metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­butyl­ammonium bis­­(hydrogen methylphosphonato-κO)tri­phenylstannate(IV)

aLaboratoire de Chimie Minerale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bLaboratoire de Chimie Organique et Therapeutique, Département de Pharmacie, Faculté de Medecine, de Pharmacie et d'Odontostomatologie, Université Cheikh Anta Diop, Dakar, Senegal, and cInstitut Européen des Membranes, Université de Montpellier II, 34000 Montpellier, France
*Correspondence e-mail: tijchimia@yahoo.fr

(Received 24 August 2012; accepted 7 September 2012; online 19 September 2012)

The asymmetric unit of the title organotin salt, (C8H20N)[Sn(C6H5)3(CH4O3P)2], contains two dibutyl­ammonium cations and two stannate(IV) anions consisting each of two monodentately bonding methyl hydrogenphosphate groups attached to an Sn(C6H5) unit. The overall coordination environment of the two SnIV atoms is trigonal–bipyramidal defined by three phenyl C atoms in equatorial positions and two methyl hydrogenphosphate O atoms at the apical sites. In the crystal, the stannate(IV) anions are linked to each other via pairs of short O—H⋯O hydrogen bonds, leading to an infinite chain extending parallel to the b-axis direction. Neighbouring chains are linked by N—H⋯O hydrogen bonds involving the butyl­ammonium cations, giving a two-dimensional structure parallel to the ab plane. The crystal under investigation was found to be twinned by reticular merohedry with twin fractions of 0.5342 (7):0.4658 (7).

Related literature

For general background to and applications of tin(IV) compounds, see: Davies et al. (2008[Davies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). Tin Chemistry. Chichester: Wiley.]); Gielen (2002[Gielen, M. (2002). Appl. Organomet. Chem. 16, 481-494.]); Molloy et al. (1984[Molloy, K. C., Purcell, T. G., Quill, K. & Nowell, I. W. (1984). J. Organomet. Chem. 267, 237-247.]). For related structures, see: Adair et al. (2003[Adair, B. A., Neeraj, S. & Cheetham, A. K. (2003). Chem. Mater. 15, 1518-1529.]); Chunlin et al. (2008[Chunlin, M., Mingqing, Y., Rufen, Z. & Lingyun, D. (2008). Inorg. Chim. Acta, 361, 2979-2984.]); Diop et al. (2002[Diop, C. A. K., Bassene, S., Sidibe, M., Sarr-Diasse, A., Diop, L., Molloy, K. C., Mahon, M. F. & Toscano, R. A. (2002). Main Group Met. Chem. 25, 683-689.], 2011[Diop, T., Diop, L., Kociok-Köhn, G., Molloy, K. C. & Stoeckli-Evans, H. (2011). Acta Cryst. E67, m1674-m1675.]); Gueye et al. (2011[Gueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2011). Main Group Met. Chem. 34, 3-4.]); Sow et al. (2012[Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Main Group Met. Chem. 34, 127-130.]). For details of the use of constraints and restraints during the structure refinement, see: Cooper et al. (2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]). For background to the weighting schemes used in the refinement, see: Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials. New York: Science Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H20N)[Sn(C6H5)3(CH4O3P)2]

  • Mr = 670.28

  • Monoclinic, P 21 /c

  • a = 16.1963 (8) Å

  • b = 18.9088 (8) Å

  • c = 21.1989 (11) Å

  • β = 93.220 (4)°

  • V = 6482.0 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 175 K

  • 0.30 × 0.25 × 0.10 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.961, Tmax = 1.000

  • 64843 measured reflections

  • 26060 independent reflections

  • 17225 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.067

  • S = 0.99

  • 17225 reflections

  • 686 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −1.66 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—O101 2.175 (4)
Sn1—O106 2.188 (3)
Sn1—C111 2.128 (6)
Sn1—C117 2.137 (6)
Sn1—C123 2.125 (5)
Sn2—O201 2.188 (3)
Sn2—O206 2.169 (4)
Sn2—C211 2.125 (6)
Sn2—C217 2.126 (6)
Sn2—C223 2.134 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O103—H1031⋯O109i 0.85 1.73 2.582 (10) 180 (1)
O108—H1081⋯O104ii 0.85 1.64 2.490 (10) 180 (1)
O203—H2031⋯O209iii 0.85 1.63 2.478 (10) 180 (1)
O208—H2081⋯O204iv 0.85 1.71 2.561 (10) 180 (1)
N10—H101⋯O209iii 0.89 1.90 2.772 (10) 165 (1)
N10—H102⋯O109 0.90 1.92 2.777 (10) 160 (1)
N20—H201⋯O204iv 0.89 1.95 2.780 (10) 154 (1)
N20—H202⋯O104 0.90 1.88 2.756 (10) 167 (1)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: CRYSTALS and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Organotin(IV) complexes are extensively studied due to their industrial applications as well as for their biocidal properties (Molloy et al., 1984; Gielen, 2002; Davies et al., 2008). Our group has conducted research on SnMe3 and SnPh3 residues containing derivatives with mono- and polybasic oxyanions such as C2O42- (Gueye et al., 2011; Sow et al., 2012) and PhP(H)O2- (Diop et al., 2011). Here we report the structure of the title compound, [(C4H9)2NH2]+[Sn(C6H5)3(CH3PO2OH)2]-, (I).

The asymmetric unit of compound (I) is illustrated in Fig. 1. It consists of two dibutylammonium cations and two organotin complexes consisting of two monodentate MePO3H- anions bonded to SnPh3; the SnIV atoms exhibit a trans trigonal bipyramidal coordination environment consisting of three phenyl carbon atoms and two MePO3H- oxygen atoms. The trigonal plane of the Sn atoms is defined by the three phenyl groups whereas the axial positions are occupied by oxygen atoms from the methyl hydrogenphosphate tetrahedra. A similar arrangement around tin(IV) has been observed in the crystal structure of {[(CH3)3Sn]4(O3PPh)2}n (Chunlin et al., 2008). The sums of the angles at the tin(IV) positions by the ipso-carbons atoms [119.9 (2)°, 121.2 (2)°, 118.8 (2)°, and 122.4 (2)°, 119.0 (2)° and 118.6 (2)° for the two SnIV entities] are 359.9° and 360.0°, respectively; the corresponding axial O101—Sn1—O106 and O201—Sn2—O206 angles are 174.71 (14)° and 174.15 (14)°, respectively, indicating a nearly perfect trans trigonal bipyramidal arrangement. The Sn—C bond lengths are almost identical within the experimental error (Sn1—C111: 2.128 (6) Å; Sn1—C117: 2.137 (6) Å; Sn1—C123 2.125 (5) Å; Sn2—C211: 2.125 (6) Å; Sn2—C217: 2.126 (6) Å; Sn2—C223 2.134 (6) Å] and lie in the range reported for related structures (Gueye et al., 2011). The two axial Sn—O distances, [Sn1—O101 2.175 (4) Å; Sn1—O106 2.188 (3) Å; Sn2—O201 2.188 (3) Å; Sn2—O206 2.169 (4) Å] are in the range of axial Sn—O distances (2.165 (4) and 2.434 (4) Å) observed in catena-trimethyltin(IV) methylphosphonate, [MePO3HSnMe3] (Diop et al., 2002), but are longer than the axial Sn—O distances [2.116 (2) Å and 2.132 (3) Å] observed in catena-(µ2-phenylphosphinato O, O')-chlorido-tin(II) (Adair et al., 2003). The geometry at the P sites is a distorted tetrahedron with bond angles ranging from 102.7 (3)° for O208—P207—C210 to 114.2 (2) for O201—P202—O204.

The stannate(IV) anions [(MePO3H)2SnPh3]- are linked by pairs of short O—H···O hydrogen bonds, involving the hydroxy group of the methyl hydrogenphosphate unit, and thus forming an infinite chain (Table 1, Fig. 2) along the b-direction. In the crystal, neighbouring chains are linked by N—H···O hydrogen bonds via the Bu2NH2+ cations, forming a supramolecular structure parallel to the ab plane.

Related literature top

For general background to and applications of tin(IV) compounds, see: Davies et al. (2008); Gielen (2002); Molloy et al. (1984). For related structures, see: Adair et al. (2003); Chunlin et al. (2008); Diop et al. (2002, 2011); Gueye et al. (2011); Sow et al. (2012). For details of the use of constraints and restraints during the refinement, see: Cooper et al. (2010). For background to the weighting schemes used in the refinement, see: Prince (1982); Watkin (1994).

Experimental top

An ethanolic solution containing 0.30 g (1.20 mmol) of Bu2NH2MePO3H (obtained from an aqueous mixture of dibutylamine and MeP(O)(OH)2 in water in a 1:1 ratio) and triphenyltin(IV) chloride (SnPh3Cl) 2.25 g (0.66 mmol) was stirred at room temperature for more than one hour. After 96 h of slow evaporation of the solution, colourless crystals of the title compound (yield: 78%; m.p: 250°) suitable for X-ray structure determination were obtained within the remaining solvent. The powder obtained after complete solvent evaporation has the formula Bu2NH2Cl according to its infrared spectrum.

Refinement top

H atoms were all located in a difference Fourier map, but those attached to C atoms were repositioned geometrically. They were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H bond lengths in the range 0.93–0.98 Å, N—H bond length 0.89 Å, O—H bond length 0.85 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints (Cooper et al., 2010).

The large diplacement ellipsoids and deviating C—C distances of the dibutylammonium cations indicated slight displacement disorder, which, however could not be resolved in difference Fourier maps. The dibutylammonium cations were therefore regularized and refined with soft distance and angle restraints.

The crystal under investigation was found to be twinned by reticular merohedry with twin index 7 and twin fractions 0.5342 (7) and 0.4658 (7). The twin symmetry element is a twofold rotation axis along the reciprocal c* axis; the pseudo-orthorhombic lattice can be generated by a' = a, b' = b, c' = 7c - a.

Structure description top

Organotin(IV) complexes are extensively studied due to their industrial applications as well as for their biocidal properties (Molloy et al., 1984; Gielen, 2002; Davies et al., 2008). Our group has conducted research on SnMe3 and SnPh3 residues containing derivatives with mono- and polybasic oxyanions such as C2O42- (Gueye et al., 2011; Sow et al., 2012) and PhP(H)O2- (Diop et al., 2011). Here we report the structure of the title compound, [(C4H9)2NH2]+[Sn(C6H5)3(CH3PO2OH)2]-, (I).

The asymmetric unit of compound (I) is illustrated in Fig. 1. It consists of two dibutylammonium cations and two organotin complexes consisting of two monodentate MePO3H- anions bonded to SnPh3; the SnIV atoms exhibit a trans trigonal bipyramidal coordination environment consisting of three phenyl carbon atoms and two MePO3H- oxygen atoms. The trigonal plane of the Sn atoms is defined by the three phenyl groups whereas the axial positions are occupied by oxygen atoms from the methyl hydrogenphosphate tetrahedra. A similar arrangement around tin(IV) has been observed in the crystal structure of {[(CH3)3Sn]4(O3PPh)2}n (Chunlin et al., 2008). The sums of the angles at the tin(IV) positions by the ipso-carbons atoms [119.9 (2)°, 121.2 (2)°, 118.8 (2)°, and 122.4 (2)°, 119.0 (2)° and 118.6 (2)° for the two SnIV entities] are 359.9° and 360.0°, respectively; the corresponding axial O101—Sn1—O106 and O201—Sn2—O206 angles are 174.71 (14)° and 174.15 (14)°, respectively, indicating a nearly perfect trans trigonal bipyramidal arrangement. The Sn—C bond lengths are almost identical within the experimental error (Sn1—C111: 2.128 (6) Å; Sn1—C117: 2.137 (6) Å; Sn1—C123 2.125 (5) Å; Sn2—C211: 2.125 (6) Å; Sn2—C217: 2.126 (6) Å; Sn2—C223 2.134 (6) Å] and lie in the range reported for related structures (Gueye et al., 2011). The two axial Sn—O distances, [Sn1—O101 2.175 (4) Å; Sn1—O106 2.188 (3) Å; Sn2—O201 2.188 (3) Å; Sn2—O206 2.169 (4) Å] are in the range of axial Sn—O distances (2.165 (4) and 2.434 (4) Å) observed in catena-trimethyltin(IV) methylphosphonate, [MePO3HSnMe3] (Diop et al., 2002), but are longer than the axial Sn—O distances [2.116 (2) Å and 2.132 (3) Å] observed in catena-(µ2-phenylphosphinato O, O')-chlorido-tin(II) (Adair et al., 2003). The geometry at the P sites is a distorted tetrahedron with bond angles ranging from 102.7 (3)° for O208—P207—C210 to 114.2 (2) for O201—P202—O204.

The stannate(IV) anions [(MePO3H)2SnPh3]- are linked by pairs of short O—H···O hydrogen bonds, involving the hydroxy group of the methyl hydrogenphosphate unit, and thus forming an infinite chain (Table 1, Fig. 2) along the b-direction. In the crystal, neighbouring chains are linked by N—H···O hydrogen bonds via the Bu2NH2+ cations, forming a supramolecular structure parallel to the ab plane.

For general background to and applications of tin(IV) compounds, see: Davies et al. (2008); Gielen (2002); Molloy et al. (1984). For related structures, see: Adair et al. (2003); Chunlin et al. (2008); Diop et al. (2002, 2011); Gueye et al. (2011); Sow et al. (2012). For details of the use of constraints and restraints during the refinement, see: Cooper et al. (2010). For background to the weighting schemes used in the refinement, see: Prince (1982); Watkin (1994).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The two pairs of molecular entities in the title compound with anisotropic displacement parameters drawn at the 30% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
Dibutylammonium bis(hydrogen methylphosphonato-κO)triphenylstannate(IV) top
Crystal data top
(C8H20N)[Sn(C6H5)3(CH4O3P)2]F(000) = 2768
Mr = 670.28Dx = 1.374 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7455 reflections
a = 16.1963 (8) Åθ = 1.4–29.2°
b = 18.9088 (8) ŵ = 0.93 mm1
c = 21.1989 (11) ÅT = 175 K
β = 93.220 (4)°Block, colourless
V = 6482.0 (5) Å30.30 × 0.25 × 0.10 mm
Z = 8
Data collection top
Oxford Diffraction Gemini
diffractometer
17225 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.085
ω scansθmax = 29.2°, θmin = 1.4°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
h = 2022
Tmin = 0.961, Tmax = 1.000k = 2424
64843 measured reflectionsl = 2827
26060 independent reflections
Refinement top
Refinement on FPrimary atom site location: charge-flipping
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.067 Method, part 1, Chebychev polynomial, (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 15.1 4.23 12.3 3.23
S = 0.99(Δ/σ)max = 0.003
17225 reflectionsΔρmax = 1.28 e Å3
686 parametersΔρmin = 1.66 e Å3
9 restraints
Crystal data top
(C8H20N)[Sn(C6H5)3(CH4O3P)2]V = 6482.0 (5) Å3
Mr = 670.28Z = 8
Monoclinic, P21/cMo Kα radiation
a = 16.1963 (8) ŵ = 0.93 mm1
b = 18.9088 (8) ÅT = 175 K
c = 21.1989 (11) Å0.30 × 0.25 × 0.10 mm
β = 93.220 (4)°
Data collection top
Oxford Diffraction Gemini
diffractometer
26060 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
17225 reflections with I > 2.0σ(I)
Tmin = 0.961, Tmax = 1.000Rint = 0.085
64843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0679 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 0.99Δρmax = 1.28 e Å3
17225 reflectionsΔρmin = 1.66 e Å3
686 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.55169 (2)0.19275 (2)0.195941 (16)0.0285
O1010.5156 (3)0.3004 (2)0.21763 (18)0.0413
P1020.49515 (8)0.37108 (7)0.18772 (7)0.0296
O1030.4023 (2)0.3900 (2)0.1956 (2)0.0506
H10310.39060.41580.22670.0600*
O1040.5479 (2)0.4314 (2)0.2139 (2)0.0440
C1050.5019 (5)0.3644 (4)0.1041 (3)0.0534
H10510.46840.32650.08760.0664*
H10520.48280.40750.08400.0664*
H10530.55760.35660.09360.0664*
O1060.5926 (2)0.08826 (17)0.16616 (18)0.0316
P1070.57266 (8)0.01052 (7)0.16887 (7)0.0296
O1080.4833 (2)0.0013 (2)0.1908 (2)0.0506
H10810.47260.02260.22330.0601*
O1090.6335 (2)0.03205 (18)0.20970 (19)0.0335
C1100.5695 (4)0.0236 (4)0.0899 (3)0.0528
H11010.53160.00270.06310.1230*
H11020.55320.07210.08930.1230*
H11030.62330.02040.07310.1230*
C1110.4357 (3)0.1784 (3)0.1454 (3)0.0360
C1120.3649 (4)0.2063 (3)0.1685 (3)0.0410
H11210.36690.23180.20590.0493*
C1130.2880 (3)0.1965 (4)0.1360 (4)0.0557
H11310.24050.21560.15300.0669*
C1140.2816 (5)0.1595 (4)0.0803 (4)0.0654
H11410.23090.15300.05890.0784*
C1150.3523 (4)0.1322 (4)0.0560 (4)0.0552
H11510.34850.10830.01780.0671*
C1160.4285 (4)0.1411 (3)0.0886 (3)0.0433
H11610.47630.12240.07240.0510*
C1170.5635 (3)0.1714 (3)0.2950 (3)0.0332
C1180.5865 (3)0.1055 (3)0.3186 (3)0.0399
H11810.59680.06900.29100.0475*
C1190.5950 (4)0.0922 (4)0.3827 (3)0.0500
H11910.60970.04720.39700.0600*
C1200.5810 (5)0.1433 (4)0.4247 (3)0.0580
H12010.58580.13400.46800.0721*
C1210.5580 (5)0.2094 (5)0.4041 (3)0.0633
H12110.54710.24440.43370.0761*
C1220.5503 (5)0.2239 (3)0.3389 (3)0.0527
H12210.53600.26850.32520.0635*
C1230.6561 (3)0.2318 (3)0.1505 (3)0.0328
C1240.7102 (4)0.2768 (3)0.1807 (3)0.0492
H12410.70070.29090.22180.0591*
C1250.7801 (4)0.3024 (4)0.1519 (4)0.0679
H12510.81630.33310.17290.0821*
C1260.7936 (5)0.2831 (4)0.0917 (4)0.0686
H12610.84140.29870.07280.0820*
C1270.7387 (5)0.2393 (4)0.0596 (4)0.0666
H12710.74660.22680.01810.0781*
C1280.6701 (4)0.2132 (4)0.0889 (3)0.0501
H12810.63330.18240.06710.0591*
Sn21.06366 (2)0.19358 (2)0.300170 (16)0.0299
O2011.1082 (2)0.09045 (18)0.33422 (18)0.0329
P2021.08457 (8)0.01320 (7)0.33239 (7)0.0311
O2030.9928 (2)0.0086 (3)0.3079 (3)0.0602
H20310.97640.01760.27710.0723*
O2041.1394 (2)0.03227 (18)0.29425 (19)0.0328
C2051.0875 (5)0.0203 (4)0.4117 (4)0.0628
H20511.07340.06920.41170.0705*
H20521.05050.00520.43640.0705*
H20531.14260.01540.43100.0705*
O2061.0252 (3)0.3003 (2)0.27527 (19)0.0446
P2071.00599 (8)0.37021 (7)0.30592 (7)0.0324
O2080.9118 (2)0.3870 (3)0.2967 (3)0.0565
H20810.89500.41390.26650.0666*
O2091.0549 (2)0.4318 (2)0.2817 (2)0.0404
C2101.0210 (5)0.3624 (4)0.3897 (3)0.0559
H21010.99010.32350.40480.0675*
H21021.07810.35510.40170.0675*
H21031.00310.40460.40980.0675*
C2110.9552 (4)0.1822 (3)0.3512 (3)0.0373
C2120.8793 (3)0.2069 (3)0.3260 (3)0.0379
H21210.87480.22890.28630.0451*
C2130.8088 (4)0.1984 (4)0.3591 (4)0.0554
H21310.75930.21650.34240.0659*
C2140.8108 (5)0.1656 (4)0.4158 (4)0.0629
H21410.76290.15880.43650.0745*
C2150.8862 (5)0.1414 (4)0.4430 (4)0.0648
H21510.88810.12050.48290.0768*
C2160.9571 (5)0.1492 (3)0.4095 (3)0.0501
H21611.00750.13290.42690.0593*
C2171.1762 (3)0.2337 (3)0.3424 (3)0.0338
C2181.2274 (4)0.2774 (4)0.3092 (4)0.0561
H21811.21140.28980.26820.0670*
C2191.3013 (5)0.3022 (5)0.3362 (5)0.0772
H21911.33420.33180.31340.0910*
C2201.3251 (5)0.2840 (4)0.3964 (4)0.0646
H22011.37530.30080.41350.0769*
C2211.2774 (5)0.2419 (4)0.4310 (4)0.0656
H22111.29480.22970.47240.0781*
C2221.2018 (4)0.2164 (4)0.4036 (3)0.0508
H22211.16880.18780.42770.0594*
C2231.0585 (3)0.1674 (3)0.2021 (3)0.0353
C2241.0816 (4)0.1013 (3)0.1805 (3)0.0437
H22411.09930.06760.20940.0522*
C2251.0786 (4)0.0854 (4)0.1166 (3)0.0519
H22511.09670.04160.10330.0613*
C2261.0495 (4)0.1335 (4)0.0728 (3)0.0592
H22611.04460.12270.02980.0711*
C2271.0266 (6)0.1998 (5)0.0932 (3)0.0733
H22711.00960.23440.06360.0861*
C2281.0293 (5)0.2172 (4)0.1571 (3)0.0586
H22811.01130.26090.17020.0690*
N100.7984 (3)0.0021 (3)0.2374 (2)0.0397
H1010.83980.02590.22690.0581*
H1020.75050.01650.22200.0580*
C110.8098 (4)0.0735 (4)0.2092 (4)0.0590
H1110.85090.09890.23590.0722*
H1120.75820.09860.20900.0721*
C120.8419 (7)0.0707 (5)0.1451 (4)0.1010
H1210.89850.05770.15050.1239*
H1220.83780.11770.12940.1239*
C130.8007 (6)0.0261 (6)0.0961 (4)0.1139
H1310.80200.02130.11100.1425*
H1320.74490.04020.08750.1425*
C140.8478 (6)0.0293 (6)0.0368 (4)0.1091
H1410.82160.00070.00470.1306*
H1420.90250.01270.04610.1306*
H1430.84960.07690.02270.1306*
C150.7993 (4)0.0052 (5)0.3066 (3)0.0659
H1510.74820.02800.31760.0786*
H1520.84680.03300.32270.0791*
C160.8015 (4)0.0687 (5)0.3348 (3)0.0731
H1610.75130.09290.32000.0892*
H1620.84790.09280.31870.0889*
C170.8065 (9)0.0572 (6)0.4059 (4)0.1531
H1710.85270.02780.41700.1878*
H1720.75740.03500.41820.1878*
C180.8169 (12)0.1248 (8)0.4378 (5)0.2082
H1810.82020.11660.48210.2303*
H1820.86610.14720.42590.2303*
H1830.77080.15440.42710.2303*
N200.6997 (2)0.4947 (2)0.2381 (2)0.0309
H2010.74280.47760.21870.0458*
H2020.65420.47000.22610.0463*
C210.6841 (4)0.5698 (3)0.2174 (3)0.0445
H2110.73640.59410.21760.0532*
H2120.64980.59290.24710.0532*
C220.6400 (4)0.5728 (4)0.1526 (3)0.0603
H2210.63430.62270.14170.0720*
H2220.58520.55190.15440.0721*
C230.6829 (3)0.5372 (4)0.1006 (3)0.0628
H2310.69020.48720.11050.0753*
H2320.73640.55910.09650.0751*
C240.6310 (5)0.5448 (5)0.0389 (3)0.0877
H2410.65850.51990.00630.1319*
H2420.62460.59380.02710.1320*
H2430.57700.52480.04280.1321*
C250.7138 (3)0.4836 (3)0.3079 (3)0.0403
H2510.76700.50500.32070.0479*
H2520.67080.50840.32900.0483*
C260.7143 (4)0.4058 (3)0.3241 (3)0.0421
H2610.66090.38540.31100.0499*
H2620.75700.38240.30100.0505*
C270.7300 (4)0.3921 (4)0.3944 (3)0.0555
H2710.73790.34180.40090.0672*
H2720.78010.41790.40890.0672*
C280.6607 (5)0.4144 (5)0.4341 (4)0.0701
H2810.61130.38920.42090.1071*
H2820.67300.40540.47860.1069*
H2830.65160.46420.42760.1068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03063 (19)0.02368 (17)0.0318 (2)0.00151 (15)0.00695 (13)0.00110 (15)
O1010.057 (2)0.0268 (18)0.041 (2)0.0067 (18)0.0122 (17)0.0018 (17)
P1020.0247 (7)0.0243 (6)0.0398 (7)0.0022 (5)0.0031 (5)0.0042 (5)
O1030.0185 (19)0.065 (3)0.068 (3)0.0100 (17)0.0051 (18)0.036 (2)
O1040.040 (2)0.036 (2)0.057 (3)0.0020 (17)0.0118 (19)0.0128 (19)
C1050.072 (4)0.052 (4)0.035 (3)0.010 (3)0.002 (3)0.000 (3)
O1060.0303 (17)0.0197 (16)0.045 (2)0.0014 (14)0.0067 (15)0.0019 (15)
P1070.0235 (6)0.0232 (6)0.0423 (8)0.0003 (5)0.0040 (5)0.0047 (5)
O1080.028 (2)0.061 (3)0.063 (3)0.0038 (19)0.0038 (19)0.034 (2)
O1090.0215 (17)0.0274 (18)0.052 (2)0.0011 (14)0.0056 (16)0.0038 (16)
C1100.062 (4)0.044 (4)0.051 (4)0.005 (3)0.002 (3)0.011 (3)
C1110.034 (3)0.028 (3)0.046 (3)0.001 (2)0.001 (2)0.009 (2)
C1120.036 (3)0.029 (3)0.059 (4)0.001 (2)0.012 (3)0.004 (2)
C1130.025 (3)0.064 (4)0.078 (5)0.003 (3)0.000 (3)0.017 (4)
C1140.054 (4)0.064 (5)0.075 (6)0.014 (4)0.021 (4)0.019 (4)
C1150.050 (4)0.056 (4)0.058 (4)0.000 (3)0.011 (3)0.003 (3)
C1160.046 (3)0.039 (3)0.044 (3)0.006 (3)0.001 (3)0.006 (3)
C1170.027 (3)0.038 (3)0.035 (3)0.005 (2)0.003 (2)0.001 (2)
C1180.037 (3)0.040 (3)0.043 (3)0.004 (2)0.003 (2)0.002 (3)
C1190.046 (4)0.061 (4)0.044 (4)0.007 (3)0.006 (3)0.013 (3)
C1200.062 (4)0.080 (5)0.033 (3)0.007 (4)0.003 (3)0.010 (3)
C1210.067 (4)0.083 (6)0.040 (4)0.014 (4)0.002 (3)0.009 (3)
C1220.076 (5)0.040 (3)0.043 (4)0.007 (3)0.005 (3)0.003 (3)
C1230.039 (3)0.019 (2)0.040 (3)0.004 (2)0.006 (2)0.006 (2)
C1240.053 (4)0.042 (3)0.053 (4)0.014 (3)0.011 (3)0.013 (3)
C1250.057 (4)0.066 (5)0.082 (5)0.032 (4)0.014 (4)0.015 (4)
C1260.065 (4)0.049 (4)0.096 (6)0.027 (3)0.042 (4)0.002 (4)
C1270.081 (5)0.065 (5)0.058 (5)0.018 (4)0.039 (4)0.008 (4)
C1280.057 (4)0.054 (4)0.040 (3)0.020 (3)0.009 (3)0.008 (3)
Sn20.03160 (19)0.02667 (18)0.0314 (2)0.00085 (15)0.00178 (13)0.00105 (16)
O2010.0310 (18)0.0242 (17)0.043 (2)0.0006 (14)0.0008 (15)0.0001 (15)
P2020.0265 (6)0.0241 (6)0.0433 (8)0.0018 (5)0.0064 (6)0.0043 (5)
O2030.028 (2)0.066 (3)0.087 (4)0.001 (2)0.007 (2)0.051 (3)
O2040.0223 (17)0.0257 (18)0.050 (2)0.0015 (14)0.0027 (16)0.0027 (16)
C2050.091 (6)0.038 (3)0.061 (5)0.011 (4)0.023 (4)0.011 (3)
O2060.063 (3)0.0279 (19)0.043 (2)0.0094 (19)0.0026 (19)0.0039 (17)
P2070.0268 (7)0.0261 (6)0.0444 (8)0.0026 (5)0.0034 (6)0.0061 (6)
O2080.029 (2)0.059 (3)0.083 (4)0.0078 (19)0.009 (2)0.034 (3)
O2090.034 (2)0.033 (2)0.053 (3)0.0015 (16)0.0044 (17)0.0153 (18)
C2100.080 (5)0.046 (4)0.041 (3)0.000 (3)0.005 (3)0.005 (3)
C2110.045 (3)0.019 (3)0.049 (3)0.001 (2)0.012 (3)0.006 (2)
C2120.031 (3)0.026 (3)0.057 (4)0.003 (2)0.005 (2)0.006 (2)
C2130.033 (3)0.043 (4)0.090 (6)0.001 (3)0.005 (3)0.016 (4)
C2140.053 (4)0.054 (4)0.087 (6)0.010 (3)0.044 (4)0.021 (4)
C2150.089 (6)0.055 (4)0.055 (4)0.002 (4)0.037 (4)0.004 (3)
C2160.058 (4)0.044 (3)0.050 (4)0.014 (3)0.016 (3)0.002 (3)
C2170.041 (3)0.018 (2)0.043 (3)0.004 (2)0.008 (2)0.003 (2)
C2180.060 (4)0.050 (4)0.058 (4)0.021 (3)0.005 (3)0.005 (3)
C2190.064 (5)0.067 (5)0.102 (7)0.031 (4)0.012 (4)0.002 (5)
C2200.054 (4)0.042 (4)0.096 (6)0.018 (3)0.014 (4)0.016 (4)
C2210.074 (5)0.056 (4)0.063 (5)0.013 (4)0.019 (4)0.009 (4)
C2220.048 (3)0.049 (4)0.054 (4)0.013 (3)0.007 (3)0.001 (3)
C2230.024 (3)0.049 (3)0.032 (3)0.001 (2)0.005 (2)0.003 (2)
C2240.047 (3)0.045 (3)0.039 (3)0.006 (3)0.008 (3)0.002 (3)
C2250.047 (4)0.064 (4)0.045 (4)0.007 (3)0.006 (3)0.013 (3)
C2260.061 (4)0.084 (5)0.032 (3)0.009 (4)0.000 (3)0.010 (3)
C2270.105 (6)0.075 (5)0.039 (4)0.021 (5)0.002 (4)0.012 (4)
C2280.083 (5)0.055 (4)0.037 (3)0.018 (4)0.000 (3)0.000 (3)
N100.022 (2)0.050 (3)0.047 (3)0.0011 (19)0.0025 (19)0.010 (2)
C110.037 (3)0.041 (4)0.098 (6)0.002 (3)0.005 (3)0.009 (4)
C120.146 (10)0.053 (5)0.105 (9)0.014 (6)0.022 (7)0.025 (5)
C130.158 (11)0.091 (8)0.092 (8)0.032 (8)0.001 (8)0.030 (6)
C140.110 (8)0.144 (10)0.075 (7)0.041 (7)0.015 (6)0.034 (7)
C150.032 (3)0.121 (7)0.045 (4)0.028 (4)0.004 (3)0.021 (4)
C160.033 (3)0.135 (8)0.052 (4)0.011 (4)0.002 (3)0.021 (5)
C170.186 (14)0.205 (16)0.073 (8)0.077 (12)0.053 (8)0.040 (9)
C180.29 (3)0.23 (2)0.112 (13)0.098 (19)0.069 (14)0.054 (13)
N200.0214 (19)0.032 (2)0.039 (3)0.0033 (16)0.0043 (17)0.0015 (18)
C210.036 (3)0.034 (3)0.065 (4)0.004 (2)0.010 (3)0.001 (3)
C220.055 (4)0.052 (4)0.075 (5)0.008 (3)0.011 (4)0.017 (4)
C230.050 (4)0.082 (5)0.056 (5)0.013 (4)0.003 (3)0.018 (4)
C240.081 (6)0.115 (8)0.064 (6)0.023 (6)0.017 (4)0.018 (5)
C250.031 (3)0.052 (3)0.038 (3)0.005 (2)0.001 (2)0.005 (3)
C260.039 (3)0.042 (3)0.045 (3)0.003 (2)0.007 (2)0.004 (3)
C270.053 (4)0.066 (4)0.047 (4)0.010 (3)0.004 (3)0.004 (3)
C280.082 (5)0.081 (5)0.048 (4)0.018 (4)0.015 (4)0.008 (4)
Geometric parameters (Å, º) top
Sn1—O1012.175 (4)C214—C2151.398 (12)
Sn1—O1062.188 (3)C215—H21510.933
Sn1—C1112.128 (6)C215—C2161.391 (10)
Sn1—C1172.137 (6)C216—H21610.930
Sn1—C1232.125 (5)C217—C2181.390 (8)
Sn2—O2012.188 (3)C217—C2221.378 (9)
Sn2—O2062.169 (4)C218—H21810.923
Sn2—C2112.125 (6)C218—C2191.380 (10)
Sn2—C2172.126 (6)C219—H21910.926
Sn2—C2232.134 (6)C219—C2201.357 (12)
O101—P1021.507 (4)C220—H22010.927
P102—O1031.563 (4)C220—C2211.353 (11)
P102—O1041.511 (4)C221—H22110.935
P102—C1051.787 (6)C221—C2221.410 (9)
O103—H10310.850C222—H22210.933
C105—H10510.953C223—C2241.388 (8)
C105—H10520.962C223—C2281.405 (9)
C105—H10530.953C224—H22410.920
O106—P1071.507 (3)C224—C2251.384 (9)
P107—O1081.554 (4)C225—H22510.929
P107—O1091.508 (4)C225—C2261.365 (10)
P107—C1101.793 (7)C226—H22610.933
O108—H10810.850C226—C2271.384 (11)
C110—H11010.951C227—H22710.937
C110—H11020.954C227—C2281.393 (10)
C110—H11030.963C228—H22810.924
C111—C1121.376 (8)N10—H1010.893
C111—C1161.395 (9)N10—H1020.896
C112—H11210.927N10—C111.493 (9)
C112—C1131.401 (9)N10—C151.466 (8)
C113—H11310.938C11—H1110.975
C113—C1141.373 (11)C11—H1120.960
C114—H11410.924C11—C121.483 (12)
C114—C1151.381 (11)C12—H1210.950
C115—H11510.926C12—H1220.950
C115—C1161.390 (9)C12—C131.469 (8)
C116—H11610.933C13—H1310.950
C117—C1181.386 (8)C13—H1320.950
C117—C1221.386 (8)C13—C141.508 (8)
C118—H11810.926C14—H1410.950
C118—C1191.380 (9)C14—H1420.950
C119—H11910.930C14—H1430.950
C119—C1201.342 (10)C15—H1510.973
C120—H12010.933C15—H1520.977
C120—C1211.368 (11)C15—C161.520 (12)
C121—H12110.936C16—H1610.969
C121—C1221.408 (9)C16—H1620.958
C122—H12210.917C16—C171.520 (8)
C123—C1241.357 (8)C17—H1710.950
C123—C1281.383 (8)C17—H1720.950
C124—H12410.930C17—C181.453 (9)
C124—C1251.403 (9)C18—H1810.950
C125—H12510.922C18—H1820.950
C125—C1261.356 (11)C18—H1830.950
C126—H12610.938N20—H2010.892
C126—C1271.368 (11)N20—H2020.897
C127—H12710.928N20—C211.504 (7)
C127—C1281.392 (9)N20—C251.500 (7)
C128—H12810.937C21—H2110.964
O201—P2021.510 (4)C21—H2120.968
P202—O2031.549 (4)C21—C221.513 (9)
P202—O2041.504 (4)C22—H2210.974
P202—C2051.795 (7)C22—H2220.976
O203—H20310.850C22—C231.495 (7)
C205—H20510.951C23—H2310.975
C205—H20520.949C23—H2320.969
C205—H20530.965C23—C241.521 (7)
O206—P2071.513 (4)C24—H2410.965
P207—O2081.560 (4)C24—H2420.965
P207—O2091.515 (4)C24—H2430.960
P207—C2101.785 (7)C25—H2510.976
O208—H20810.850C25—H2520.968
C210—H21010.956C25—C261.510 (9)
C210—H21020.955C26—H2610.973
C210—H21030.959C26—H2620.976
C211—C2121.393 (8)C26—C271.520 (9)
C211—C2161.384 (9)C27—H2710.969
C212—H21210.939C27—H2720.981
C212—C2131.383 (9)C27—C281.501 (10)
C213—H21310.923C28—H2810.960
C213—C2141.352 (11)C28—H2820.967
C214—H21410.920C28—H2830.961
O101—Sn1—O106174.71 (14)C215—C216—H2161119.7
O101—Sn1—C11189.15 (19)C211—C216—H2161118.5
O106—Sn1—C11190.75 (18)Sn2—C217—C218121.3 (5)
O101—Sn1—C11788.80 (18)Sn2—C217—C222121.2 (4)
O106—Sn1—C11795.83 (18)C218—C217—C222117.5 (6)
C111—Sn1—C117119.9 (2)C217—C218—H2181119.0
O101—Sn1—C12390.03 (17)C217—C218—C219121.3 (7)
O106—Sn1—C12385.50 (16)H2181—C218—C219119.7
C111—Sn1—C123121.2 (2)C218—C219—H2191120.0
C117—Sn1—C123118.8 (2)C218—C219—C220119.8 (7)
Sn1—O101—P102142.8 (2)H2191—C219—C220120.2
O101—P102—O103110.3 (3)C219—C220—H2201118.5
O101—P102—O104114.0 (2)C219—C220—C221121.3 (7)
O103—P102—O104108.4 (2)H2201—C220—C221120.2
O101—P102—C105109.3 (3)C220—C221—H2211120.2
O103—P102—C105103.6 (3)C220—C221—C222119.1 (8)
O104—P102—C105110.7 (3)H2211—C221—C222120.7
P102—O103—H1031118.3C221—C222—C217121.0 (6)
P102—C105—H1051110.6C221—C222—H2221119.0
P102—C105—H1052110.0C217—C222—H2221120.1
H1051—C105—H1052108.3Sn2—C223—C224122.3 (4)
P102—C105—H1053110.7Sn2—C223—C228119.9 (5)
H1051—C105—H1053109.0C224—C223—C228117.8 (6)
H1052—C105—H1053108.3C223—C224—H2241118.9
Sn1—O106—P107143.2 (2)C223—C224—C225121.6 (6)
O106—P107—O108109.0 (2)H2241—C224—C225119.5
O106—P107—O109114.1 (2)C224—C225—H2251119.8
O108—P107—O109111.0 (2)C224—C225—C226120.8 (6)
O106—P107—C110108.1 (3)H2251—C225—C226119.4
O108—P107—C110105.1 (3)C225—C226—H2261121.8
O109—P107—C110109.1 (3)C225—C226—C227118.7 (6)
P107—O108—H1081122.5H2261—C226—C227119.5
P107—C110—H1101110.7C226—C227—H2271119.9
P107—C110—H1102110.6C226—C227—C228121.6 (7)
H1101—C110—H1102109.1H2271—C227—C228118.6
P107—C110—H1103110.1C223—C228—C227119.5 (7)
H1101—C110—H1103108.3C223—C228—H2281119.7
H1102—C110—H1103108.1C227—C228—H2281120.7
Sn1—C111—C112120.1 (5)H101—N10—H102108.9
Sn1—C111—C116121.8 (4)H101—N10—C11108.9
C112—C111—C116118.0 (5)H102—N10—C11109.5
C111—C112—H1121120.9H101—N10—C15107.9
C111—C112—C113120.7 (6)H102—N10—C15109.9
H1121—C112—C113118.4C11—N10—C15111.8 (6)
C112—C113—H1131119.1N10—C11—H111107.9
C112—C113—C114120.8 (6)N10—C11—H112108.6
H1131—C113—C114120.1H111—C11—H112108.9
C113—C114—H1141120.8N10—C11—C12113.2 (6)
C113—C114—C115119.2 (7)H111—C11—C12106.7
H1141—C114—C115120.0H112—C11—C12111.3
C114—C115—H1151119.5C11—C12—H121106.4
C114—C115—C116120.1 (7)C11—C12—H122105.5
H1151—C115—C116120.4H121—C12—H122109.5
C111—C116—C115121.2 (6)C11—C12—C13119.9 (7)
C111—C116—H1161118.5H121—C12—C13109.5
C115—C116—H1161120.3H122—C12—C13105.7
Sn1—C117—C118122.1 (4)C12—C13—H131107.9
Sn1—C117—C122121.1 (4)C12—C13—H132111.4
C118—C117—C122116.7 (5)H131—C13—H132109.5
C117—C118—H1181119.7C12—C13—C14109.50 (2)
C117—C118—C119122.0 (6)H131—C13—C14108.1
H1181—C118—C119118.3H132—C13—C14110.4
C118—C119—H1191119.8C13—C14—H141110.3
C118—C119—C120120.7 (6)C13—C14—H142109.0
H1191—C119—C120119.5H141—C14—H142109.5
C119—C120—H1201120.6C13—C14—H143109.1
C119—C120—C121119.9 (6)H141—C14—H143109.5
H1201—C120—C121119.5H142—C14—H143109.5
C120—C121—H1211119.5N10—C15—H151107.3
C120—C121—C122119.9 (7)N10—C15—H152109.6
H1211—C121—C122120.6H151—C15—H152109.9
C121—C122—C117120.7 (6)N10—C15—C16110.9 (6)
C121—C122—H1221120.0H151—C15—C16108.3
C117—C122—H1221119.3H152—C15—C16110.9
Sn1—C123—C124120.8 (4)C15—C16—H161107.8
Sn1—C123—C128121.1 (4)C15—C16—H162107.4
C124—C123—C128118.0 (5)H161—C16—H162108.7
C123—C124—H1241119.0C15—C16—C17104.9 (7)
C123—C124—C125121.7 (6)H161—C16—C17112.7
H1241—C124—C125119.3H162—C16—C17114.9
C124—C125—H1251120.8C16—C17—H171109.2
C124—C125—C126119.6 (7)C16—C17—H172109.7
H1251—C125—C126119.6H171—C17—H172109.5
C125—C126—H1261119.8C16—C17—C18109.50 (2)
C125—C126—C127119.7 (6)H171—C17—C18109.3
H1261—C126—C127120.5H172—C17—C18109.7
C126—C127—H1271120.4C17—C18—H181108.4
C126—C127—C128120.4 (7)C17—C18—H182110.2
H1271—C127—C128119.2H181—C18—H182109.5
C127—C128—C123120.5 (6)C17—C18—H183109.8
C127—C128—H1281120.2H181—C18—H183109.5
C123—C128—H1281119.3H182—C18—H183109.5
O201—Sn2—O206174.15 (14)H201—N20—H202109.4
O201—Sn2—C21190.47 (17)H201—N20—C21109.2
O206—Sn2—C21189.08 (18)H202—N20—C21106.7
O201—Sn2—C21785.41 (16)H201—N20—C25109.0
O206—Sn2—C21789.91 (18)H202—N20—C25106.6
C211—Sn2—C217122.4 (2)C21—N20—C25115.8 (5)
O201—Sn2—C22396.22 (19)N20—C21—H211108.4
O206—Sn2—C22389.10 (19)N20—C21—H212109.2
C211—Sn2—C223119.0 (2)H211—C21—H212108.5
C217—Sn2—C223118.6 (2)N20—C21—C22111.4 (5)
Sn2—O201—P202140.8 (2)H211—C21—C22110.8
O201—P202—O203107.4 (2)H212—C21—C22108.4
O201—P202—O204114.2 (2)C21—C22—H221106.6
O203—P202—O204111.8 (2)C21—C22—H222109.4
O201—P202—C205108.9 (3)H221—C22—H222109.1
O203—P202—C205105.6 (3)C21—C22—C23115.9 (5)
O204—P202—C205108.4 (3)H221—C22—C23107.7
P202—O203—H2031122.9H222—C22—C23107.9
P202—C205—H2051110.5C22—C23—H231109.5
P202—C205—H2052110.7C22—C23—H232109.1
H2051—C205—H2052109.5H231—C23—H232109.6
P202—C205—H2053109.7C22—C23—C24109.50 (2)
H2051—C205—H2053108.1H231—C23—C24109.4
H2052—C205—H2053108.3H232—C23—C24109.6
Sn2—O206—P207140.5 (2)C23—C24—H241108.3
O206—P207—O208110.3 (3)C23—C24—H242111.1
O206—P207—O209113.7 (2)H241—C24—H242109.2
O208—P207—O209109.1 (2)C23—C24—H243110.6
O206—P207—C210109.6 (3)H241—C24—H243109.2
O208—P207—C210102.7 (3)H242—C24—H243108.4
O209—P207—C210110.9 (3)N20—C25—H251107.4
P207—O208—H2081119.1N20—C25—H252108.2
P207—C210—H2101110.7H251—C25—H252108.6
P207—C210—H2102110.7N20—C25—C26111.0 (5)
H2101—C210—H2102108.5H251—C25—C26110.3
P207—C210—H2103110.3H252—C25—C26111.2
H2101—C210—H2103108.3C25—C26—H261109.2
H2102—C210—H2103108.3C25—C26—H262108.7
Sn2—C211—C212120.5 (4)H261—C26—H262108.7
Sn2—C211—C216121.6 (5)C25—C26—C27112.8 (5)
C212—C211—C216117.9 (6)H261—C26—C27108.0
C211—C212—H2121121.0H262—C26—C27109.4
C211—C212—C213120.2 (6)C26—C27—H271108.6
H2121—C212—C213118.8C26—C27—H272108.2
C212—C213—H2131119.1H271—C27—H272110.1
C212—C213—C214121.7 (6)C26—C27—C28114.4 (6)
H2131—C213—C214119.2H271—C27—C28107.1
C213—C214—H2141120.6H272—C27—C28108.4
C213—C214—C215119.5 (6)C27—C28—H281109.6
H2141—C214—C215119.9C27—C28—H282112.2
C214—C215—H2151119.8H281—C28—H282108.6
C214—C215—C216118.8 (7)C27—C28—H283108.0
H2151—C215—C216121.4H281—C28—H283109.1
C215—C216—C211121.8 (7)H282—C28—H283109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O103—H1031···O109i0.851.732.582 (10)180 (1)
O108—H1081···O104ii0.851.642.490 (10)180 (1)
C122—H1221···O1010.922.362.976 (10)124 (1)
O203—H2031···O209iii0.851.632.478 (10)180 (1)
O208—H2081···O204iv0.851.712.561 (10)180 (1)
C228—H2281···O2060.922.352.961 (10)124 (1)
N10—H101···O209iii0.891.902.772 (10)165 (1)
N10—H102···O1090.901.922.777 (10)160 (1)
C15—H152···O2030.982.453.134 (10)127 (1)
C16—H161···O103ii0.972.513.418 (10)156 (1)
N20—H201···O204iv0.891.952.780 (10)154 (1)
N20—H202···O1040.901.882.756 (10)167 (1)
C25—H252···O108i0.972.513.212 (10)129 (1)
C26—H262···O2080.982.523.302 (10)138 (1)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C8H20N)[Sn(C6H5)3(CH4O3P)2]
Mr670.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)175
a, b, c (Å)16.1963 (8), 18.9088 (8), 21.1989 (11)
β (°) 93.220 (4)
V3)6482.0 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.30 × 0.25 × 0.10
Data collection
DiffractometerOxford Diffraction Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.961, 1.000
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
64843, 26060, 17225
Rint0.085
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.067, 0.99
No. of reflections17225
No. of parameters686
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 1.66

Computer programs: CrysAlis PRO (Agilent, 2010), CrysAlis PRO (Agilent, 2010), Superflip (Palatinus & Chapuis, 2007), OLEX2 (Dolomanov et al., 2009), CRYSTALS (Betteridge et al., 2003) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—O1012.175 (4)Sn2—O2012.188 (3)
Sn1—O1062.188 (3)Sn2—O2062.169 (4)
Sn1—C1112.128 (6)Sn2—C2112.125 (6)
Sn1—C1172.137 (6)Sn2—C2172.126 (6)
Sn1—C1232.125 (5)Sn2—C2232.134 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O103—H1031···O109i0.8501.7322.582 (10)179.6 (2)
O108—H1081···O104ii0.8501.6402.490 (10)179.9 (2)
O203—H2031···O209iii0.8501.6282.478 (10)179.7 (3)
O208—H2081···O204iv0.8501.7112.561 (10)179.70 (19)
N10—H101···O209iii0.8931.9012.772 (10)164.57 (18)
N10—H102···O1090.8961.9202.777 (10)159.46 (19)
N20—H201···O204iv0.8921.9512.780 (10)153.79 (17)
N20—H202···O1040.8971.8752.756 (10)167.17 (18)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+2, y1/2, z+1/2; (iv) x+2, y+1/2, z+1/2.
 

References

First citationAdair, B. A., Neeraj, S. & Cheetham, A. K. (2003). Chem. Mater. 15, 1518–1529.  Web of Science CSD CrossRef CAS Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChunlin, M., Mingqing, Y., Rufen, Z. & Lingyun, D. (2008). Inorg. Chim. Acta, 361, 2979–2984.  Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDavies, A. G., Gielen, M., Pannell, K. H. & Tiekink, E. R. T. (2008). Tin Chemistry. Chichester: Wiley.  Google Scholar
First citationDiop, C. A. K., Bassene, S., Sidibe, M., Sarr-Diasse, A., Diop, L., Molloy, K. C., Mahon, M. F. & Toscano, R. A. (2002). Main Group Met. Chem. 25, 683–689.  CrossRef CAS Google Scholar
First citationDiop, T., Diop, L., Kociok-Köhn, G., Molloy, K. C. & Stoeckli-Evans, H. (2011). Acta Cryst. E67, m1674–m1675.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGielen, M. (2002). Appl. Organomet. Chem. 16, 481–494.  Web of Science CrossRef CAS Google Scholar
First citationGueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2011). Main Group Met. Chem. 34, 3–4.  Web of Science CrossRef CAS Google Scholar
First citationMolloy, K. C., Purcell, T. G., Quill, K. & Nowell, I. W. (1984). J. Organomet. Chem. 267, 237–247.  CSD CrossRef CAS Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials. New York: Science Springer-Verlag.  Google Scholar
First citationSow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Main Group Met. Chem. 34, 127–130.  Web of Science CrossRef Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds