organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Fluoro­benzyl­­idene)-4′-(4-fluoro­phen­yl)-1,1′-di­methyl­di­spiro­[piperidine-3,3′-pyrrolidine-2′,3′′-indoline]-4,2′′-dione

aDepartment of Physics, Thiagarajar College, Madurai 625 009, India, bDepartment of Physics, N.M.S.S. Vellaichamy Nadar College, Madurai 625 019, India, and cSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: mailtorvkk@yahoo.co.in

(Received 8 August 2012; accepted 29 August 2012; online 5 September 2012)

The asymmetric unit of the title compound, C30H27F2N3O2, contains two independent mol­ecules. The pyrrolidine five-membered ring assumes an envelope conformation (with the CH2 atom at the flap) in one mol­ecule and a twisted conformation in the other one. In both independent mol­ecules, the 4-piperidinone rings adopt a similar twisted chair conformation. In the crystal, the two independent mol­ecules form an R22(8) dimer through a pair of N—H⋯O hydrogen bonds; the R22(8) dimers are connected via weak C—H⋯O hydrogen bonds, leading to a chain extending along the c axis.

Related literature

For background to and potential applications of the title compound, see: Baroudi et al. (1996[Baroudi, M., Robert, J. & LuuDuc, C. (1996). J. Steroid Biochem. Mol. Biol. 57, 73-77.]); Dimmock et al. (2001[Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santhos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.]); Hansch & Leo (1979[Hansch, C. & Leo, A. J. (1979). Substituent Constants for Correlation Analysis in Chemistry and Biology, p. 49. New York: John Wiley & Sons.]); Hilton et al. (2000[Hilton, S. T., Ho, T. C. T., Pljevaljcic, G. & Jones, K. (2000). Org. Lett. 2, 2639-2641.]); Mobio et al. (1989[Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421-427.]); Mogilaiah & Rao (1998[Mogilaiah, K. & Rao, R. B. (1998). Indian J. Chem. 37, 139-144.]); Perumal et al. (2001[Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.]); Sundberg (1996[Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.]); Taft (1956[Taft, R. W. (1956). Steric Effects in Organic Chemistry, edited by M. S. Newman, p. 591. New York: John Wiley & Sons.]); Watson et al. (2001[Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265-295.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations based on puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C30H27F2N3O2

  • Mr = 499.55

  • Monoclinic, C c

  • a = 27.1839 (15) Å

  • b = 10.2809 (5) Å

  • c = 18.7045 (11) Å

  • β = 107.92 (1)°

  • V = 4973.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 300 K

  • 0.30 × 0.17 × 0.10 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.98, Tmax = 0.99

  • 32062 measured reflections

  • 7610 independent reflections

  • 5922 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.100

  • S = 1.04

  • 7610 reflections

  • 671 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯O1B 0.86 2.11 2.959 (2) 169
N2B—H2B⋯O1A 0.86 2.14 2.984 (2) 169
C27B—H27B⋯O2Bi 0.93 2.49 3.314 (3) 147
Symmetry code: (i) [x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound may be regarded as a 'heterosystem' comprising of three distinct classes of heterocycles viz. oxindole, piperidine and pyrrolo ring systems each of which exhibits unique pharmacological properties. Compounds with an indole framework are reported to be promising pharmacophores (Hilton et al., 2000) in addition to their antimicrobial and antitumor activities (Sundberg, 1996). Derivatives of 2,3-dihydro-2,3-dioxindole were reported as antibacterial (Mogilaiah & Rao, 1998), antifungal & antiviral (Hansch & Leo, 1979), antioxidant & cytotoxic agents (Taft, 1956). Piperidin-4-ones are reported to possess analgesic, anti-inflammatory, anti-cancer, anti-microbial activities and herbicidal properties (Mobio et al., 1989; Dimmock et al., 2001; Perumal et al., 2001) and act as potential inhibitors of human placental aromatase in vitro (Baroudi et al., 1996). Similarly, the pyrrolidine compounds have been reported to be potential inhibitors of diabetes, cancer and infection causing pathogens (Watson et al., 2001). The present structural characterization using single-crystal X-ray intensity data was carried out with a view to understand drug design mechanisms and explore the possibility of discovery of a 'unidrug' with 'multiactivity' properties.

The title compound, C33H27N3O2F2 (I), crystallizes in the space group Cc with two molecules in the asymmetric unit. The two crystallographically independent molecules in the asymmetric unit differ significantly in their conformation as shown in the overlay diagram (Fig.2). Compound (I) is a di-spiro ring compound in which the spiro junction links the methyl piperidinone, the oxindole and methyl pyrrolidine rings. The conformation of the 5-membered methyl substituted pyrrolidine ring (N1—C2—C3—C4—C5) is envelope on C5A in molecule A and a twisted envelop about C5B and N1B in molecule B (Cremer & Pople, 1975). The corresponding puckering parameters of the pyrrolidine ring for molecules A and B are Q = 0.435 (2) Å, φ = 152.3 (3)° and Q = 0.411 (3) Å, φ = 338.3 (4)°, respectively. The piperidinone ring (N3—C13—C3—C16—C15—C14) adopts a slightly twisted chair conformation in both molecules with the puckering parameters of Q = 0.541 (2) Å, θ = 27.8 (2) ° and φ = 42.2 (5) ° in molecule A, Q = 0.537 (2) Å, θ = 33.9 (2)° and φ= 47.2 (5) ° in molecule B, respectively. The twist of the 4-fluorophenyl with respect to the spiro junction denoted by the torsion C3—C4—C25—C30 differs by about 10° in molecules A and B and that of the 4-fluorobenzylidene by about 20°.

The two crystallographically independent molecules in the asymmetric unit form an asymmetric R22(8) (Bernstein et al., 1995) dimer through strong N—H···O hydrogen bonds (N2A—H2A···O1B and N2B—H2B···O1A ) in which the N and carbonyl O1 of the pyrrolidine participates as donor and acceptor, respectively (Table1). The carbonyl O2 of molecule B participates in a C—H···O hydrogen bond [C27B—H27B···O2B (x, -y, z + 1/2)] which connects theR22(8) dimers along the c-axis (Fig.3). These chains together with the C-centering of the lattice leads to packing of molecules as shown in Fig.4. Also, a potential solvent accessible void of volume 72.4Å3 which constitutes about 1.5% of the total unit cell volume is present.

Related literature top

For background to and potential applications of the title compound, see: Baroudi et al. (1996); Dimmock et al. (2001); Hansch & Leo (1979); Hilton et al. (2000); Mobio et al. (1989); Mogilaiah & Rao (1998); Perumal et al. (2001); Sundberg (1996); Taft (1956); Watson et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations based on puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 1-methyl-3,5-bis[(E)-(4-fluorophenyl)methylidene]tetrahydro-\4(1H)-pyridinone (1 mmol), isatin (1 mmol) and sarcosine were dissolved in methanol (10 mL) and refluxed for 30 min. After completion of the reaction as evident from TLC, the mixture was poured into water (50 mL). The precipitated solid was filtered, washed with water and recrystallized from ethyl acetate to obtain pure 5-(4-fluorobenzylidene)-4'-(4-fluorophenyl)-1,1'-dimethyldispiro[piperidine-3,3'-pyrrolidine-2',3''-indoline]-4,2''-dione

Refinement top

H atoms bonded to N were located in a difference map and refined isotropically. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

The title compound may be regarded as a 'heterosystem' comprising of three distinct classes of heterocycles viz. oxindole, piperidine and pyrrolo ring systems each of which exhibits unique pharmacological properties. Compounds with an indole framework are reported to be promising pharmacophores (Hilton et al., 2000) in addition to their antimicrobial and antitumor activities (Sundberg, 1996). Derivatives of 2,3-dihydro-2,3-dioxindole were reported as antibacterial (Mogilaiah & Rao, 1998), antifungal & antiviral (Hansch & Leo, 1979), antioxidant & cytotoxic agents (Taft, 1956). Piperidin-4-ones are reported to possess analgesic, anti-inflammatory, anti-cancer, anti-microbial activities and herbicidal properties (Mobio et al., 1989; Dimmock et al., 2001; Perumal et al., 2001) and act as potential inhibitors of human placental aromatase in vitro (Baroudi et al., 1996). Similarly, the pyrrolidine compounds have been reported to be potential inhibitors of diabetes, cancer and infection causing pathogens (Watson et al., 2001). The present structural characterization using single-crystal X-ray intensity data was carried out with a view to understand drug design mechanisms and explore the possibility of discovery of a 'unidrug' with 'multiactivity' properties.

The title compound, C33H27N3O2F2 (I), crystallizes in the space group Cc with two molecules in the asymmetric unit. The two crystallographically independent molecules in the asymmetric unit differ significantly in their conformation as shown in the overlay diagram (Fig.2). Compound (I) is a di-spiro ring compound in which the spiro junction links the methyl piperidinone, the oxindole and methyl pyrrolidine rings. The conformation of the 5-membered methyl substituted pyrrolidine ring (N1—C2—C3—C4—C5) is envelope on C5A in molecule A and a twisted envelop about C5B and N1B in molecule B (Cremer & Pople, 1975). The corresponding puckering parameters of the pyrrolidine ring for molecules A and B are Q = 0.435 (2) Å, φ = 152.3 (3)° and Q = 0.411 (3) Å, φ = 338.3 (4)°, respectively. The piperidinone ring (N3—C13—C3—C16—C15—C14) adopts a slightly twisted chair conformation in both molecules with the puckering parameters of Q = 0.541 (2) Å, θ = 27.8 (2) ° and φ = 42.2 (5) ° in molecule A, Q = 0.537 (2) Å, θ = 33.9 (2)° and φ= 47.2 (5) ° in molecule B, respectively. The twist of the 4-fluorophenyl with respect to the spiro junction denoted by the torsion C3—C4—C25—C30 differs by about 10° in molecules A and B and that of the 4-fluorobenzylidene by about 20°.

The two crystallographically independent molecules in the asymmetric unit form an asymmetric R22(8) (Bernstein et al., 1995) dimer through strong N—H···O hydrogen bonds (N2A—H2A···O1B and N2B—H2B···O1A ) in which the N and carbonyl O1 of the pyrrolidine participates as donor and acceptor, respectively (Table1). The carbonyl O2 of molecule B participates in a C—H···O hydrogen bond [C27B—H27B···O2B (x, -y, z + 1/2)] which connects theR22(8) dimers along the c-axis (Fig.3). These chains together with the C-centering of the lattice leads to packing of molecules as shown in Fig.4. Also, a potential solvent accessible void of volume 72.4Å3 which constitutes about 1.5% of the total unit cell volume is present.

For background to and potential applications of the title compound, see: Baroudi et al. (1996); Dimmock et al. (2001); Hansch & Leo (1979); Hilton et al. (2000); Mobio et al. (1989); Mogilaiah & Rao (1998); Perumal et al. (2001); Sundberg (1996); Taft (1956); Watson et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations based on puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Overlay diagram of the two molecules A and B in the asymmetric unit showing differences in their conformation.
[Figure 3] Fig. 3. R22(8) dimers connected through C—H···O hydrogen bond leading to a chain along the c-axis. Non-participating rings, methyl groups and F atoms are omitted for clarity.
[Figure 4] Fig. 4. The packing of (I), viewed down the c axis. Non-participating rings, methyl groups and F atoms are omitted for clarity.
5-(4-Fluorobenzylidene)-4'-(4-fluorophenyl)-1,1'- dimethyldispiro[piperidine-3,3'-pyrrolidine-2',3''-indoline]-4,2''-dione top
Crystal data top
C30H27F2N3O2F(000) = 2096
Mr = 499.55Dx = 1.334 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5446 reflections
a = 27.1839 (15) Åθ = 2–30°
b = 10.2809 (5) ŵ = 0.10 mm1
c = 18.7045 (11) ÅT = 300 K
β = 107.92 (1)°Needle, yellow
V = 4973.9 (5) Å30.30 × 0.17 × 0.10 mm
Z = 8
Data collection top
Bruker Kappa APEXII
diffractometer
7610 independent reflections
Radiation source: fine-focus sealed tube5922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and φ scanθmax = 30.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 3738
Tmin = 0.98, Tmax = 0.99k = 1414
32062 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.6706P]
where P = (Fo2 + 2Fc2)/3
7610 reflections(Δ/σ)max < 0.001
671 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.17 e Å3
Crystal data top
C30H27F2N3O2V = 4973.9 (5) Å3
Mr = 499.55Z = 8
Monoclinic, CcMo Kα radiation
a = 27.1839 (15) ŵ = 0.10 mm1
b = 10.2809 (5) ÅT = 300 K
c = 18.7045 (11) Å0.30 × 0.17 × 0.10 mm
β = 107.92 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
7610 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5922 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.024
32062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
7610 reflectionsΔρmin = 0.17 e Å3
671 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1A0.19215 (9)0.56542 (17)0.68191 (10)0.0879 (6)
F2A0.09339 (8)0.0793 (2)0.00530 (12)0.0990 (6)
O1A0.17862 (6)0.11493 (15)0.28433 (8)0.0446 (3)
O2A0.01866 (6)0.00921 (17)0.39904 (9)0.0527 (4)
N1A0.10157 (7)0.26369 (15)0.34659 (10)0.0414 (4)
N2A0.21349 (6)0.09677 (17)0.41157 (9)0.0412 (4)
H2A0.24510.08400.41310.049*
N3A0.13347 (6)0.14582 (16)0.32927 (9)0.0384 (3)
C1A0.13876 (10)0.3696 (2)0.36108 (14)0.0547 (5)
H87A0.15820.37100.41350.082*
H88A0.16190.35710.33190.082*
H89A0.12080.45070.34740.082*
C2A0.12304 (7)0.13338 (17)0.36896 (10)0.0340 (3)
C3A0.07630 (7)0.03987 (17)0.32532 (10)0.0335 (3)
C4A0.03564 (7)0.13532 (19)0.27477 (11)0.0389 (4)
H4A0.01260.16090.30360.047*
C5A0.06726 (8)0.2543 (2)0.26972 (12)0.0433 (4)
H91A0.04570.33100.25550.052*
H92A0.08650.24140.23430.052*
C6A0.17391 (7)0.11003 (18)0.34750 (11)0.0367 (4)
C7A0.19686 (7)0.10634 (18)0.47541 (11)0.0379 (4)
C8A0.22660 (9)0.1054 (2)0.54990 (13)0.0498 (5)
H8A0.26230.09500.56380.060*
C9A0.20116 (11)0.1208 (2)0.60309 (13)0.0561 (6)
H9A0.22000.11790.65380.067*
C10A0.14876 (11)0.1400 (2)0.58260 (13)0.0527 (5)
H10A0.13270.15030.61960.063*
C11A0.11948 (9)0.1445 (2)0.50774 (12)0.0439 (4)
H11A0.08410.16020.49400.053*
C12A0.14382 (7)0.12508 (17)0.45357 (11)0.0359 (4)
C13A0.09296 (7)0.06559 (18)0.27962 (10)0.0359 (4)
H13A0.10570.02530.24180.043*
H13B0.06350.11950.25420.043*
C14A0.11215 (9)0.22787 (19)0.37561 (11)0.0424 (4)
H14A0.08820.28950.34390.051*
H14B0.13990.27680.41030.051*
C15A0.08455 (7)0.14907 (18)0.41932 (11)0.0374 (4)
C16A0.05583 (7)0.03020 (18)0.38291 (11)0.0373 (4)
C17A0.15762 (10)0.2274 (3)0.28577 (14)0.0547 (6)
H17A0.18130.28660.31880.082*
H17B0.13150.27570.24920.082*
H17C0.17600.17350.26070.082*
C18A0.08585 (8)0.17374 (19)0.48987 (12)0.0415 (4)
H18A0.06750.11650.51050.050*
C19A0.11260 (8)0.27963 (19)0.53886 (11)0.0412 (4)
C20A0.11264 (10)0.4074 (2)0.51427 (13)0.0541 (5)
H20A0.09480.42810.46460.065*
C21A0.13879 (13)0.5039 (2)0.56249 (16)0.0638 (7)
H21A0.13840.58930.54580.077*
C22A0.16499 (11)0.4720 (2)0.63464 (15)0.0592 (6)
C23A0.16558 (10)0.3486 (2)0.66213 (14)0.0548 (5)
H23A0.18370.32950.71190.066*
C24A0.13846 (9)0.2529 (2)0.61406 (12)0.0463 (5)
H24A0.13750.16910.63230.056*
C25A0.00183 (7)0.0801 (2)0.20117 (12)0.0429 (4)
C26A0.00969 (10)0.1043 (3)0.13277 (14)0.0629 (7)
H26A0.03700.15750.13100.075*
C27A0.02242 (12)0.0506 (4)0.06644 (17)0.0778 (9)
H27A0.01680.06740.02070.093*
C28A0.06194 (10)0.0267 (3)0.06989 (17)0.0659 (7)
C29A0.07170 (10)0.0522 (3)0.13582 (18)0.0666 (7)
H29A0.09920.10530.13690.080*
C30A0.03971 (9)0.0029 (3)0.20095 (14)0.0565 (6)
H30A0.04640.01260.24610.068*
F1B0.23620 (8)0.5490 (2)0.06501 (14)0.1029 (7)
F2B0.52298 (9)0.1231 (3)0.69694 (10)0.1016 (7)
O1B0.31860 (6)0.07362 (18)0.39742 (9)0.0531 (4)
O2B0.45137 (6)0.10897 (18)0.24933 (10)0.0561 (4)
N1B0.40951 (8)0.1761 (2)0.36301 (11)0.0538 (5)
N2B0.28524 (7)0.10658 (19)0.27116 (10)0.0459 (4)
H2B0.25320.11270.26860.055*
N3B0.33289 (7)0.1840 (2)0.33054 (11)0.0514 (4)
C1B0.39641 (13)0.3102 (3)0.34123 (18)0.0742 (8)
H87B0.41930.36710.37700.111*
H88B0.39990.32530.29240.111*
H89B0.36140.32690.33990.111*
C2B0.37587 (8)0.0769 (2)0.31609 (12)0.0435 (4)
C3B0.40885 (8)0.0528 (2)0.34003 (12)0.0446 (4)
C4B0.46372 (8)0.0044 (3)0.38855 (13)0.0554 (6)
H4B0.48950.04590.36910.066*
C5B0.46256 (9)0.1388 (3)0.37037 (16)0.0633 (7)
H91B0.47050.15360.32390.076*
H92B0.48690.18680.41050.076*
C6B0.32370 (8)0.0802 (2)0.33523 (12)0.0428 (4)
C7B0.30374 (8)0.12272 (19)0.20954 (12)0.0431 (4)
C8B0.27583 (10)0.1550 (2)0.13696 (14)0.0532 (5)
H8B0.24030.16780.12310.064*
C9B0.30287 (11)0.1676 (3)0.08526 (14)0.0606 (6)
H9B0.28500.18840.03570.073*
C10B0.35529 (11)0.1499 (2)0.10606 (14)0.0578 (6)
H10B0.37240.15730.07020.069*
C11B0.38315 (10)0.1212 (2)0.17991 (14)0.0516 (5)
H11B0.41890.11260.19410.062*
C12B0.35699 (8)0.1056 (2)0.23217 (12)0.0425 (4)
C13B0.38366 (8)0.1486 (2)0.38058 (13)0.0499 (5)
H13C0.38030.10900.42590.060*
H13D0.40500.22570.39470.060*
C14B0.33674 (9)0.2680 (2)0.27046 (14)0.0543 (5)
H14C0.35010.35190.29130.065*
H14D0.30250.28170.23550.065*
C15B0.37126 (8)0.2129 (2)0.22862 (13)0.0476 (5)
C16B0.41365 (8)0.1241 (2)0.26963 (12)0.0448 (4)
C17B0.30194 (11)0.2453 (4)0.37246 (17)0.0756 (9)
H17D0.29590.18410.40760.113*
H17E0.26950.27290.33820.113*
H17F0.32010.31940.39920.113*
C18B0.36800 (9)0.2394 (2)0.15730 (14)0.0513 (5)
H18B0.39240.19700.14020.062*
C19B0.33263 (9)0.3235 (2)0.10158 (14)0.0542 (5)
C20B0.30487 (12)0.4260 (3)0.11879 (19)0.0685 (7)
H20B0.30830.44430.16880.082*
C21B0.27218 (12)0.5015 (3)0.0624 (2)0.0763 (8)
H21B0.25330.56920.07410.092*
C22B0.26832 (12)0.4744 (3)0.0100 (2)0.0744 (8)
C23B0.29484 (13)0.3763 (3)0.02990 (18)0.0757 (8)
H23B0.29110.35990.08020.091*
C24B0.32757 (11)0.3014 (3)0.02611 (16)0.0633 (6)
H24B0.34650.23510.01320.076*
C25B0.47780 (8)0.0347 (3)0.47180 (13)0.0541 (5)
C26B0.46798 (10)0.0497 (3)0.52376 (15)0.0590 (6)
H26B0.45060.12730.50730.071*
C27B0.48357 (11)0.0204 (3)0.59932 (15)0.0667 (7)
H27B0.47750.07820.63390.080*
C28B0.50786 (10)0.0944 (4)0.62228 (15)0.0691 (8)
C29B0.51688 (12)0.1823 (4)0.57389 (17)0.0787 (9)
H29B0.53270.26150.59100.094*
C30B0.50187 (11)0.1510 (3)0.49813 (16)0.0718 (8)
H30B0.50820.20990.46420.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.1272 (16)0.0666 (10)0.0707 (11)0.0240 (10)0.0319 (11)0.0296 (8)
F2A0.0756 (12)0.1189 (16)0.0805 (13)0.0201 (11)0.0081 (10)0.0300 (11)
O1A0.0422 (7)0.0589 (8)0.0386 (8)0.0014 (6)0.0211 (6)0.0053 (6)
O2A0.0449 (8)0.0683 (10)0.0548 (9)0.0129 (7)0.0296 (7)0.0121 (7)
N1A0.0444 (8)0.0374 (8)0.0406 (9)0.0054 (6)0.0102 (7)0.0013 (6)
N2A0.0312 (8)0.0543 (9)0.0401 (9)0.0006 (6)0.0136 (7)0.0040 (7)
N3A0.0374 (8)0.0460 (8)0.0335 (8)0.0081 (6)0.0135 (6)0.0014 (6)
C1A0.0669 (15)0.0407 (10)0.0546 (13)0.0054 (10)0.0159 (11)0.0027 (9)
C2A0.0325 (8)0.0389 (8)0.0323 (9)0.0034 (6)0.0124 (7)0.0007 (7)
C3A0.0298 (8)0.0402 (8)0.0312 (8)0.0036 (6)0.0105 (7)0.0027 (7)
C4A0.0315 (8)0.0473 (9)0.0387 (10)0.0080 (7)0.0120 (7)0.0065 (8)
C5A0.0426 (10)0.0434 (9)0.0432 (11)0.0067 (8)0.0121 (8)0.0089 (8)
C6A0.0355 (9)0.0388 (9)0.0393 (10)0.0003 (7)0.0164 (8)0.0023 (7)
C7A0.0377 (9)0.0387 (9)0.0380 (10)0.0005 (7)0.0126 (8)0.0018 (7)
C8A0.0457 (11)0.0538 (12)0.0426 (11)0.0024 (9)0.0028 (9)0.0051 (9)
C9A0.0715 (16)0.0566 (13)0.0329 (11)0.0015 (11)0.0053 (10)0.0009 (9)
C10A0.0726 (15)0.0531 (12)0.0378 (11)0.0006 (10)0.0247 (11)0.0046 (9)
C11A0.0475 (11)0.0478 (10)0.0400 (11)0.0037 (8)0.0188 (9)0.0081 (8)
C12A0.0401 (9)0.0358 (8)0.0336 (9)0.0010 (7)0.0140 (7)0.0009 (7)
C13A0.0353 (9)0.0435 (9)0.0308 (9)0.0033 (7)0.0129 (7)0.0009 (7)
C14A0.0505 (11)0.0417 (9)0.0374 (10)0.0054 (8)0.0171 (8)0.0010 (8)
C15A0.0369 (9)0.0384 (8)0.0393 (10)0.0032 (7)0.0152 (8)0.0001 (7)
C16A0.0351 (9)0.0439 (9)0.0351 (10)0.0013 (7)0.0141 (7)0.0013 (7)
C17A0.0561 (13)0.0660 (14)0.0489 (12)0.0229 (11)0.0261 (10)0.0058 (10)
C18A0.0440 (10)0.0421 (9)0.0433 (11)0.0021 (8)0.0208 (9)0.0002 (8)
C19A0.0488 (11)0.0415 (9)0.0389 (10)0.0039 (8)0.0216 (9)0.0034 (7)
C20A0.0722 (15)0.0448 (10)0.0438 (12)0.0121 (10)0.0158 (11)0.0027 (9)
C21A0.0954 (19)0.0377 (10)0.0602 (15)0.0047 (11)0.0268 (14)0.0018 (10)
C22A0.0792 (17)0.0523 (12)0.0535 (14)0.0053 (11)0.0315 (13)0.0172 (10)
C23A0.0677 (15)0.0590 (13)0.0392 (11)0.0005 (11)0.0187 (10)0.0032 (9)
C24A0.0569 (12)0.0456 (10)0.0405 (11)0.0001 (9)0.0208 (9)0.0034 (8)
C25A0.0313 (9)0.0516 (11)0.0443 (11)0.0062 (7)0.0096 (8)0.0083 (8)
C26A0.0464 (12)0.097 (2)0.0432 (13)0.0168 (12)0.0111 (10)0.0057 (12)
C27A0.0623 (16)0.122 (3)0.0453 (14)0.0205 (16)0.0115 (12)0.0038 (15)
C28A0.0465 (13)0.0729 (16)0.0645 (17)0.0024 (11)0.0033 (12)0.0090 (13)
C29A0.0453 (12)0.0672 (15)0.081 (2)0.0126 (11)0.0104 (12)0.0005 (13)
C30A0.0474 (12)0.0651 (14)0.0567 (14)0.0083 (10)0.0158 (11)0.0101 (11)
F1B0.0797 (12)0.0951 (14)0.1190 (16)0.0052 (10)0.0085 (11)0.0524 (12)
F2B0.0958 (14)0.154 (2)0.0515 (10)0.0293 (14)0.0179 (9)0.0204 (11)
O1B0.0450 (8)0.0760 (10)0.0461 (9)0.0011 (7)0.0255 (7)0.0027 (7)
O2B0.0418 (8)0.0777 (11)0.0564 (10)0.0021 (7)0.0262 (7)0.0008 (8)
N1B0.0469 (10)0.0654 (12)0.0517 (11)0.0139 (8)0.0192 (8)0.0039 (9)
N2B0.0351 (8)0.0592 (10)0.0487 (10)0.0029 (7)0.0207 (8)0.0007 (8)
N3B0.0393 (9)0.0671 (11)0.0513 (11)0.0027 (8)0.0189 (8)0.0114 (9)
C1B0.088 (2)0.0637 (15)0.0734 (19)0.0211 (14)0.0277 (16)0.0047 (14)
C2B0.0350 (9)0.0576 (11)0.0429 (11)0.0022 (8)0.0196 (8)0.0009 (9)
C3B0.0322 (9)0.0624 (12)0.0419 (11)0.0017 (8)0.0152 (8)0.0047 (9)
C4B0.0304 (10)0.0909 (18)0.0472 (12)0.0035 (10)0.0153 (9)0.0034 (11)
C5B0.0413 (12)0.0947 (19)0.0560 (14)0.0187 (12)0.0180 (11)0.0002 (13)
C6B0.0363 (9)0.0502 (10)0.0470 (12)0.0024 (8)0.0206 (9)0.0054 (8)
C7B0.0470 (11)0.0414 (9)0.0445 (11)0.0002 (8)0.0195 (9)0.0020 (8)
C8B0.0513 (12)0.0554 (12)0.0512 (13)0.0040 (9)0.0132 (10)0.0022 (10)
C9B0.0790 (17)0.0580 (13)0.0456 (13)0.0062 (12)0.0204 (12)0.0076 (10)
C10B0.0793 (17)0.0570 (13)0.0484 (13)0.0016 (12)0.0364 (12)0.0053 (10)
C11B0.0539 (13)0.0558 (12)0.0536 (13)0.0008 (9)0.0289 (11)0.0058 (10)
C12B0.0422 (10)0.0462 (10)0.0443 (11)0.0007 (8)0.0208 (9)0.0005 (8)
C13B0.0399 (10)0.0671 (13)0.0448 (12)0.0028 (9)0.0162 (9)0.0127 (10)
C14B0.0465 (11)0.0587 (13)0.0576 (14)0.0050 (9)0.0160 (10)0.0095 (11)
C15B0.0440 (11)0.0489 (11)0.0513 (12)0.0069 (8)0.0166 (9)0.0082 (9)
C16B0.0386 (10)0.0538 (11)0.0445 (11)0.0085 (8)0.0165 (9)0.0077 (9)
C17B0.0514 (14)0.111 (2)0.0695 (18)0.0140 (14)0.0254 (13)0.0220 (16)
C18B0.0488 (11)0.0533 (12)0.0536 (13)0.0041 (9)0.0183 (10)0.0054 (10)
C19B0.0521 (13)0.0520 (12)0.0576 (14)0.0099 (10)0.0156 (11)0.0006 (10)
C20B0.0771 (18)0.0548 (13)0.0748 (18)0.0011 (12)0.0251 (15)0.0019 (12)
C21B0.0718 (18)0.0550 (14)0.104 (3)0.0025 (13)0.0289 (17)0.0157 (15)
C22B0.0617 (16)0.0692 (17)0.086 (2)0.0140 (13)0.0142 (15)0.0271 (15)
C23B0.0773 (19)0.085 (2)0.0599 (17)0.0169 (16)0.0137 (15)0.0127 (14)
C24B0.0668 (16)0.0644 (14)0.0606 (15)0.0076 (12)0.0227 (13)0.0014 (12)
C25B0.0308 (9)0.0870 (16)0.0443 (12)0.0026 (10)0.0113 (9)0.0033 (11)
C26B0.0478 (13)0.0768 (16)0.0530 (14)0.0040 (11)0.0164 (11)0.0012 (11)
C27B0.0557 (14)0.097 (2)0.0491 (14)0.0024 (14)0.0187 (11)0.0100 (13)
C28B0.0470 (13)0.112 (2)0.0450 (13)0.0094 (14)0.0096 (11)0.0077 (14)
C29B0.0630 (17)0.102 (2)0.0640 (17)0.0295 (15)0.0085 (14)0.0116 (16)
C30B0.0529 (14)0.103 (2)0.0547 (15)0.0271 (14)0.0100 (12)0.0069 (14)
Geometric parameters (Å, º) top
F1A—C22A1.360 (3)F1B—C22B1.363 (3)
F2A—C28A1.359 (3)F2B—C28B1.361 (3)
O1A—C6A1.228 (2)O1B—C6B1.215 (3)
O2A—C16A1.210 (2)O2B—C16B1.208 (3)
N1A—C1A1.454 (3)N1B—C1B1.451 (4)
N1A—C5A1.457 (3)N1B—C5B1.457 (3)
N1A—C2A1.470 (2)N1B—C2B1.468 (3)
N2A—C6A1.349 (3)N2B—C6B1.353 (3)
N2A—C7A1.404 (3)N2B—C7B1.402 (3)
N2A—H2A0.8599N2B—H2B0.8601
N3A—C14A1.452 (3)N3B—C14B1.446 (3)
N3A—C17A1.458 (3)N3B—C13B1.455 (3)
N3A—C13A1.458 (2)N3B—C17B1.458 (3)
C1A—H87A0.9600C1B—H87B0.9600
C1A—H88A0.9600C1B—H88B0.9600
C1A—H89A0.9600C1B—H89B0.9600
C2A—C12A1.510 (3)C2B—C12B1.523 (3)
C2A—C6A1.572 (3)C2B—C6B1.566 (3)
C2A—C3A1.602 (3)C2B—C3B1.591 (3)
C3A—C13A1.533 (2)C3B—C13B1.528 (3)
C3A—C16A1.536 (3)C3B—C16B1.547 (3)
C3A—C4A1.561 (2)C3B—C4B1.569 (3)
C4A—C25A1.511 (3)C4B—C5B1.510 (4)
C4A—C5A1.515 (3)C4B—C25B1.517 (3)
C4A—H4A0.9800C4B—H4B0.9800
C5A—H91A0.9700C5B—H91B0.9700
C5A—H92A0.9700C5B—H92B0.9700
C7A—C8A1.379 (3)C7B—C8B1.377 (3)
C7A—C12A1.386 (3)C7B—C12B1.389 (3)
C8A—C9A1.384 (4)C8B—C9B1.389 (4)
C8A—H8A0.9300C8B—H8B0.9300
C9A—C10A1.371 (4)C9B—C10B1.369 (4)
C9A—H9A0.9300C9B—H9B0.9300
C10A—C11A1.382 (3)C10B—C11B1.388 (4)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.385 (3)C11B—C12B1.384 (3)
C11A—H11A0.9300C11B—H11B0.9300
C13A—H13A0.9700C13B—H13C0.9700
C13A—H13B0.9700C13B—H13D0.9700
C14A—C15A1.505 (3)C14B—C15B1.505 (3)
C14A—H14A0.9700C14B—H14C0.9700
C14A—H14B0.9700C14B—H14D0.9700
C15A—C18A1.333 (3)C15B—C18B1.337 (3)
C15A—C16A1.497 (3)C15B—C16B1.485 (3)
C17A—H17A0.9600C17B—H17D0.9600
C17A—H17B0.9600C17B—H17E0.9600
C17A—H17C0.9600C17B—H17F0.9600
C18A—C19A1.464 (3)C18B—C19B1.464 (4)
C18A—H18A0.9300C18B—H18B0.9300
C19A—C20A1.392 (3)C19B—C20B1.391 (4)
C19A—C24A1.393 (3)C19B—C24B1.394 (4)
C20A—C21A1.382 (4)C20B—C21B1.387 (4)
C20A—H20A0.9300C20B—H20B0.9300
C21A—C22A1.358 (4)C21B—C22B1.356 (5)
C21A—H21A0.9300C21B—H21B0.9300
C22A—C23A1.367 (4)C22B—C23B1.356 (5)
C23A—C24A1.382 (3)C23B—C24B1.382 (4)
C23A—H23A0.9300C23B—H23B0.9300
C24A—H24A0.9300C24B—H24B0.9300
C25A—C30A1.380 (3)C25B—C30B1.380 (4)
C25A—C26A1.383 (3)C25B—C26B1.388 (4)
C26A—C27A1.393 (4)C26B—C27B1.378 (4)
C26A—H26A0.9300C26B—H26B0.9300
C27A—C28A1.353 (4)C27B—C28B1.356 (5)
C27A—H27A0.9300C27B—H27B0.9300
C28A—C29A1.364 (4)C28B—C29B1.354 (5)
C29A—C30A1.382 (4)C29B—C30B1.387 (4)
C29A—H29A0.9300C29B—H29B0.9300
C30A—H30A0.9300C30B—H30B0.9300
C1A—N1A—C5A115.54 (17)C1B—N1B—C5B115.3 (2)
C1A—N1A—C2A115.94 (16)C1B—N1B—C2B116.0 (2)
C5A—N1A—C2A107.36 (15)C5B—N1B—C2B106.87 (19)
C6A—N2A—C7A111.77 (16)C6B—N2B—C7B112.13 (17)
C6A—N2A—H2A124.1C6B—N2B—H2B123.9
C7A—N2A—H2A124.1C7B—N2B—H2B124.0
C14A—N3A—C17A109.27 (17)C14B—N3B—C13B111.60 (18)
C14A—N3A—C13A110.30 (15)C14B—N3B—C17B110.6 (2)
C17A—N3A—C13A110.58 (15)C13B—N3B—C17B110.6 (2)
N1A—C1A—H87A109.5N1B—C1B—H87B109.5
N1A—C1A—H88A109.5N1B—C1B—H88B109.5
H87A—C1A—H88A109.5H87B—C1B—H88B109.5
N1A—C1A—H89A109.5N1B—C1B—H89B109.5
H87A—C1A—H89A109.5H87B—C1B—H89B109.5
H88A—C1A—H89A109.5H88B—C1B—H89B109.5
N1A—C2A—C12A109.73 (15)N1B—C2B—C12B115.60 (18)
N1A—C2A—C6A111.70 (15)N1B—C2B—C6B106.82 (17)
C12A—C2A—C6A100.61 (14)C12B—C2B—C6B100.93 (16)
N1A—C2A—C3A102.64 (14)N1B—C2B—C3B102.73 (17)
C12A—C2A—C3A118.84 (15)C12B—C2B—C3B115.74 (17)
C6A—C2A—C3A113.58 (14)C6B—C2B—C3B115.19 (16)
C13A—C3A—C16A107.00 (15)C13B—C3B—C16B106.55 (19)
C13A—C3A—C4A112.50 (15)C13B—C3B—C4B114.11 (18)
C16A—C3A—C4A112.21 (14)C16B—C3B—C4B109.15 (16)
C13A—C3A—C2A112.62 (14)C13B—C3B—C2B112.33 (16)
C16A—C3A—C2A109.02 (14)C16B—C3B—C2B110.19 (17)
C4A—C3A—C2A103.54 (14)C4B—C3B—C2B104.51 (18)
C25A—C4A—C5A116.37 (17)C5B—C4B—C25B114.3 (2)
C25A—C4A—C3A115.76 (16)C5B—C4B—C3B103.19 (19)
C5A—C4A—C3A103.65 (15)C25B—C4B—C3B115.05 (18)
C25A—C4A—H4A106.8C5B—C4B—H4B108.0
C5A—C4A—H4A106.8C25B—C4B—H4B108.0
C3A—C4A—H4A106.8C3B—C4B—H4B108.0
N1A—C5A—C4A101.25 (16)N1B—C5B—C4B103.27 (18)
N1A—C5A—H91A111.5N1B—C5B—H91B111.1
C4A—C5A—H91A111.5C4B—C5B—H91B111.1
N1A—C5A—H92A111.5N1B—C5B—H92B111.1
C4A—C5A—H92A111.5C4B—C5B—H92B111.1
H91A—C5A—H92A109.3H91B—C5B—H92B109.1
O1A—C6A—N2A124.62 (17)O1B—C6B—N2B125.06 (18)
O1A—C6A—C2A126.84 (17)O1B—C6B—C2B126.55 (19)
N2A—C6A—C2A108.21 (16)N2B—C6B—C2B108.02 (17)
C8A—C7A—C12A122.15 (19)C8B—C7B—C12B122.5 (2)
C8A—C7A—N2A128.06 (19)C8B—C7B—N2B127.7 (2)
C12A—C7A—N2A109.70 (17)C12B—C7B—N2B109.78 (18)
C7A—C8A—C9A117.3 (2)C7B—C8B—C9B117.4 (2)
C7A—C8A—H8A121.4C7B—C8B—H8B121.3
C9A—C8A—H8A121.4C9B—C8B—H8B121.3
C10A—C9A—C8A121.4 (2)C10B—C9B—C8B121.2 (2)
C10A—C9A—H9A119.3C10B—C9B—H9B119.4
C8A—C9A—H9A119.3C8B—C9B—H9B119.4
C9A—C10A—C11A120.9 (2)C9B—C10B—C11B120.9 (2)
C9A—C10A—H10A119.6C9B—C10B—H10B119.6
C11A—C10A—H10A119.6C11B—C10B—H10B119.6
C10A—C11A—C12A118.7 (2)C12B—C11B—C10B119.1 (2)
C10A—C11A—H11A120.6C12B—C11B—H11B120.5
C12A—C11A—H11A120.6C10B—C11B—H11B120.5
C11A—C12A—C7A119.50 (18)C11B—C12B—C7B118.9 (2)
C11A—C12A—C2A130.53 (18)C11B—C12B—C2B131.9 (2)
C7A—C12A—C2A109.67 (16)C7B—C12B—C2B109.14 (17)
N3A—C13A—C3A109.87 (15)N3B—C13B—C3B108.85 (17)
N3A—C13A—H13A109.7N3B—C13B—H13C109.9
C3A—C13A—H13A109.7C3B—C13B—H13C109.9
N3A—C13A—H13B109.7N3B—C13B—H13D109.9
C3A—C13A—H13B109.7C3B—C13B—H13D109.9
H13A—C13A—H13B108.2H13C—C13B—H13D108.3
N3A—C14A—C15A111.64 (16)N3B—C14B—C15B112.63 (19)
N3A—C14A—H14A109.3N3B—C14B—H14C109.1
C15A—C14A—H14A109.3C15B—C14B—H14C109.1
N3A—C14A—H14B109.3N3B—C14B—H14D109.1
C15A—C14A—H14B109.3C15B—C14B—H14D109.1
H14A—C14A—H14B108.0H14C—C14B—H14D107.8
C18A—C15A—C16A117.19 (17)C18B—C15B—C16B116.3 (2)
C18A—C15A—C14A124.70 (18)C18B—C15B—C14B125.5 (2)
C16A—C15A—C14A118.03 (16)C16B—C15B—C14B118.1 (2)
O2A—C16A—C15A121.25 (17)O2B—C16B—C15B121.0 (2)
O2A—C16A—C3A121.91 (17)O2B—C16B—C3B120.6 (2)
C15A—C16A—C3A116.83 (15)C15B—C16B—C3B118.40 (18)
N3A—C17A—H17A109.5N3B—C17B—H17D109.5
N3A—C17A—H17B109.5N3B—C17B—H17E109.5
H17A—C17A—H17B109.5H17D—C17B—H17E109.5
N3A—C17A—H17C109.5N3B—C17B—H17F109.5
H17A—C17A—H17C109.5H17D—C17B—H17F109.5
H17B—C17A—H17C109.5H17E—C17B—H17F109.5
C15A—C18A—C19A128.15 (19)C15B—C18B—C19B131.1 (2)
C15A—C18A—H18A115.9C15B—C18B—H18B114.4
C19A—C18A—H18A115.9C19B—C18B—H18B114.4
C20A—C19A—C24A117.9 (2)C20B—C19B—C24B117.8 (3)
C20A—C19A—C18A123.1 (2)C20B—C19B—C18B124.6 (2)
C24A—C19A—C18A119.00 (18)C24B—C19B—C18B117.6 (2)
C21A—C20A—C19A121.0 (2)C21B—C20B—C19B120.9 (3)
C21A—C20A—H20A119.5C21B—C20B—H20B119.5
C19A—C20A—H20A119.5C19B—C20B—H20B119.5
C22A—C21A—C20A118.8 (2)C22B—C21B—C20B118.6 (3)
C22A—C21A—H21A120.6C22B—C21B—H21B120.7
C20A—C21A—H21A120.6C20B—C21B—H21B120.7
C21A—C22A—F1A119.3 (2)C21B—C22B—C23B122.9 (3)
C21A—C22A—C23A122.7 (2)C21B—C22B—F1B118.3 (3)
F1A—C22A—C23A118.0 (2)C23B—C22B—F1B118.9 (3)
C22A—C23A—C24A118.2 (2)C22B—C23B—C24B118.6 (3)
C22A—C23A—H23A120.9C22B—C23B—H23B120.7
C24A—C23A—H23A120.9C24B—C23B—H23B120.7
C23A—C24A—C19A121.3 (2)C23B—C24B—C19B121.1 (3)
C23A—C24A—H24A119.4C23B—C24B—H24B119.4
C19A—C24A—H24A119.4C19B—C24B—H24B119.4
C30A—C25A—C26A117.4 (2)C30B—C25B—C26B117.6 (2)
C30A—C25A—C4A119.1 (2)C30B—C25B—C4B119.1 (2)
C26A—C25A—C4A123.46 (19)C26B—C25B—C4B123.3 (2)
C25A—C26A—C27A121.3 (2)C27B—C26B—C25B121.1 (3)
C25A—C26A—H26A119.3C27B—C26B—H26B119.4
C27A—C26A—H26A119.3C25B—C26B—H26B119.4
C28A—C27A—C26A118.7 (3)C28B—C27B—C26B118.8 (3)
C28A—C27A—H27A120.7C28B—C27B—H27B120.6
C26A—C27A—H27A120.7C26B—C27B—H27B120.6
C27A—C28A—F2A118.9 (3)C29B—C28B—C27B122.7 (3)
C27A—C28A—C29A122.3 (2)C29B—C28B—F2B118.8 (3)
F2A—C28A—C29A118.9 (3)C27B—C28B—F2B118.5 (3)
C28A—C29A—C30A118.3 (2)C28B—C29B—C30B118.1 (3)
C28A—C29A—H29A120.9C28B—C29B—H29B120.9
C30A—C29A—H29A120.9C30B—C29B—H29B120.9
C25A—C30A—C29A122.1 (2)C25B—C30B—C29B121.6 (3)
C25A—C30A—H30A119.0C25B—C30B—H30B119.2
C29A—C30A—H30A119.0C29B—C30B—H30B119.2
C1A—N1A—C2A—C12A68.1 (2)C1B—N1B—C2B—C12B37.9 (3)
C5A—N1A—C2A—C12A160.99 (16)C5B—N1B—C2B—C12B92.2 (2)
C1A—N1A—C2A—C6A42.5 (2)C1B—N1B—C2B—C6B73.4 (2)
C5A—N1A—C2A—C6A88.32 (18)C5B—N1B—C2B—C6B156.44 (19)
C1A—N1A—C2A—C3A164.59 (17)C1B—N1B—C2B—C3B165.0 (2)
C5A—N1A—C2A—C3A33.72 (18)C5B—N1B—C2B—C3B34.8 (2)
N1A—C2A—C3A—C13A128.56 (16)N1B—C2B—C3B—C13B113.50 (19)
C12A—C2A—C3A—C13A110.22 (18)C12B—C2B—C3B—C13B119.6 (2)
C6A—C2A—C3A—C13A7.8 (2)C6B—C2B—C3B—C13B2.2 (3)
N1A—C2A—C3A—C16A112.85 (15)N1B—C2B—C3B—C16B127.87 (17)
C12A—C2A—C3A—C16A8.4 (2)C12B—C2B—C3B—C16B1.0 (2)
C6A—C2A—C3A—C16A126.39 (16)C6B—C2B—C3B—C16B116.40 (19)
N1A—C2A—C3A—C4A6.77 (17)N1B—C2B—C3B—C4B10.7 (2)
C12A—C2A—C3A—C4A128.00 (16)C12B—C2B—C3B—C4B116.19 (19)
C6A—C2A—C3A—C4A113.99 (16)C6B—C2B—C3B—C4B126.46 (18)
C13A—C3A—C4A—C25A27.4 (2)C13B—C3B—C4B—C5B138.6 (2)
C16A—C3A—C4A—C25A93.34 (19)C16B—C3B—C4B—C5B102.4 (2)
C2A—C3A—C4A—C25A149.25 (16)C2B—C3B—C4B—C5B15.5 (2)
C13A—C3A—C4A—C5A101.28 (18)C13B—C3B—C4B—C25B13.3 (3)
C16A—C3A—C4A—C5A138.00 (16)C16B—C3B—C4B—C25B132.4 (2)
C2A—C3A—C4A—C5A20.59 (18)C2B—C3B—C4B—C25B109.8 (2)
C1A—N1A—C5A—C4A178.87 (17)C1B—N1B—C5B—C4B176.8 (2)
C2A—N1A—C5A—C4A47.77 (19)C2B—N1B—C5B—C4B46.3 (2)
C25A—C4A—C5A—N1A169.07 (16)C25B—C4B—C5B—N1B89.1 (2)
C3A—C4A—C5A—N1A40.78 (18)C3B—C4B—C5B—N1B36.6 (2)
C7A—N2A—C6A—O1A174.46 (18)C7B—N2B—C6B—O1B173.1 (2)
C7A—N2A—C6A—C2A0.7 (2)C7B—N2B—C6B—C2B0.3 (2)
N1A—C2A—C6A—O1A59.0 (2)N1B—C2B—C6B—O1B52.1 (3)
C12A—C2A—C6A—O1A175.34 (19)C12B—C2B—C6B—O1B173.3 (2)
C3A—C2A—C6A—O1A56.5 (2)C3B—C2B—C6B—O1B61.3 (3)
N1A—C2A—C6A—N2A114.63 (17)N1B—C2B—C6B—N2B121.12 (19)
C12A—C2A—C6A—N2A1.74 (19)C12B—C2B—C6B—N2B0.1 (2)
C3A—C2A—C6A—N2A129.85 (16)C3B—C2B—C6B—N2B125.51 (19)
C6A—N2A—C7A—C8A175.76 (19)C6B—N2B—C7B—C8B177.4 (2)
C6A—N2A—C7A—C12A0.8 (2)C6B—N2B—C7B—C12B0.6 (2)
C12A—C7A—C8A—C9A1.7 (3)C12B—C7B—C8B—C9B1.3 (3)
N2A—C7A—C8A—C9A177.8 (2)N2B—C7B—C8B—C9B179.0 (2)
C7A—C8A—C9A—C10A1.9 (3)C7B—C8B—C9B—C10B0.7 (4)
C8A—C9A—C10A—C11A0.2 (4)C8B—C9B—C10B—C11B1.2 (4)
C9A—C10A—C11A—C12A2.0 (3)C9B—C10B—C11B—C12B2.5 (4)
C10A—C11A—C12A—C7A2.2 (3)C10B—C11B—C12B—C7B1.8 (3)
C10A—C11A—C12A—C2A175.2 (2)C10B—C11B—C12B—C2B178.7 (2)
C8A—C7A—C12A—C11A0.4 (3)C8B—C7B—C12B—C11B0.1 (3)
N2A—C7A—C12A—C11A176.40 (17)N2B—C7B—C12B—C11B178.14 (19)
C8A—C7A—C12A—C2A174.80 (18)C8B—C7B—C12B—C2B177.4 (2)
N2A—C7A—C12A—C2A2.0 (2)N2B—C7B—C12B—C2B0.6 (2)
N1A—C2A—C12A—C11A58.0 (3)N1B—C2B—C12B—C11B62.7 (3)
C6A—C2A—C12A—C11A175.8 (2)C6B—C2B—C12B—C11B177.5 (2)
C3A—C2A—C12A—C11A59.6 (3)C3B—C2B—C12B—C11B57.4 (3)
N1A—C2A—C12A—C7A115.60 (17)N1B—C2B—C12B—C7B114.4 (2)
C6A—C2A—C12A—C7A2.23 (18)C6B—C2B—C12B—C7B0.4 (2)
C3A—C2A—C12A—C7A126.83 (17)C3B—C2B—C12B—C7B125.47 (18)
C14A—N3A—C13A—C3A71.46 (19)C14B—N3B—C13B—C3B72.1 (2)
C17A—N3A—C13A—C3A167.56 (17)C17B—N3B—C13B—C3B164.3 (2)
C16A—C3A—C13A—N3A60.29 (18)C16B—C3B—C13B—N3B60.5 (2)
C4A—C3A—C13A—N3A176.04 (15)C4B—C3B—C13B—N3B178.9 (2)
C2A—C3A—C13A—N3A59.48 (19)C2B—C3B—C13B—N3B60.2 (2)
C17A—N3A—C14A—C15A177.44 (18)C13B—N3B—C14B—C15B52.6 (3)
C13A—N3A—C14A—C15A55.7 (2)C17B—N3B—C14B—C15B176.2 (2)
N3A—C14A—C15A—C18A141.42 (19)N3B—C14B—C15B—C18B153.9 (2)
N3A—C14A—C15A—C16A35.1 (2)N3B—C14B—C15B—C16B27.8 (3)
C18A—C15A—C16A—O2A31.2 (3)C18B—C15B—C16B—O2B21.8 (3)
C14A—C15A—C16A—O2A152.0 (2)C14B—C15B—C16B—O2B156.7 (2)
C18A—C15A—C16A—C3A147.87 (18)C18B—C15B—C16B—C3B159.25 (19)
C14A—C15A—C16A—C3A28.9 (2)C14B—C15B—C16B—C3B22.3 (3)
C13A—C3A—C16A—O2A141.36 (19)C13B—C3B—C16B—O2B141.7 (2)
C4A—C3A—C16A—O2A17.5 (3)C4B—C3B—C16B—O2B18.0 (3)
C2A—C3A—C16A—O2A96.6 (2)C2B—C3B—C16B—O2B96.2 (2)
C13A—C3A—C16A—C15A39.5 (2)C13B—C3B—C16B—C15B37.3 (2)
C4A—C3A—C16A—C15A163.39 (16)C4B—C3B—C16B—C15B160.99 (19)
C2A—C3A—C16A—C15A82.52 (19)C2B—C3B—C16B—C15B84.8 (2)
C16A—C15A—C18A—C19A177.51 (19)C16B—C15B—C18B—C19B178.4 (2)
C14A—C15A—C18A—C19A1.0 (3)C14B—C15B—C18B—C19B0.1 (4)
C15A—C18A—C19A—C20A43.0 (3)C15B—C18B—C19B—C20B21.8 (4)
C15A—C18A—C19A—C24A138.4 (2)C15B—C18B—C19B—C24B160.1 (2)
C24A—C19A—C20A—C21A1.8 (4)C24B—C19B—C20B—C21B1.7 (4)
C18A—C19A—C20A—C21A179.5 (2)C18B—C19B—C20B—C21B179.8 (3)
C19A—C20A—C21A—C22A0.5 (4)C19B—C20B—C21B—C22B0.9 (4)
C20A—C21A—C22A—F1A178.0 (3)C20B—C21B—C22B—C23B0.3 (5)
C20A—C21A—C22A—C23A1.6 (4)C20B—C21B—C22B—F1B179.9 (3)
C21A—C22A—C23A—C24A0.3 (4)C21B—C22B—C23B—C24B0.5 (4)
F1A—C22A—C23A—C24A179.4 (2)F1B—C22B—C23B—C24B179.6 (2)
C22A—C23A—C24A—C19A2.2 (4)C22B—C23B—C24B—C19B1.4 (4)
C20A—C19A—C24A—C23A3.2 (3)C20B—C19B—C24B—C23B1.9 (4)
C18A—C19A—C24A—C23A178.1 (2)C18B—C19B—C24B—C23B179.8 (2)
C5A—C4A—C25A—C30A158.5 (2)C5B—C4B—C25B—C30B151.6 (2)
C3A—C4A—C25A—C30A79.4 (2)C3B—C4B—C25B—C30B89.2 (3)
C5A—C4A—C25A—C26A20.5 (3)C5B—C4B—C25B—C26B27.9 (3)
C3A—C4A—C25A—C26A101.7 (3)C3B—C4B—C25B—C26B91.3 (3)
C30A—C25A—C26A—C27A1.3 (4)C30B—C25B—C26B—C27B2.5 (4)
C4A—C25A—C26A—C27A179.7 (3)C4B—C25B—C26B—C27B177.1 (2)
C25A—C26A—C27A—C28A0.0 (5)C25B—C26B—C27B—C28B1.5 (4)
C26A—C27A—C28A—F2A180.0 (3)C26B—C27B—C28B—C29B0.9 (5)
C26A—C27A—C28A—C29A0.8 (5)C26B—C27B—C28B—F2B179.7 (3)
C27A—C28A—C29A—C30A0.3 (5)C27B—C28B—C29B—C30B2.0 (5)
F2A—C28A—C29A—C30A179.4 (3)F2B—C28B—C29B—C30B179.2 (3)
C26A—C25A—C30A—C29A1.9 (4)C26B—C25B—C30B—C29B1.3 (4)
C4A—C25A—C30A—C29A179.0 (2)C4B—C25B—C30B—C29B178.2 (3)
C28A—C29A—C30A—C25A1.2 (4)C28B—C29B—C30B—C25B0.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···O1B0.862.112.959 (2)169
N2B—H2B···O1A0.862.142.984 (2)169
C27B—H27B···O2Bi0.932.493.314 (3)147
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC30H27F2N3O2
Mr499.55
Crystal system, space groupMonoclinic, Cc
Temperature (K)300
a, b, c (Å)27.1839 (15), 10.2809 (5), 18.7045 (11)
β (°) 107.92 (1)
V3)4973.9 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.17 × 0.10
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.98, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
32062, 7610, 5922
Rint0.024
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.04
No. of reflections7610
No. of parameters671
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···O1B0.862.112.959 (2)168.9
N2B—H2B···O1A0.862.142.984 (2)168.8
C27B—H27B···O2Bi0.932.493.314 (3)147.4
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology, Chennai, for the X-ray intensity data collection. RR thanks the Department of Science and Technology, Government of India, for financial support.

References

First citationBaroudi, M., Robert, J. & LuuDuc, C. (1996). J. Steroid Biochem. Mol. Biol. 57, 73–77.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santhos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586–593.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHansch, C. & Leo, A. J. (1979). Substituent Constants for Correlation Analysis in Chemistry and Biology, p. 49. New York: John Wiley & Sons.  Google Scholar
First citationHilton, S. T., Ho, T. C. T., Pljevaljcic, G. & Jones, K. (2000). Org. Lett. 2, 2639–2641.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421–427.  CAS Google Scholar
First citationMogilaiah, K. & Rao, R. B. (1998). Indian J. Chem. 37, 139–144.  Google Scholar
First citationPerumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.  Google Scholar
First citationTaft, R. W. (1956). Steric Effects in Organic Chemistry, edited by M. S. Newman, p. 591. New York: John Wiley & Sons.  Google Scholar
First citationWatson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds