metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[(μ-anilido)(μ-1,2-dimeth­­oxy­ethane-κ3-O,O′:O)sodium]

aInstitut für Chemie, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

(Received 10 September 2012; accepted 25 September 2012; online 29 September 2012)

In the title compound, [Na(C6H5NH)(C4H10O2)], the Na+ cation is coordinated by the N atoms of two anilide anions, two O atoms of a chelating 1,2-dimeth­oxy­ethane (dme) ligand and one O atom of an adjacent dme ligand. The coordination polyhedron around Na+ corresponds to a distorted square pyramid with the N atoms of the anilide groups and the O atoms of the chelating dme unit at the base and a third O atom at the apical position. The anilide anions act as μ-bridging ligands and the 1,2-dimeth­oxy­ethane mol­ecules display a μ2-κ3-O,O′ coordination mode. As a result of this connectivity, a polymeric chain structure parallel to [100] is formed, consisting of Na2O2 and Na2N2 four-membered rings. It should be noted that the remaining H atom of the anilide NH group is not involved in hydrogen bonding.

Related literature

For the crystal structure of a sodium anilide complex, see: Barr et al. (1995[Barr, D., Clegg, W., Cowton, L., Horsburgh, L., Mackenzie, F. M. & Mulvey, R. E. (1995). Chem. Commun. pp. 891-892.]) and for the crystal structures of sodium compounds with μ-bridging 1,2-dimeth­oxy­ethane ligands, see: Bock et al. (1999[Bock, H., Lehn, J.-M., Pauls, J., Holl, S. & Krenzel, V. (1999). Angew. Chem. Int. Ed. 38, 952-955.], 2000[Bock, H., Gharagozloo-Hubmann, K. & Sievert, M. (2000). Z. Naturforsch. Teil B: Chem. Sci. 55, 1103-1113.]); Rothenberger et al. (2007[Rothenberger, A., Shafaei-Fallah, M. & Shi, W. (2007). Chem. Commun. pp. 1499-1501.]); Tirla et al. (2002[Tirla, C., Mezailles, N., Ricard, L., Mathey, F. & Le Floch, P. (2002). Inorg. Chem. 41, 6032-6037.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C6H6N)(C4H10O2)]

  • Mr = 205.23

  • Monoclinic, P 21 /c

  • a = 7.0450 (7) Å

  • b = 13.1609 (14) Å

  • c = 12.5545 (12) Å

  • β = 101.153 (8)°

  • V = 1142.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.40 × 0.24 × 0.24 mm

Data collection
  • Stoe IPDS2T diffractometer

  • 5398 measured reflections

  • 2206 independent reflections

  • 1450 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.078

  • S = 0.85

  • 2206 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the title compound,[Na(C6H5NH)(C4H10O2)] or [Na(PhNH)(dme)], the Na+ cations are linked by bridging anilide (PhNH-) groups and µ2-κ3-O,O' coordinating 1,2-dimethoxyethane (dme) ligands to give a coordination polymer which extends parallel to [100]. The coordination around Na+ is distorted square pyramidal with two N atoms of the PhNH groups and two O atoms of the chelating dme ligands at the base of the square pyramid and a third O atom from an adjacing dme ligand at its apex (Fig.1). The Na—N distances of 2.4069 (14) and 2.4095 (11) Å are similar to the values that have been observed in the dimeric complex [{(pmdeta)Na(NHPh)}2] (2.390 (5) and 2.444 (5) Å, pmdeta = pentamethyldiethylenetriamine) (Barr et al., 1995). Like in the case of the pmdeta derivative, the Na+ cations are linked by the PhNH groups to give planar Na2N2 rings with the phenyl groups in a trans arragement. The Na2N2 ring exhibits a rhombus shape with both the N—Na—N angle (93.22 (4)°) and the Na—N—Na angle (86.78 (4)°) close to 90°. A similar shaped Na2N2 ring has been observed in the pmdeta derivative (N—Na—N: 92.6°; Na—N—Na: 87.4°). The phenyl rings display a nearly perpedicular orientation with respect to the Na2N2 plane (82.16 (5)°). In the case of the pmdeta derivate a larger tilting (65°) due to the steric requirements of the pmdeta ligands is observed. In addition to the µ-bridging PhNH units, the Na+ cations are linked by µ2-κ3-O,O' coordinating dme ligands. The chelate ring formed by the atoms Na, O1, C8, C9 and O2 adopts an envelope conformation with the carbon atom C9 at the flap position. The Na—O distances within the chelate ring are 2.4103 (10) and 2.6800 (12) Å and the Na—O distance to the neighbouring Na+ cation amounts to 2.4849 (12) Å. Sodium complexes with similar µ-bridging dme ligands are known, e.g. with CCDC (Allen, 2002) reference code JAXQUU (Na—O: 2.348–2.461 Å; Bock et al., 1999), WOTWAD (Na—O: 2.290–2.438 Å; Bock et al., 2000), HUPZOH (Na—O: 2.371–2.668 Å; Tirla et al., 2002) and QIBKIW (Na—O: 2.345–2.516 Å; Rothenberger et al., 2007). Due to the µ-bridging mode of the dme molecules four membered Na2O2 rings possessing crystallographic 1 symmetry are formed. The Na2N2 and Na2O2 rings are linked by corner sharing to give an infinite chain parallel to [100]. The tilt angle between the Na2N2 and Na2O2 rings is 72.33 (4)°. Using a polyhedral model, the chain structure can be described by edge-sharing NaO3N2 square pyramids (Fig. 2). Interestingly, the H atom of the anilide NH group is not involved in hydrogen bonding.

Related literature top

For the crystal structure of a sodium anilide complex, see: Barr et al. (1995) and for the crystal structures of sodium compounds with µ-bridging 1,2-dimethoxyethane ligands, see: Bock et al. (1999, 2000); Rothenberger et al. (2007); Tirla et al. (2002). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

0.7 ml (7.7 mmol) of aniline were added dropwise to a suspension of 0.29 g (7.5 mmol) of sodium amide in 10 ml of 1,2-dimethoxyethane. After one hour of stirring, the pale yellow reaction solution was reduced to 8 ml and afterwards layered with 20 ml of n-hexane. Colourless crystals of [Na(PhNH)(dme)] are formed at the phase boundary after one week. The product was filtered off and washed with n-pentane. Yield: 1.11 g (72%).

Refinement top

The H atom bonded to N was located from a difference Fourier map and was refined freely. Hydrogen atoms attached to the phenyl group and hydrogen atoms of the dme ligand were positioned geometrically and refined using a riding model with U(H) = 1.20 Ueq(C).

Structure description top

In the title compound,[Na(C6H5NH)(C4H10O2)] or [Na(PhNH)(dme)], the Na+ cations are linked by bridging anilide (PhNH-) groups and µ2-κ3-O,O' coordinating 1,2-dimethoxyethane (dme) ligands to give a coordination polymer which extends parallel to [100]. The coordination around Na+ is distorted square pyramidal with two N atoms of the PhNH groups and two O atoms of the chelating dme ligands at the base of the square pyramid and a third O atom from an adjacing dme ligand at its apex (Fig.1). The Na—N distances of 2.4069 (14) and 2.4095 (11) Å are similar to the values that have been observed in the dimeric complex [{(pmdeta)Na(NHPh)}2] (2.390 (5) and 2.444 (5) Å, pmdeta = pentamethyldiethylenetriamine) (Barr et al., 1995). Like in the case of the pmdeta derivative, the Na+ cations are linked by the PhNH groups to give planar Na2N2 rings with the phenyl groups in a trans arragement. The Na2N2 ring exhibits a rhombus shape with both the N—Na—N angle (93.22 (4)°) and the Na—N—Na angle (86.78 (4)°) close to 90°. A similar shaped Na2N2 ring has been observed in the pmdeta derivative (N—Na—N: 92.6°; Na—N—Na: 87.4°). The phenyl rings display a nearly perpedicular orientation with respect to the Na2N2 plane (82.16 (5)°). In the case of the pmdeta derivate a larger tilting (65°) due to the steric requirements of the pmdeta ligands is observed. In addition to the µ-bridging PhNH units, the Na+ cations are linked by µ2-κ3-O,O' coordinating dme ligands. The chelate ring formed by the atoms Na, O1, C8, C9 and O2 adopts an envelope conformation with the carbon atom C9 at the flap position. The Na—O distances within the chelate ring are 2.4103 (10) and 2.6800 (12) Å and the Na—O distance to the neighbouring Na+ cation amounts to 2.4849 (12) Å. Sodium complexes with similar µ-bridging dme ligands are known, e.g. with CCDC (Allen, 2002) reference code JAXQUU (Na—O: 2.348–2.461 Å; Bock et al., 1999), WOTWAD (Na—O: 2.290–2.438 Å; Bock et al., 2000), HUPZOH (Na—O: 2.371–2.668 Å; Tirla et al., 2002) and QIBKIW (Na—O: 2.345–2.516 Å; Rothenberger et al., 2007). Due to the µ-bridging mode of the dme molecules four membered Na2O2 rings possessing crystallographic 1 symmetry are formed. The Na2N2 and Na2O2 rings are linked by corner sharing to give an infinite chain parallel to [100]. The tilt angle between the Na2N2 and Na2O2 rings is 72.33 (4)°. Using a polyhedral model, the chain structure can be described by edge-sharing NaO3N2 square pyramids (Fig. 2). Interestingly, the H atom of the anilide NH group is not involved in hydrogen bonding.

For the crystal structure of a sodium anilide complex, see: Barr et al. (1995) and for the crystal structures of sodium compounds with µ-bridging 1,2-dimethoxyethane ligands, see: Bock et al. (1999, 2000); Rothenberger et al. (2007); Tirla et al. (2002). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The coordination around the Na+ cation in the structure of the title compound. The asymmetric unit is marked by filled bonds. Anisotropic displacement parameters are drawn at the 50% probability level. [Symmetry codes: i: 1 - x, -y, 1 - z; ii: 2 - x, -y, 1 - z]
[Figure 2] Fig. 2. Part of the chain structure extending parallel to [100].
catena-Poly[(µ-anilido)(µ-1,2-dimethoxyethane- κ3-O,O':O)sodium] top
Crystal data top
[Na(C6H6N)(C4H10O2)]F(000) = 440
Mr = 205.23Dx = 1.194 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3804 reflections
a = 7.0450 (7) Åθ = 4.0–29.2°
b = 13.1609 (14) ŵ = 0.11 mm1
c = 12.5545 (12) ÅT = 200 K
β = 101.153 (8)°Prism, colourless
V = 1142.1 (2) Å30.40 × 0.24 × 0.24 mm
Z = 4
Data collection top
Stoe IPDS2T
diffractometer
1450 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 26.0°, θmin = 4.0°
Detector resolution: 6.67 pixels mm-1h = 88
phi rotation scansk = 1416
5398 measured reflectionsl = 1515
2206 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.0466P)2]
where P = (Fo2 + 2Fc2)/3
2206 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
[Na(C6H6N)(C4H10O2)]V = 1142.1 (2) Å3
Mr = 205.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0450 (7) ŵ = 0.11 mm1
b = 13.1609 (14) ÅT = 200 K
c = 12.5545 (12) Å0.40 × 0.24 × 0.24 mm
β = 101.153 (8)°
Data collection top
Stoe IPDS2T
diffractometer
1450 reflections with I > 2σ(I)
5398 measured reflectionsRint = 0.050
2206 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 0.85Δρmax = 0.14 e Å3
2206 reflectionsΔρmin = 0.18 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.53257 (15)0.18227 (10)0.39471 (10)0.0352 (3)
C20.53896 (17)0.23456 (11)0.49422 (10)0.0419 (3)
H2A0.52000.19800.55470.050*
C30.5719 (2)0.33670 (12)0.50437 (11)0.0496 (4)
H3A0.57460.36760.57130.060*
C40.6015 (2)0.39515 (12)0.41776 (13)0.0543 (4)
H4A0.62530.46450.42550.065*
C50.5944 (2)0.34720 (12)0.31930 (11)0.0511 (4)
H5A0.61370.38510.25980.061*
C60.55974 (18)0.24503 (11)0.30740 (10)0.0420 (3)
H6A0.55380.21580.23940.050*
C70.9515 (3)0.05477 (18)0.79319 (15)0.0823 (6)
H7C0.83620.09540.78030.099*
H7B0.96200.01980.86120.099*
H7A1.06230.09780.79560.099*
C81.1104 (2)0.08004 (15)0.72251 (13)0.0651 (5)
H8B1.22160.04020.71270.078*
H8A1.13650.10790.79540.078*
C91.0766 (2)0.16376 (13)0.64172 (14)0.0637 (5)
H9B0.96400.20270.65100.076*
H9A1.18740.20900.65310.076*
C101.0256 (2)0.20221 (14)0.45538 (16)0.0686 (5)
H10C0.94390.25470.47470.082*
H10B0.96840.17490.38560.082*
H10A1.15040.23010.45230.082*
N0.50434 (16)0.08063 (9)0.38965 (10)0.0446 (3)
H10.505 (2)0.0608 (12)0.3207 (13)0.046 (4)*
O11.04685 (14)0.12315 (8)0.53495 (8)0.0527 (3)
O20.94293 (14)0.01729 (9)0.70809 (8)0.0569 (3)
Na0.73912 (7)0.00248 (4)0.53096 (4)0.04248 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0227 (5)0.0435 (8)0.0375 (7)0.0040 (5)0.0011 (5)0.0051 (6)
C20.0345 (6)0.0553 (9)0.0358 (7)0.0019 (6)0.0068 (5)0.0052 (6)
C30.0462 (7)0.0561 (10)0.0462 (8)0.0064 (7)0.0082 (6)0.0075 (7)
C40.0522 (8)0.0395 (9)0.0696 (10)0.0042 (6)0.0075 (7)0.0007 (7)
C50.0512 (8)0.0512 (10)0.0506 (8)0.0071 (7)0.0088 (6)0.0175 (7)
C60.0411 (7)0.0499 (9)0.0338 (6)0.0068 (6)0.0039 (5)0.0053 (6)
C70.0701 (11)0.1031 (17)0.0689 (11)0.0194 (11)0.0017 (9)0.0246 (11)
C80.0443 (8)0.0836 (13)0.0606 (9)0.0040 (8)0.0066 (7)0.0207 (9)
C90.0436 (8)0.0558 (10)0.0871 (12)0.0060 (7)0.0009 (8)0.0263 (9)
C100.0407 (8)0.0578 (10)0.1068 (13)0.0106 (7)0.0134 (8)0.0208 (10)
N0.0407 (6)0.0454 (7)0.0454 (7)0.0009 (5)0.0028 (5)0.0025 (6)
O10.0434 (5)0.0450 (6)0.0671 (6)0.0064 (4)0.0041 (4)0.0024 (5)
O20.0428 (5)0.0686 (8)0.0545 (6)0.0079 (5)0.0025 (4)0.0028 (5)
Na0.0315 (2)0.0423 (3)0.0507 (3)0.0027 (2)0.0008 (2)0.0036 (2)
Geometric parameters (Å, º) top
C1—N1.3522 (18)C8—C91.485 (3)
C1—C61.4147 (19)C8—H8B0.9700
C1—C21.4193 (19)C8—H8A0.9700
C1—Na3.1112 (13)C9—O11.4205 (19)
C2—C31.366 (2)C9—H9B0.9700
C2—H2A0.9300C9—H9A0.9700
C3—C41.380 (2)C10—O11.430 (2)
C3—H3A0.9300C10—H10C0.9600
C4—C51.380 (2)C10—H10B0.9600
C4—H4A0.9300C10—H10A0.9600
C5—C61.370 (2)N—Nai2.4069 (14)
C5—H5A0.9300N—Na2.4095 (11)
C6—H6A0.9300N—H10.905 (16)
C7—O21.421 (2)O1—Naii2.4849 (12)
C7—H7C0.9600O1—Na2.6800 (12)
C7—H7B0.9600O2—Na2.4103 (10)
C7—H7A0.9600Na—Ni2.4069 (14)
C8—O21.423 (2)Na—O1ii2.4849 (12)
N—C1—C6125.59 (13)H9B—C9—H9A108.2
N—C1—C2120.02 (13)O1—C10—H10C109.5
C6—C1—C2114.39 (13)O1—C10—H10B109.5
N—C1—Na47.33 (6)H10C—C10—H10B109.5
C6—C1—Na138.68 (9)O1—C10—H10A109.5
C2—C1—Na87.30 (7)H10C—C10—H10A109.5
C3—C2—C1122.35 (13)H10B—C10—H10A109.5
C3—C2—H2A118.8C1—N—Nai122.70 (10)
C1—C2—H2A118.8C1—N—Na108.29 (8)
C2—C3—C4121.59 (14)Nai—N—Na86.78 (4)
C2—C3—H3A119.2C1—N—H1107.6 (10)
C4—C3—H3A119.2Nai—N—H1113.5 (10)
C3—C4—C5117.78 (15)Na—N—H1116.9 (9)
C3—C4—H4A121.1C9—O1—C10111.21 (13)
C5—C4—H4A121.1C9—O1—Naii125.19 (8)
C6—C5—C4121.41 (14)C10—O1—Naii103.87 (10)
C6—C5—H5A119.3C9—O1—Na102.22 (9)
C4—C5—H5A119.3C10—O1—Na116.31 (8)
C5—C6—C1122.46 (13)Naii—O1—Na98.06 (4)
C5—C6—H6A118.8C7—O2—C8112.21 (12)
C1—C6—H6A118.8C7—O2—Na124.81 (11)
O2—C7—H7C109.5C8—O2—Na119.72 (10)
O2—C7—H7B109.5Ni—Na—N93.22 (4)
H7C—C7—H7B109.5Ni—Na—O289.99 (4)
O2—C7—H7A109.5N—Na—O2147.82 (5)
H7C—C7—H7A109.5Ni—Na—O1ii111.25 (5)
H7B—C7—H7A109.5N—Na—O1ii114.40 (4)
O2—C8—C9108.92 (11)O2—Na—O1ii93.98 (4)
O2—C8—H8B109.9Ni—Na—O1154.19 (4)
C9—C8—H8B109.9N—Na—O1101.45 (4)
O2—C8—H8A109.9O2—Na—O166.39 (4)
C9—C8—H8A109.9O1ii—Na—O181.94 (4)
H8B—C8—H8A108.3Ni—Na—C1106.16 (4)
O1—C9—C8109.89 (13)N—Na—C124.37 (4)
O1—C9—H9B109.7O2—Na—C1125.28 (4)
C8—C9—H9B109.7O1ii—Na—C1124.92 (4)
O1—C9—H9A109.7O1—Na—C181.39 (3)
C8—C9—H9A109.7
N—C1—C2—C3178.31 (12)C8—O2—Na—O1ii80.20 (11)
C6—C1—C2—C31.05 (17)C7—O2—Na—O1157.16 (14)
Na—C1—C2—C3142.48 (12)C8—O2—Na—O10.80 (11)
C1—C2—C3—C40.1 (2)C7—O2—Na—C1143.47 (13)
C2—C3—C4—C50.7 (2)C8—O2—Na—C158.57 (12)
C3—C4—C5—C60.1 (2)C9—O1—Na—Ni5.56 (14)
C4—C5—C6—C11.1 (2)C10—O1—Na—Ni126.90 (13)
N—C1—C6—C5177.64 (12)Naii—O1—Na—Ni123.21 (9)
C2—C1—C6—C51.67 (17)C9—O1—Na—N117.83 (9)
Na—C1—C6—C5114.27 (15)C10—O1—Na—N3.51 (12)
O2—C8—C9—O162.11 (17)Naii—O1—Na—N113.40 (5)
C6—C1—N—Nai135.23 (11)C9—O1—Na—O230.82 (8)
C2—C1—N—Nai45.50 (13)C10—O1—Na—O2152.15 (12)
Na—C1—N—Nai98.16 (10)Naii—O1—Na—O297.96 (4)
C6—C1—N—Na126.61 (11)C9—O1—Na—O1ii128.78 (9)
C2—C1—N—Na52.66 (13)C10—O1—Na—O1ii109.89 (12)
C8—C9—O1—C10176.45 (12)Naii—O1—Na—O1ii0.0
C8—C9—O1—Naii50.41 (17)C9—O1—Na—C1103.91 (9)
C8—C9—O1—Na58.76 (13)C10—O1—Na—C117.43 (11)
C9—C8—O2—C7170.51 (15)Naii—O1—Na—C1127.31 (4)
C9—C8—O2—Na28.93 (17)N—C1—Na—Ni60.14 (12)
C1—N—Na—Ni123.46 (11)C6—C1—Na—Ni158.78 (13)
Nai—N—Na—Ni0.0C2—C1—Na—Ni76.30 (8)
C1—N—Na—O228.35 (15)C6—C1—Na—N98.64 (18)
Nai—N—Na—O295.11 (9)C2—C1—Na—N136.44 (14)
C1—N—Na—O1ii121.44 (10)N—C1—Na—O2161.95 (10)
Nai—N—Na—O1ii115.10 (5)C6—C1—Na—O299.41 (14)
C1—N—Na—O135.19 (10)C2—C1—Na—O225.52 (9)
Nai—N—Na—O1158.65 (4)N—C1—Na—O1ii71.35 (11)
Nai—N—Na—C1123.46 (11)C6—C1—Na—O1ii27.29 (15)
C7—O2—Na—Ni33.55 (14)C2—C1—Na—O1ii152.21 (7)
C8—O2—Na—Ni168.50 (11)N—C1—Na—O1145.16 (10)
C7—O2—Na—N129.58 (14)C6—C1—Na—O146.52 (14)
C8—O2—Na—N72.46 (14)C2—C1—Na—O178.40 (7)
C7—O2—Na—O1ii77.75 (13)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Na(C6H6N)(C4H10O2)]
Mr205.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)7.0450 (7), 13.1609 (14), 12.5545 (12)
β (°) 101.153 (8)
V3)1142.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.24 × 0.24
Data collection
DiffractometerStoe IPDS2T
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5398, 2206, 1450
Rint0.050
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.078, 0.85
No. of reflections2206
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBarr, D., Clegg, W., Cowton, L., Horsburgh, L., Mackenzie, F. M. & Mulvey, R. E. (1995). Chem. Commun. pp. 891–892.  CrossRef Google Scholar
First citationBock, H., Gharagozloo-Hubmann, K. & Sievert, M. (2000). Z. Naturforsch. Teil B: Chem. Sci. 55, 1103–1113.  Google Scholar
First citationBock, H., Lehn, J.-M., Pauls, J., Holl, S. & Krenzel, V. (1999). Angew. Chem. Int. Ed. 38, 952–955.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRothenberger, A., Shafaei-Fallah, M. & Shi, W. (2007). Chem. Commun. pp. 1499–1501.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTirla, C., Mezailles, N., Ricard, L., Mathey, F. & Le Floch, P. (2002). Inorg. Chem. 41, 6032–6037.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds