450.037*
C220.10719 (19)0.60868 (19)0.07117 (11)0.0332 (4)
H22A0.14900.60270.01580.040*
H22B0.18410.67300.09500.040*
C230.0027 (2)0.78647 (17)0.00035 (11)0.0355 (4)
H23A0.07710.85320.02320.043*
H23B0.04400.78490.05700.043*
C240.1409 (2)0.82724 (18)0.01150 (11)0.0358 (4)
H24A0.22020.75430.02660.043*
H24B0.12700.91080.05860.043*
C250.31741 (19)0.89400 (18)0.06443 (11)0.0342 (4)
H25A0.30730.97530.01600.041*
H25B0.40310.82110.05470.041*
C260.3439 (2)0.92658 (17)0.14826 (11)0.0330 (4)
H26A0.43030.96650.14510.040*
H26B0.25420.99330.16050.040*
C300.17578 (18)0.48077 (17)0.44181 (10)0.0278 (3)
H30A0.18360.40130.49120.033*
H30B0.09070.55550.44990.033*
C310.31821 (18)0.52392 (16)0.43816 (10)0.0272 (3)
H31A0.34140.54160.49400.033*
H31B0.40240.45110.42700.033*
C320.43081 (17)0.69279 (16)0.36395 (10)0.0267 (3)
H32A0.51500.62670.34620.032*
H32B0.46020.70390.42070.032*
C330.39767 (18)0.82636 (16)0.29834 (11)0.0283 (3)
H33A0.30700.88950.31280.034*
H33B0.48290.86720.29810.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02165 (12)0.02075 (11)0.01995 (11)0.00350 (8)0.00137 (8)0.00573 (8)
C10.0217 (8)0.0211 (8)0.0376 (9)0.0045 (6)0.0020 (7)0.0057 (7)
C20.0292 (9)0.0237 (8)0.0328 (9)0.0032 (7)0.0117 (7)0.0034 (7)
C30.0367 (9)0.0258 (8)0.0231 (8)0.0009 (7)0.0062 (7)0.0082 (7)
C40.0287 (8)0.0261 (8)0.0290 (8)0.0057 (7)0.0028 (7)0.0130 (7)
C50.0276 (8)0.0233 (8)0.0380 (9)0.0077 (7)0.0099 (7)0.0090 (7)
C60.0368 (10)0.0258 (9)0.0352 (10)0.0050 (7)0.0134 (8)0.0002 (7)
C70.0351 (10)0.0371 (10)0.0271 (9)0.0003 (8)0.0024 (8)0.0006 (8)
C80.0251 (8)0.0314 (9)0.0320 (9)0.0026 (7)0.0015 (7)0.0076 (7)
C90.0201 (7)0.0213 (7)0.0301 (8)0.0004 (6)0.0048 (6)0.0085 (6)
C100.0229 (8)0.0206 (7)0.0289 (8)0.0021 (6)0.0076 (6)0.0105 (6)
C110.0265 (8)0.0252 (8)0.0247 (8)0.0075 (6)0.0057 (6)0.0072 (6)
C120.0248 (8)0.0284 (8)0.0213 (7)0.0048 (6)0.0025 (6)0.0082 (6)
C130.0287 (9)0.0295 (9)0.0327 (9)0.0068 (7)0.0040 (7)0.0157 (7)
C140.0304 (9)0.0230 (8)0.0389 (10)0.0042 (7)0.0006 (7)0.0088 (7)
C150.0276 (8)0.0239 (8)0.0257 (8)0.0029 (7)0.0000 (7)0.0009 (6)
C160.0296 (9)0.0297 (9)0.0244 (8)0.0009 (7)0.0048 (7)0.0054 (7)
C170.0275 (9)0.0385 (10)0.0422 (11)0.0033 (8)0.0098 (8)0.0112 (8)
C180.0213 (8)0.0342 (9)0.0443 (10)0.0077 (7)0.0053 (7)0.0160 (8)
K10.03164 (19)0.03177 (19)0.02181 (17)0.01498 (15)0.00019 (14)0.00468 (14)
O10.0298 (6)0.0331 (6)0.0255 (6)0.0146 (5)0.0039 (5)0.0066 (5)
O20.0335 (6)0.0279 (6)0.0285 (6)0.0118 (5)0.0009 (5)0.0107 (5)
O30.0300 (6)0.0322 (6)0.0298 (6)0.0080 (5)0.0047 (5)0.0032 (5)
O40.0394 (7)0.0395 (7)0.0219 (6)0.0168 (5)0.0009 (5)0.0040 (5)
O50.0396 (7)0.0238 (6)0.0294 (6)0.0127 (5)0.0057 (5)0.0015 (5)
O60.0245 (6)0.0247 (6)0.0260 (6)0.0074 (4)0.0034 (4)0.0025 (4)
C190.0328 (9)0.0314 (9)0.0324 (9)0.0158 (7)0.0047 (7)0.0033 (7)
C200.0303 (9)0.0268 (8)0.0388 (9)0.0132 (7)0.0045 (7)0.0089 (7)
C210.0294 (9)0.0406 (10)0.0323 (9)0.0158 (7)0.0051 (7)0.0196 (8)
C220.0258 (8)0.0476 (11)0.0297 (9)0.0094 (8)0.0020 (7)0.0164 (8)
C230.0460 (11)0.0296 (9)0.0270 (9)0.0037 (8)0.0110 (8)0.0063 (7)
C240.0544 (12)0.0294 (9)0.0215 (8)0.0106 (8)0.0001 (8)0.0028 (7)
C250.0330 (9)0.0304 (9)0.0340 (9)0.0094 (7)0.0034 (7)0.0031 (7)
C260.0327 (9)0.0252 (8)0.0382 (10)0.0126 (7)0.0038 (7)0.0033 (7)
C300.0311 (9)0.0301 (8)0.0198 (8)0.0080 (7)0.0016 (6)0.0018 (6)
C310.0292 (8)0.0284 (8)0.0209 (8)0.0050 (7)0.0024 (6)0.0028 (6)
C320.0229 (8)0.0299 (8)0.0288 (8)0.0075 (6)0.0032 (6)0.0096 (7)
C330.0256 (8)0.0268 (8)0.0352 (9)0.0096 (7)0.0019 (7)0.0095 (7)
Geometric parameters (Å, º) top
Fe1—C122.0410 (15)C18—H18B0.972 (19)
Fe1—C112.0421 (15)K1—O12.7604 (11)
Fe1—C162.0525 (16)K1—O62.7818 (11)
Fe1—C32.0736 (16)K1—O52.8294 (11)
Fe1—C152.0786 (16)K1—O22.8664 (11)
Fe1—C22.0940 (16)K1—O32.8715 (12)
Fe1—C42.1413 (16)K1—O42.8972 (12)
Fe1—C12.1441 (16)O1—C301.4216 (19)
C1—C21.420 (2)O1—C191.4254 (19)
C1—C91.454 (2)O2—C211.4252 (19)
C1—H10.960 (18)O2—C201.4289 (19)
C2—C31.397 (2)O3—C231.424 (2)
C2—H20.98 (2)O3—C221.425 (2)
C3—C41.427 (2)O4—C251.425 (2)
C3—H30.961 (19)O4—C241.432 (2)
C4—C101.452 (2)O5—C261.4263 (18)
C4—H40.961 (18)O5—C331.4310 (19)
C5—C61.400 (3)O6—C311.4247 (18)
C5—C101.400 (2)O6—C321.4271 (18)
C5—K13.4387 (17)C19—C201.497 (2)
C5—H50.941 (18)C19—H19A0.9900
C6—C71.380 (3)C19—H19B0.9900
C6—K13.1978 (18)C20—H20A0.9900
C6—H60.932 (19)C20—H20B0.9900
C7—C81.399 (2)C21—C221.496 (2)
C7—K13.1647 (19)C21—H21A0.9900
C7—H70.955 (19)C21—H21B0.9900
C8—C91.395 (2)C22—H22A0.9900
C8—K13.3565 (18)C22—H22B0.9900
C8—H80.959 (18)C23—C241.494 (3)
C9—C101.435 (2)C23—H23A0.9900
C11—C121.420 (2)C23—H23B0.9900
C11—C181.522 (2)C24—H24A0.9900
C11—H110.957 (18)C24—H24B0.9900
C12—C131.518 (2)C25—C261.496 (2)
C12—H120.994 (18)C25—H25A0.9900
C13—C141.541 (2)C25—H25B0.9900
C13—H13A0.986 (18)C26—H26A0.9900
C13—H13B0.997 (19)C26—H26B0.9900
C14—C151.529 (2)C30—C311.497 (2)
C14—H14A0.944 (19)C30—H30A0.9900
C14—H14B0.993 (19)C30—H30B0.9900
C15—C161.419 (2)C31—H31A0.9900
C15—H150.980 (17)C31—H31B0.9900
C16—C171.514 (3)C32—C331.497 (2)
C16—H160.977 (19)C32—H32A0.9900
C17—C181.537 (3)C32—H32B0.9900
C17—H17A0.98 (2)C33—H33A0.9900
C17—H17B0.99 (2)C33—H33B0.9900
C18—H18A0.977 (18)
C12—Fe1—C1140.72 (6)C18—C17—H17B108.4 (11)
C12—Fe1—C16101.66 (7)H17A—C17—H17B106.2 (16)
C11—Fe1—C1685.08 (7)C11—C18—C17112.01 (14)
C12—Fe1—C3163.78 (7)C11—C18—H18A108.9 (10)
C11—Fe1—C3137.43 (7)C17—C18—H18A112.3 (10)
C16—Fe1—C393.69 (7)C11—C18—H18B110.4 (11)
C12—Fe1—C1583.82 (7)C17—C18—H18B109.6 (11)
C11—Fe1—C1594.47 (7)H18A—C18—H18B103.1 (15)
C16—Fe1—C1540.18 (6)O1—K1—O660.69 (3)
C3—Fe1—C15111.66 (7)O1—K1—O5121.15 (3)
C12—Fe1—C2135.35 (7)O6—K1—O560.68 (3)
C11—Fe1—C2162.51 (7)O1—K1—O259.38 (3)
C16—Fe1—C2111.20 (7)O6—K1—O2116.23 (3)
C3—Fe1—C239.17 (7)O5—K1—O2165.04 (4)
C15—Fe1—C2102.14 (7)O1—K1—O3119.37 (3)
C12—Fe1—C4128.82 (6)O6—K1—O3162.63 (4)
C11—Fe1—C4100.06 (6)O5—K1—O3117.93 (3)
C16—Fe1—C4105.99 (7)O2—K1—O360.05 (3)
C3—Fe1—C439.54 (6)O1—K1—O4163.85 (4)
C15—Fe1—C4141.78 (6)O6—K1—O4115.14 (3)
C2—Fe1—C470.01 (6)O5—K1—O458.73 (3)
C12—Fe1—C199.01 (7)O2—K1—O4116.06 (3)
C11—Fe1—C1126.64 (6)O3—K1—O459.37 (3)
C16—Fe1—C1146.94 (7)C30—O1—C19112.41 (12)
C3—Fe1—C169.83 (7)C30—O1—K1116.80 (9)
C15—Fe1—C1118.39 (6)C19—O1—K1120.44 (9)
C2—Fe1—C139.12 (7)C21—O2—C20111.93 (12)
C4—Fe1—C179.83 (6)C21—O2—K1110.68 (9)
C2—C1—C9120.56 (15)C20—O2—K1108.68 (9)
C2—C1—Fe168.54 (9)C23—O3—C22112.93 (13)
C9—C1—Fe192.17 (10)C23—O3—K1114.91 (9)
C2—C1—H1120.7 (11)C22—O3—K1114.12 (9)
C9—C1—H1115.8 (11)C25—O4—C24112.73 (13)
Fe1—C1—H1126.7 (11)C25—O4—K1111.39 (9)
C3—C2—C1118.02 (15)C24—O4—K1112.03 (9)
C3—C2—Fe169.62 (9)C26—O5—C33112.31 (12)
C1—C2—Fe172.35 (9)C26—O5—K1118.54 (9)
C3—C2—H2120.0 (11)C33—O5—K1114.97 (9)
C1—C2—H2121.8 (11)C31—O6—C32111.88 (11)
Fe1—C2—H2124.6 (11)C31—O6—K1113.19 (8)
C2—C3—C4118.71 (15)C32—O6—K1112.13 (9)
C2—C3—Fe171.20 (9)O1—C19—C20108.19 (13)
C4—C3—Fe172.78 (9)O1—C19—H19A110.1
C2—C3—H3122.6 (11)C20—C19—H19A110.1
C4—C3—H3118.6 (11)O1—C19—H19B110.1
Fe1—C3—H3123.8 (11)C20—C19—H19B110.1
C3—C4—C10120.06 (15)H19A—C19—H19B108.4
C3—C4—Fe167.67 (9)O2—C20—C19108.37 (13)
C10—C4—Fe192.85 (10)O2—C20—H20A110.0
C3—C4—H4121.5 (10)C19—C20—H20A110.0
C10—C4—H4116.0 (10)O2—C20—H20B110.0
Fe1—C4—H4125.3 (10)C19—C20—H20B110.0
C6—C5—C10120.95 (16)H20A—C20—H20B108.4
C6—C5—H5121.4 (11)O2—C21—C22108.77 (13)
C10—C5—H5117.6 (11)O2—C21—H21A109.9
K1—C5—H5116.1 (11)C22—C21—H21A109.9
C7—C6—C5120.30 (16)O2—C21—H21B109.9
C7—C6—H6119.6 (12)C22—C21—H21B109.9
C5—C6—H6120.1 (12)H21A—C21—H21B108.3
K1—C6—H6106.6 (12)O3—C22—C21108.65 (13)
C6—C7—C8119.87 (17)O3—C22—H22A110.0
C6—C7—H7119.7 (12)C21—C22—H22A110.0
C8—C7—H7120.4 (12)O3—C22—H22B110.0
K1—C7—H7103.4 (12)C21—C22—H22B110.0
C9—C8—C7121.13 (16)H22A—C22—H22B108.3
C9—C8—H8118.3 (11)O3—C23—C24109.44 (14)
C7—C8—H8120.6 (11)O3—C23—H23A109.8
K1—C8—H8111.7 (11)C24—C23—H23A109.8
C8—C9—C10119.06 (15)O3—C23—H23B109.8
C8—C9—C1123.75 (15)C24—C23—H23B109.8
C10—C9—C1116.98 (14)H23A—C23—H23B108.2
C5—C10—C9118.62 (15)O4—C24—C23107.90 (14)
C5—C10—C4124.29 (15)O4—C24—H24A110.1
C9—C10—C4116.83 (14)C23—C24—H24A110.1
C12—C11—C18122.17 (15)O4—C24—H24B110.1
C12—C11—Fe169.60 (9)C23—C24—H24B110.1
C18—C11—Fe1112.75 (11)H24A—C24—H24B108.4
C12—C11—H11116.2 (10)O4—C25—C26108.20 (14)
C18—C11—H11116.0 (10)O4—C25—H25A110.1
Fe1—C11—H11110.0 (10)C26—C25—H25A110.1
C11—C12—C13121.97 (14)O4—C25—H25B110.1
C11—C12—Fe169.68 (9)C26—C25—H25B110.1
C13—C12—Fe1113.82 (11)H25A—C25—H25B108.4
C11—C12—H12117.4 (10)O5—C26—C25108.47 (13)
C13—C12—H12113.5 (10)O5—C26—H26A110.0
Fe1—C12—H12112.3 (10)C25—C26—H26A110.0
C12—C13—C14112.40 (13)O5—C26—H26B110.0
C12—C13—H13A109.6 (10)C25—C26—H26B110.0
C14—C13—H13A108.0 (10)H26A—C26—H26B108.4
C12—C13—H13B110.3 (10)O1—C30—C31108.80 (13)
C14—C13—H13B109.5 (10)O1—C30—H30A109.9
H13A—C13—H13B106.9 (14)C31—C30—H30A109.9
C15—C14—C13112.34 (13)O1—C30—H30B109.9
C15—C14—H14A110.1 (11)C31—C30—H30B109.9
C13—C14—H14A109.2 (11)H30A—C30—H30B108.3
C15—C14—H14B108.8 (11)O6—C31—C30108.64 (12)
C13—C14—H14B110.3 (11)O6—C31—H31A110.0
H14A—C14—H14B105.9 (15)C30—C31—H31A110.0
C16—C15—C14122.00 (15)O6—C31—H31B110.0
C16—C15—Fe168.92 (9)C30—C31—H31B110.0
C14—C15—Fe1113.32 (11)H31A—C31—H31B108.3
C16—C15—H15116.8 (10)O6—C32—C33108.81 (12)
C14—C15—H15114.3 (10)O6—C32—H32A109.9
Fe1—C15—H15112.9 (10)C33—C32—H32A109.9
C15—C16—C17124.39 (16)O6—C32—H32B109.9
C15—C16—Fe170.90 (9)C33—C32—H32B109.9
C17—C16—Fe1110.35 (12)H32A—C32—H32B108.3
C15—C16—H16115.1 (11)O5—C33—C32108.60 (12)
C17—C16—H16114.7 (11)O5—C33—H33A110.0
Fe1—C16—H16112.2 (11)C32—C33—H33A110.0
C16—C17—C18112.64 (14)O5—C33—H33B110.0
C16—C17—H17A111.2 (11)C32—C33—H33B110.0
C18—C17—H17A111.3 (12)H33A—C33—H33B108.4
C16—C17—H17B106.7 (11)
C12—Fe1—C1—C2161.21 (10)C7—C6—K1—O341.08 (10)
C11—Fe1—C1—C2165.77 (10)C5—C6—K1—O3163.09 (10)
C16—Fe1—C1—C233.00 (16)C7—C6—K1—O499.33 (11)
C3—Fe1—C1—C230.98 (10)C5—C6—K1—O4138.66 (11)
C15—Fe1—C1—C273.40 (11)C5—C6—K1—C7122.01 (16)
C4—Fe1—C1—C270.74 (10)C7—C6—K1—C831.25 (10)
C12—Fe1—C1—C976.67 (10)C5—C6—K1—C890.76 (11)
C11—Fe1—C1—C943.65 (13)C7—C6—K1—C5122.01 (16)
C16—Fe1—C1—C9155.12 (11)C9—C8—K1—O141.96 (10)
C3—Fe1—C1—C991.14 (11)C7—C8—K1—O1165.52 (11)
C15—Fe1—C1—C9164.48 (9)C9—C8—K1—O612.38 (11)
C2—Fe1—C1—C9122.12 (14)C7—C8—K1—O6111.18 (11)
C4—Fe1—C1—C951.38 (10)C9—C8—K1—O580.62 (10)
C9—C1—C2—C325.0 (2)C7—C8—K1—O542.94 (12)
Fe1—C1—C2—C354.32 (13)C9—C8—K1—O2101.61 (10)
C9—C1—C2—Fe179.35 (14)C7—C8—K1—O2134.83 (11)
C12—Fe1—C2—C3157.02 (10)C9—C8—K1—O3162.66 (10)
C11—Fe1—C2—C389.1 (2)C7—C8—K1—O373.78 (11)
C16—Fe1—C2—C368.48 (11)C9—C8—K1—O4144.42 (9)
C15—Fe1—C2—C3109.48 (10)C7—C8—K1—O420.86 (11)
C4—Fe1—C2—C331.50 (10)C9—C8—K1—C7123.56 (16)
C1—Fe1—C2—C3130.10 (14)C9—C8—K1—C691.65 (11)
C12—Fe1—C2—C126.92 (14)C7—C8—K1—C631.91 (10)
C11—Fe1—C2—C141.0 (3)C9—C8—K1—C558.67 (10)
C16—Fe1—C2—C1161.42 (9)C7—C8—K1—C564.89 (11)
C3—Fe1—C2—C1130.10 (14)C6—C5—K1—O1145.42 (11)
C15—Fe1—C2—C1120.42 (10)C10—C5—K1—O121.06 (10)
C4—Fe1—C2—C198.60 (10)C6—C5—K1—O6155.54 (11)
C1—C2—C3—C41.5 (2)C10—C5—K1—O680.10 (10)
Fe1—C2—C3—C457.12 (13)C6—C5—K1—O593.22 (11)
C1—C2—C3—Fe155.66 (13)C10—C5—K1—O5142.42 (11)
C12—Fe1—C3—C279.2 (3)C6—C5—K1—O289.50 (11)
C11—Fe1—C3—C2153.62 (10)C10—C5—K1—O234.86 (11)
C16—Fe1—C3—C2119.64 (10)C6—C5—K1—O318.96 (11)
C15—Fe1—C3—C282.59 (11)C10—C5—K1—O3105.40 (10)
C4—Fe1—C3—C2129.54 (15)C6—C5—K1—O441.51 (11)
C1—Fe1—C3—C230.94 (10)C10—C5—K1—O4165.87 (10)
C12—Fe1—C3—C450.3 (3)C6—C5—K1—C732.05 (10)
C11—Fe1—C3—C424.08 (15)C10—C5—K1—C792.31 (11)
C16—Fe1—C3—C4110.82 (10)C10—C5—K1—C6124.36 (16)
C15—Fe1—C3—C4147.87 (10)C6—C5—K1—C865.84 (11)
C2—Fe1—C3—C4129.54 (15)C10—C5—K1—C858.52 (10)
C1—Fe1—C3—C498.60 (11)O6—K1—O1—C3012.09 (9)
C2—C3—C4—C1023.5 (2)O5—K1—O1—C3017.53 (11)
Fe1—C3—C4—C1079.89 (13)O2—K1—O1—C30145.04 (11)
C2—C3—C4—Fe156.34 (13)O3—K1—O1—C30147.96 (10)
C12—Fe1—C4—C3163.98 (10)O4—K1—O1—C3067.09 (16)
C11—Fe1—C4—C3163.72 (10)C7—K1—O1—C30128.75 (10)
C16—Fe1—C4—C376.00 (11)C6—K1—O1—C30102.26 (11)
C15—Fe1—C4—C353.04 (15)C8—K1—O1—C30135.07 (10)
C2—Fe1—C4—C331.22 (10)C5—K1—O1—C3087.59 (10)
C1—Fe1—C4—C370.55 (11)O6—K1—O1—C19154.46 (12)
C12—Fe1—C4—C1042.54 (13)O5—K1—O1—C19159.91 (10)
C11—Fe1—C4—C1074.83 (10)O2—K1—O1—C192.66 (10)
C16—Fe1—C4—C10162.55 (10)O3—K1—O1—C195.58 (12)
C3—Fe1—C4—C10121.45 (15)O4—K1—O1—C1975.29 (17)
C15—Fe1—C4—C10174.49 (10)C7—K1—O1—C1988.88 (12)
C2—Fe1—C4—C1090.23 (11)C6—K1—O1—C19115.36 (11)
C1—Fe1—C4—C1050.90 (10)C8—K1—O1—C1982.56 (11)
C10—C5—C6—C71.7 (3)C5—K1—O1—C19130.04 (11)
K1—C5—C6—C772.46 (15)O1—K1—O2—C21153.62 (11)
C10—C5—C6—K174.20 (15)O6—K1—O2—C21175.82 (9)
C5—C6—C7—C80.9 (3)O5—K1—O2—C21109.87 (15)
K1—C6—C7—C878.03 (16)O3—K1—O2—C2123.44 (9)
C5—C6—C7—K178.91 (15)O4—K1—O2—C2144.00 (11)
C6—C7—C8—C92.5 (3)C7—K1—O2—C2145.06 (10)
K1—C7—C8—C976.77 (15)C6—K1—O2—C2151.82 (11)
C6—C7—C8—K174.31 (16)C8—K1—O2—C2162.31 (10)
C7—C8—C9—C101.4 (2)C5—K1—O2—C2180.10 (11)
K1—C8—C9—C1064.79 (13)O1—K1—O2—C2030.31 (9)
C7—C8—C9—C1173.11 (16)O6—K1—O2—C2052.52 (10)
K1—C8—C9—C1120.69 (14)O5—K1—O2—C20126.82 (14)
C2—C1—C9—C8162.24 (15)O3—K1—O2—C20146.75 (10)
Fe1—C1—C9—C8131.52 (14)O4—K1—O2—C20167.31 (9)
C2—C1—C9—C1023.1 (2)C7—K1—O2—C2078.25 (10)
Fe1—C1—C9—C1043.11 (14)C6—K1—O2—C2071.48 (10)
C6—C5—C10—C92.7 (2)C8—K1—O2—C2060.99 (9)
K1—C5—C10—C960.69 (13)C5—K1—O2—C2043.21 (10)
C6—C5—C10—C4171.20 (15)O1—K1—O3—C23147.96 (10)
K1—C5—C10—C4125.37 (14)O6—K1—O3—C2362.70 (16)
C8—C9—C10—C51.2 (2)O5—K1—O3—C2317.99 (12)
C1—C9—C10—C5176.05 (14)O2—K1—O3—C23145.06 (12)
C8—C9—C10—C4173.22 (14)O4—K1—O3—C2313.44 (10)
C1—C9—C10—C41.7 (2)C7—K1—O3—C23108.02 (11)
C3—C4—C10—C5161.21 (15)C6—K1—O3—C2391.28 (11)
Fe1—C4—C10—C5133.04 (14)C8—K1—O3—C23132.41 (11)
C3—C4—C10—C924.8 (2)C5—K1—O3—C2398.89 (11)
Fe1—C4—C10—C941.00 (14)O1—K1—O3—C2215.21 (11)
C16—Fe1—C11—C12114.26 (10)O6—K1—O3—C2270.04 (16)
C3—Fe1—C11—C12155.64 (10)O5—K1—O3—C22150.74 (10)
C15—Fe1—C11—C1275.15 (10)O2—K1—O3—C2212.31 (10)
C2—Fe1—C11—C1286.6 (2)O4—K1—O3—C22146.18 (11)
C4—Fe1—C11—C12140.34 (10)C7—K1—O3—C22119.24 (11)
C1—Fe1—C11—C1255.59 (12)C6—K1—O3—C22135.97 (11)
C12—Fe1—C11—C18117.39 (16)C8—K1—O3—C2294.84 (11)
C16—Fe1—C11—C183.13 (12)C5—K1—O3—C22128.36 (10)
C3—Fe1—C11—C1886.97 (14)O1—K1—O4—C25120.25 (14)
C15—Fe1—C11—C1842.24 (12)O6—K1—O4—C2549.17 (11)
C2—Fe1—C11—C18156.0 (2)O5—K1—O4—C2525.78 (10)
C4—Fe1—C11—C18102.27 (12)O2—K1—O4—C25170.22 (10)
C1—Fe1—C11—C18172.98 (11)O3—K1—O4—C25149.51 (11)
C18—C11—C12—C131.4 (2)C7—K1—O4—C2574.70 (11)
Fe1—C11—C12—C13106.05 (15)C6—K1—O4—C2549.95 (11)
C18—C11—C12—Fe1104.69 (15)C8—K1—O4—C2583.23 (11)
C16—Fe1—C12—C1168.04 (10)C5—K1—O4—C2534.13 (11)
C3—Fe1—C12—C1192.7 (3)O1—K1—O4—C24112.43 (15)
C15—Fe1—C12—C11104.24 (10)O6—K1—O4—C24176.48 (10)
C2—Fe1—C12—C11154.72 (10)O5—K1—O4—C24153.09 (12)
C4—Fe1—C12—C1153.76 (12)O2—K1—O4—C2442.90 (12)
C1—Fe1—C12—C11137.91 (10)O3—K1—O4—C2422.19 (10)
C11—Fe1—C12—C13116.98 (16)C7—K1—O4—C2452.62 (11)
C16—Fe1—C12—C1348.94 (13)C6—K1—O4—C2477.37 (11)
C3—Fe1—C12—C13150.3 (2)C8—K1—O4—C2444.09 (12)
C15—Fe1—C12—C1312.74 (12)C5—K1—O4—C2493.18 (11)
C2—Fe1—C12—C1388.29 (14)O1—K1—O5—C26152.12 (11)
C4—Fe1—C12—C13170.74 (11)O6—K1—O5—C26146.68 (12)
C1—Fe1—C12—C13105.10 (12)O2—K1—O5—C2664.62 (18)
C11—C12—C13—C1457.8 (2)O3—K1—O5—C2613.57 (12)
Fe1—C12—C13—C1422.33 (18)O4—K1—O5—C268.98 (11)
C12—C13—C14—C1521.5 (2)C7—K1—O5—C2690.30 (12)
C13—C14—C15—C1690.26 (19)C6—K1—O5—C2699.05 (12)
C13—C14—C15—Fe111.36 (18)C8—K1—O5—C26106.87 (11)
C12—Fe1—C15—C16116.31 (11)C5—K1—O5—C26124.11 (12)
C11—Fe1—C15—C1676.95 (10)O1—K1—O5—C3315.23 (11)
C3—Fe1—C15—C1668.72 (11)O6—K1—O5—C339.79 (9)
C2—Fe1—C15—C16108.57 (11)O2—K1—O5—C3372.27 (17)
C4—Fe1—C15—C1635.54 (15)O3—K1—O5—C33150.46 (9)
C1—Fe1—C15—C16146.77 (10)O4—K1—O5—C33145.87 (11)
C12—Fe1—C15—C140.58 (12)C7—K1—O5—C33132.82 (10)
C11—Fe1—C15—C1439.94 (13)C6—K1—O5—C33124.07 (10)
C16—Fe1—C15—C14116.89 (16)C8—K1—O5—C33116.25 (10)
C3—Fe1—C15—C14174.39 (12)C5—K1—O5—C3399.00 (10)
C2—Fe1—C15—C14134.54 (12)O1—K1—O6—C3122.09 (9)
C4—Fe1—C15—C14152.43 (12)O5—K1—O6—C31152.57 (10)
C1—Fe1—C15—C1496.34 (13)O2—K1—O6—C3143.99 (10)
C14—C15—C16—C173.0 (2)O3—K1—O6—C31117.20 (13)
Fe1—C15—C16—C17102.06 (16)O4—K1—O6—C31175.47 (9)
C14—C15—C16—Fe1105.03 (15)C7—K1—O6—C3173.40 (10)
C12—Fe1—C16—C1565.50 (11)C6—K1—O6—C3189.36 (10)
C11—Fe1—C16—C15102.89 (10)C8—K1—O6—C3146.19 (10)
C3—Fe1—C16—C15119.79 (10)C5—K1—O6—C3179.46 (10)
C2—Fe1—C16—C1583.71 (11)O1—K1—O6—C32149.82 (10)
C4—Fe1—C16—C15158.04 (10)O5—K1—O6—C3224.84 (9)
C1—Fe1—C16—C1562.09 (16)O2—K1—O6—C32171.72 (9)
C12—Fe1—C16—C1755.10 (13)O3—K1—O6—C32115.07 (13)
C11—Fe1—C16—C1717.71 (12)O4—K1—O6—C3247.74 (10)
C3—Fe1—C16—C17119.61 (13)C7—K1—O6—C3254.33 (10)
C15—Fe1—C16—C17120.60 (17)C6—K1—O6—C3238.37 (10)
C2—Fe1—C16—C17155.69 (12)C8—K1—O6—C3281.55 (10)
C4—Fe1—C16—C1781.36 (13)C5—K1—O6—C3248.27 (9)
C1—Fe1—C16—C17177.31 (12)C30—O1—C19—C20177.53 (13)
C15—C16—C17—C1851.3 (2)K1—O1—C19—C2033.64 (17)
Fe1—C16—C17—C1829.01 (19)C21—O2—C20—C19176.10 (13)
C12—C11—C18—C1791.52 (19)K1—O2—C20—C1961.35 (13)
Fe1—C11—C18—C1712.05 (18)O1—C19—C20—O263.86 (17)
C16—C17—C18—C1126.9 (2)C20—O2—C21—C22178.76 (13)
C6—C7—K1—O1106.36 (10)K1—O2—C21—C2257.35 (14)
C8—C7—K1—O115.32 (12)C23—O3—C22—C21179.16 (13)
C6—C7—K1—O639.48 (12)K1—O3—C22—C2145.48 (15)
C8—C7—K1—O682.20 (11)O2—C21—C22—O370.65 (16)
C6—C7—K1—O520.15 (11)C22—O3—C23—C24179.81 (14)
C8—C7—K1—O5141.83 (10)K1—O3—C23—C2446.89 (16)
C6—C7—K1—O2166.17 (10)C25—O4—C24—C23178.44 (13)
C8—C7—K1—O244.50 (11)K1—O4—C24—C2354.97 (15)
C6—C7—K1—O3137.27 (11)O3—C23—C24—O469.17 (17)
C8—C7—K1—O3101.06 (11)C24—O4—C25—C26175.34 (13)
C6—C7—K1—O478.00 (10)K1—O4—C25—C2657.72 (14)
C8—C7—K1—O4160.32 (11)C33—O5—C26—C25178.84 (13)
C8—C7—K1—C6121.68 (16)K1—O5—C26—C2540.89 (16)
C6—C7—K1—C8121.68 (16)O4—C25—C26—O565.82 (17)
C6—C7—K1—C530.64 (9)C19—O1—C30—C31171.64 (13)
C8—C7—K1—C591.03 (12)K1—O1—C30—C3143.07 (15)
C7—C6—K1—O183.65 (11)C32—O6—C31—C30179.12 (13)
C5—C6—K1—O138.36 (12)K1—O6—C31—C3053.02 (14)
C7—C6—K1—O6146.61 (10)O1—C30—C31—O663.81 (16)
C5—C6—K1—O624.60 (11)C31—O6—C32—C33174.09 (13)
C7—C6—K1—O5159.10 (11)K1—O6—C32—C3357.49 (13)
C5—C6—K1—O578.89 (10)C26—O5—C33—C32179.00 (13)
C7—C6—K1—O216.05 (12)K1—O5—C33—C3241.47 (14)
C5—C6—K1—O2105.96 (11)O6—C32—C33—O566.62 (16)

Experimental details

Crystal data
Chemical formula[K(C12H24O6)][Fe(C8H12)(C10H8)]
Mr595.60
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.244 (1), 10.5285 (12), 15.971 (2)
α, β, γ (°)76.085 (2), 89.651 (2), 74.949 (2)
V3)1454.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.42 × 0.32 × 0.22
Data collection
DiffractometerSiemens SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.666, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
17413, 6610, 5576
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.073, 1.04
No. of reflections6610
No. of parameters423
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.29

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

This research was supported by the US National Science Foundation and the donors of the Petroleum Research Fund, administered by the American Chemical Society.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrennessel, W. W. (2009). PhD dissertation, University of Minnesota, Minneapolis, MN, USA.  Google Scholar
First citationBrennessel, W. W. & Ellis, J. E. (2012). Inorg. Chem. 51, 9076–9094.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrennessel, W. W., Jilek, R. E. & Ellis, J. E. (2007). Angew. Chem. Int. Ed. 46, 6132–6136.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrennessel, W. W., Young, V. G. Jr & Ellis, J. E. (2006). Angew. Chem. Int. Ed. 45, 7268–7271.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2003). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJonas, K. (1979). US Patent No. 4 169 845.  Google Scholar
First citationJonas, K. (1981). Adv. Organomet. Chem. 19, 97–122.  CrossRef CAS Google Scholar
First citationJonas, K. & Krüger, C. (1980). Angew. Chem. Int. Ed. Engl. 19, 520–537.  CrossRef Web of Science Google Scholar
First citationJonas, K., Schieferstein, L., Krüger, C. & Tsay, Y.-H. (1979). Angew. Chem. Int. Ed. Engl. 18, 550–551.  CSD CrossRef Web of Science Google Scholar
First citationMilun, M., Sobotka, Ž. & Trinajstić, N. (1972). J. Org. Chem. 37, 139–141.  Google Scholar
First citationSchnökelborg, E.-M., Khusniyarov, M. M., de Bruin, B., Hartl, F., Langer, T., Eul, M., Schulz, S., Pöttgen, R. & Wolf, R. (2012). Inorg. Chem. 51, 6719–6730.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds