inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of Ba2CdTe3 from single-crystal X-ray data

aState Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China
*Correspondence e-mail: shqxia@sdu.edu.cn

(Received 6 September 2012; accepted 12 September 2012; online 22 September 2012)

The previous structure determination of the title compound, dibarium tritelluridocadmate, was based on powder X-ray diffraction data [Wang & DiSalvo (1999[Wang, Y. C. & DiSalvo, F. J. (1999). J. Solid State Chem. 148, 464-467.]). J. Solid State Chem. 148, 464–467]. In the current redetermination from single-crystal X-ray data, all atoms were refined with anisotropic displacement parameters. The previous structure report is generally confirmed, but with some differences in bond lengths. Ba2CdTe3 is isotypic with Ba2MX3 (M = Mn, Cd; X = S, Se) and features 1[CdTe2/2Te2/1]4− chains of corner-sharing CdTe4 tetra­hedra running parallel [010]. The two Ba2+ cations are located between the chains, both within distorted monocapped trigonal–prismatic coordination polyhedra. All atoms in the structure are located on a mirror plane.

Related literature

For the previous determination of Ba2CdTe3, see: Wang & DiSalvo (1999[Wang, Y. C. & DiSalvo, F. J. (1999). J. Solid State Chem. 148, 464-467.]). For isotypic compounds, see: Grey & Steinfink (1971[Grey, I. E. & Steinfink, H. (1971). Inorg. Chem. 10, 691-696.]) for Ba2MnS3 and Ba2MnSe3; Iglesias et al. (1974[Iglesias, J. E., Pachali, K. E. & Steinfink, H. (1974). J. Solid State Chem. 9, 6-14.]) for Ba2CdSe3 and Ba2CdS3.

Experimental

Crystal data
  • Ba2CdTe3

  • Mr = 769.88

  • Orthorhombic, P n m a

  • a = 9.8405 (2) Å

  • b = 4.7502 (1) Å

  • c = 19.1008 (4) Å

  • V = 892.85 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 20.59 mm−1

  • T = 293 K

  • 0.07 × 0.03 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.348, Tmax = 0.627

  • 4014 measured reflections

  • 1098 independent reflections

  • 858 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.041

  • S = 0.99

  • 1098 reflections

  • 38 parameters

  • Δρmax = 1.44 e Å−3

  • Δρmin = −1.27 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Single crystals of Ba2CdTe3 were obtained unintentionally from a Bi-flux reactions for exploration of possible new ternary phases in the Ba—Cd—Te system.

The structure of Ba2CdTe3 is isotypic with Ba2MnX3 (X = S, Se; Grey & Steinfink, 1971) and Ba2CdX3 (X = S, Se; Iglesias et al., 1974). The structural set-up can be described as a packing of polyanionic chains composed of corner-sharing CdTe4 tetrahedra. These chains run parallel to [010]; inbetween the chains the two Ba2+ cations are located (Fig. 1), both with a coordination number of 7 and surrounded in form of monocapped trigonal-prismatic polyhedra of Te atoms. All atoms are located on a mirror plane x, 1/4, z (Wyckoff symbol 4c).

In comparison with the previous structure model on basis of powder X-ray data (Wang & DiSalvo, 1999), the most important improvement of the current redetermination is reflected in the higher precision of the atomic coordinates and the use of anisotropic displacemenet parameters for all atoms. Although the coordination spheres of Cd and the two Ba atoms can still be described as a distorted CdTe4 tetrahedron and two distorted monocapped trigonal BaTe7 prisms, respectively, the results of the redetermination indicate some differences in terms of Cd—Te and Ba—Te bond lengths (mean σ for the bond length of the powder model in the range 0.003 Å; 0.0006 for the current model). For example, the longest Ba—Te bonds are 3.6722 (8) and 3.6796 (8) Å for Ba1 and Ba2. The previous powder study revealed distances of 3.638 (5) and 3.500 (5) Å, respectively.

Related literature top

For the previous determination of Ba2CdTe3, see: Wang & DiSalvo (1999). For isotypic compounds, see: Grey & Steinfink (1971) for Ba2MnS3 and Ba2MnSe3; Iglesias et al. (1974) for Ba2CdSe3 and Ba2CdS3.

Experimental top

The title compound was synthesized through a high temperature metal flux reaction. All starting elements were handled inside an Argon-filled glove box with controlled oxygen and moisture levels below 0.1 p.p.m.. The reaction conditions were optimized as follows: Ba, Cd, Te and Bi in a molar ratio of 2:1:3:10 were loaded in an alumina crucible, which were subsequently flame-sealed in a fused silica tube. The reactants were heated quickly to 973 K and allowed to dwell at this temperature for 20 h. After a slow cooling process down to 773 K at a rate of 5 K/h and the removal of the Bi flux by centrifugation, high-quality single crystals of Ba2CdTe3 were obtained.

Refinement top

The full occupancies for all sites were verified by freeing the site occupation factor for an individual atom, while other remaining parameters were kept fixed. This proved that all positions are fully occupied with corresponding deviations from full occupancy within 3σ. The residual electron densities show a maximum peak of 1.44 e/Å3 and a minimum hole of -1.27 e/Å3, which are 0.86 and 0.81 Å from Te3 and Te2, respectively.

Structure description top

Single crystals of Ba2CdTe3 were obtained unintentionally from a Bi-flux reactions for exploration of possible new ternary phases in the Ba—Cd—Te system.

The structure of Ba2CdTe3 is isotypic with Ba2MnX3 (X = S, Se; Grey & Steinfink, 1971) and Ba2CdX3 (X = S, Se; Iglesias et al., 1974). The structural set-up can be described as a packing of polyanionic chains composed of corner-sharing CdTe4 tetrahedra. These chains run parallel to [010]; inbetween the chains the two Ba2+ cations are located (Fig. 1), both with a coordination number of 7 and surrounded in form of monocapped trigonal-prismatic polyhedra of Te atoms. All atoms are located on a mirror plane x, 1/4, z (Wyckoff symbol 4c).

In comparison with the previous structure model on basis of powder X-ray data (Wang & DiSalvo, 1999), the most important improvement of the current redetermination is reflected in the higher precision of the atomic coordinates and the use of anisotropic displacemenet parameters for all atoms. Although the coordination spheres of Cd and the two Ba atoms can still be described as a distorted CdTe4 tetrahedron and two distorted monocapped trigonal BaTe7 prisms, respectively, the results of the redetermination indicate some differences in terms of Cd—Te and Ba—Te bond lengths (mean σ for the bond length of the powder model in the range 0.003 Å; 0.0006 for the current model). For example, the longest Ba—Te bonds are 3.6722 (8) and 3.6796 (8) Å for Ba1 and Ba2. The previous powder study revealed distances of 3.638 (5) and 3.500 (5) Å, respectively.

For the previous determination of Ba2CdTe3, see: Wang & DiSalvo (1999). For isotypic compounds, see: Grey & Steinfink (1971) for Ba2MnS3 and Ba2MnSe3; Iglesias et al. (1974) for Ba2CdSe3 and Ba2CdS3.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the structure of Ba2CdTe3 along the b-axis. The barium, cadmium and tellurium atoms are plotted as purple, green and red ellipsoids, respectively. Ellipsoids are drawn at the 90% probability level.
dibarium tritelluridocadmate top
Crystal data top
Ba2CdTe3F(000) = 1264
Mr = 769.88Dx = 5.727 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1715 reflections
a = 9.8405 (2) Åθ = 3.0–28.2°
b = 4.7502 (1) ŵ = 20.59 mm1
c = 19.1008 (4) ÅT = 293 K
V = 892.85 (3) Å3Needle, red
Z = 40.07 × 0.03 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
1098 independent reflections
Radiation source: fine-focus sealed tube858 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 27.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 129
Tmin = 0.348, Tmax = 0.627k = 36
4014 measured reflectionsl = 2415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0142P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max = 0.001
S = 0.99Δρmax = 1.44 e Å3
1098 reflectionsΔρmin = 1.27 e Å3
38 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00112 (6)
Crystal data top
Ba2CdTe3V = 892.85 (3) Å3
Mr = 769.88Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 9.8405 (2) ŵ = 20.59 mm1
b = 4.7502 (1) ÅT = 293 K
c = 19.1008 (4) Å0.07 × 0.03 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
1098 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
858 reflections with I > 2σ(I)
Tmin = 0.348, Tmax = 0.627Rint = 0.031
4014 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02538 parameters
wR(F2) = 0.0410 restraints
S = 0.99Δρmax = 1.44 e Å3
1098 reflectionsΔρmin = 1.27 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.07317 (6)0.25000.78653 (3)0.01857 (16)
Ba20.24597 (6)0.25000.03873 (3)0.01918 (16)
Cd10.12996 (7)0.25000.36470 (3)0.01947 (18)
Te10.01147 (6)0.25000.59692 (3)0.01802 (17)
Te20.19335 (6)0.25000.22108 (3)0.01748 (16)
Te30.38656 (6)0.25000.42865 (3)0.01745 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0190 (3)0.0171 (3)0.0196 (4)0.0000.0003 (3)0.000
Ba20.0209 (3)0.0191 (3)0.0175 (3)0.0000.0013 (3)0.000
Cd10.0197 (4)0.0201 (4)0.0186 (4)0.0000.0014 (3)0.000
Te10.0187 (4)0.0154 (3)0.0200 (4)0.0000.0024 (3)0.000
Te20.0178 (4)0.0203 (3)0.0144 (4)0.0000.0008 (3)0.000
Te30.0158 (4)0.0200 (3)0.0165 (4)0.0000.0004 (3)0.000
Geometric parameters (Å, º) top
Ba1—Te2i3.5331 (6)Cd1—Te1iii2.8488 (5)
Ba1—Te2ii3.5331 (6)Cd1—Te1iv2.8488 (5)
Ba1—Te2iii3.5413 (6)Te1—Cd1iii2.8488 (5)
Ba1—Te2iv3.5413 (6)Te1—Cd1iv2.8488 (5)
Ba1—Te3i3.6287 (6)Te1—Ba2i3.5459 (6)
Ba1—Te3ii3.6287 (6)Te1—Ba2ii3.5459 (6)
Ba1—Te13.6722 (8)Te1—Ba2vii3.6796 (8)
Ba2—Te3v3.4297 (6)Te2—Ba1vi3.5331 (6)
Ba2—Te3vi3.4297 (6)Te2—Ba1v3.5331 (6)
Ba2—Te23.5213 (8)Te2—Ba1iii3.5413 (6)
Ba2—Te1vi3.5459 (6)Te2—Ba1iv3.5413 (6)
Ba2—Te1v3.5459 (6)Te3—Ba2i3.4297 (6)
Ba2—Te3vii3.5913 (8)Te3—Ba2ii3.4297 (6)
Ba2—Te1viii3.6796 (8)Te3—Ba2viii3.5913 (8)
Cd1—Te32.8050 (9)Te3—Ba1v3.6287 (6)
Cd1—Te22.8133 (9)Te3—Ba1vi3.6287 (6)
Te2i—Ba1—Te2ii84.480 (18)Te1iii—Cd1—Te1iv112.97 (3)
Te2i—Ba1—Te2iii156.629 (18)Cd1iii—Te1—Cd1iv112.97 (3)
Te2ii—Ba1—Te2iii90.930 (5)Cd1iii—Te1—Ba2i165.46 (2)
Te2i—Ba1—Te2iv90.930 (5)Cd1iv—Te1—Ba2i81.436 (14)
Te2ii—Ba1—Te2iv156.629 (18)Cd1iii—Te1—Ba2ii81.436 (14)
Te2iii—Ba1—Te2iv84.241 (18)Cd1iv—Te1—Ba2ii165.46 (2)
Te2i—Ba1—Te3i75.741 (13)Ba2i—Te1—Ba2ii84.104 (18)
Te2ii—Ba1—Te3i129.32 (2)Cd1iii—Te1—Ba180.038 (19)
Te2iii—Ba1—Te3i123.41 (2)Cd1iv—Te1—Ba180.038 (19)
Te2iv—Ba1—Te3i70.888 (14)Ba2i—Te1—Ba1101.413 (18)
Te2i—Ba1—Te3ii129.32 (2)Ba2ii—Te1—Ba1101.413 (18)
Te2ii—Ba1—Te3ii75.741 (13)Cd1iii—Te1—Ba2vii80.46 (2)
Te2iii—Ba1—Te3ii70.888 (14)Cd1iv—Te1—Ba2vii80.46 (2)
Te2iv—Ba1—Te3ii123.41 (2)Ba2i—Te1—Ba2vii104.904 (17)
Te3i—Ba1—Te3ii81.769 (17)Ba2ii—Te1—Ba2vii104.904 (17)
Te2i—Ba1—Te176.026 (15)Ba1—Te1—Ba2vii144.28 (2)
Te2ii—Ba1—Te176.026 (15)Cd1—Te2—Ba2175.65 (3)
Te2iii—Ba1—Te180.624 (16)Cd1—Te2—Ba1vi78.412 (18)
Te2iv—Ba1—Te180.624 (16)Ba2—Te2—Ba1vi104.737 (17)
Te3i—Ba1—Te1139.101 (8)Cd1—Te2—Ba1v78.412 (18)
Te3ii—Ba1—Te1139.101 (8)Ba2—Te2—Ba1v104.737 (17)
Te3v—Ba2—Te3vi87.658 (19)Ba1vi—Te2—Ba1v84.480 (18)
Te3v—Ba2—Te2123.399 (16)Cd1—Te2—Ba1iii82.866 (18)
Te3vi—Ba2—Te2123.399 (16)Ba2—Te2—Ba1iii93.918 (17)
Te3v—Ba2—Te1vi155.78 (2)Ba1vi—Te2—Ba1iii161.261 (19)
Te3vi—Ba2—Te1vi89.100 (12)Ba1v—Te2—Ba1iii92.594 (5)
Te2—Ba2—Te1vi77.814 (17)Cd1—Te2—Ba1iv82.866 (18)
Te3v—Ba2—Te1v89.100 (12)Ba2—Te2—Ba1iv93.918 (17)
Te3vi—Ba2—Te1v155.78 (2)Ba1vi—Te2—Ba1iv92.594 (5)
Te2—Ba2—Te1v77.814 (17)Ba1v—Te2—Ba1iv161.261 (19)
Te1vi—Ba2—Te1v84.104 (18)Ba1iii—Te2—Ba1iv84.240 (18)
Te3v—Ba2—Te3vii74.447 (16)Cd1—Te3—Ba2i85.679 (19)
Te3vi—Ba2—Te3vii74.447 (16)Cd1—Te3—Ba2ii85.679 (19)
Te2—Ba2—Te3vii71.552 (17)Ba2i—Te3—Ba2ii87.658 (19)
Te1vi—Ba2—Te3vii127.482 (15)Cd1—Te3—Ba2viii164.18 (3)
Te1v—Ba2—Te3vii127.482 (15)Ba2i—Te3—Ba2viii105.553 (16)
Te3v—Ba2—Te1viii80.695 (16)Ba2ii—Te3—Ba2viii105.553 (16)
Te3vi—Ba2—Te1viii80.695 (16)Cd1—Te3—Ba1v76.852 (18)
Te2—Ba2—Te1viii143.22 (2)Ba2i—Te3—Ba1v162.44 (2)
Te1vi—Ba2—Te1viii75.096 (17)Ba2ii—Te3—Ba1v92.687 (10)
Te1v—Ba2—Te1viii75.096 (17)Ba2viii—Te3—Ba1v91.275 (17)
Te3vii—Ba2—Te1viii145.23 (2)Cd1—Te3—Ba1vi76.852 (18)
Te3—Cd1—Te2103.01 (3)Ba2i—Te3—Ba1vi92.687 (10)
Te3—Cd1—Te1iii109.13 (2)Ba2ii—Te3—Ba1vi162.44 (2)
Te2—Cd1—Te1iii111.05 (2)Ba2viii—Te3—Ba1vi91.275 (17)
Te3—Cd1—Te1iv109.13 (2)Ba1v—Te3—Ba1vi81.769 (17)
Te2—Cd1—Te1iv111.05 (2)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x, y, z+1; (iv) x, y+1, z+1; (v) x+1/2, y, z1/2; (vi) x+1/2, y+1, z1/2; (vii) x1/2, y, z+1/2; (viii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaBa2CdTe3
Mr769.88
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)9.8405 (2), 4.7502 (1), 19.1008 (4)
V3)892.85 (3)
Z4
Radiation typeMo Kα
µ (mm1)20.59
Crystal size (mm)0.07 × 0.03 × 0.03
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.348, 0.627
No. of measured, independent and
observed [I > 2σ(I)] reflections
4014, 1098, 858
Rint0.031
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.041, 0.99
No. of reflections1098
No. of parameters38
Δρmax, Δρmin (e Å3)1.44, 1.27

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support by the National Natural Science Foundation of China (20901047) and the Shandong Provincial Natural Science Foundation (ZR2010BM003).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrey, I. E. & Steinfink, H. (1971). Inorg. Chem. 10, 691–696.  Google Scholar
First citationIglesias, J. E., Pachali, K. E. & Steinfink, H. (1974). J. Solid State Chem. 9, 6–14.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. C. & DiSalvo, F. J. (1999). J. Solid State Chem. 148, 464–467.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds