metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetato-κ2O,O′)(acetato-κO)bis­(2-amino-3-methyl­pyridine-κN1)cobalt(II)

aDepartment of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: tajarodi@iust.ac.ir

(Received 1 September 2012; accepted 9 September 2012; online 15 September 2012)

In the title compound, [Co(CH3COO)2(C6H8N2)2], the CoII ion is five-coordinated by two pyridine N atoms from two 2-amino-3-methyl­pyridine ligands, two O atoms from one acetate ion and one O atom from another acetate ion in a distorted trigonal–bipyramidal geometry. The pyridine rings are nearly perpendicular to each other [dihedral angle = 84.49 (16)°]. The crystal packing is stabilized by intra­molecular and inter­molecular N—H⋯O hydrogen-bonding inter­actions.

Related literature

For related coordination compounds of 2-amino-3-methyl­pyridine, see: Arab Ahmadi et al. (2011[Arab Ahmadi, R., Safari, N., Khavasi, H. R. & Amani, S. (2011). J. Coord. Chem. 64, 2056-2065.]); Tadjarodi et al. (2010[Tadjarodi, A., Bijanzad, K. & Notash, B. (2010). Acta Cryst. E66, m1293-m1294.], 2012[Tadjarodi, A., Bijanzad, K. & Notash, B. (2012). Acta Cryst. E68, m1099.]); Castillo et al. (2001[Castillo, O., Luque, A., Lloret, F. & Román, P. (2001). Inorg. Chem. Commun. 4, 350-353.]); Ziegler et al. (2000[Ziegler, C. J., Silverman, A. P. & Lippard, S. J. (2000). J. Biol. Inorg. Chem. 5, 774-783.]); Amani Komaei et al. (1999[Amani Komaei, S., Van Albada, G. A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (1999). Polyhedron, 18, 1991-1997.]); Chen et al. (2005[Chen, Z.-F., Liu, B., Liang, H., Hu, R.-X. & Zhou, Z.-Y. (2005). J. Coord. Chem. 28, 561-565.]). For proton-transfer compounds of 2-amino-3-methyl­pyridine, see: Carnevale et al. (2010[Carnevale, D. J., Landee, C. P., Turnbull, M. M., Winn, M. & Xiao, F. (2010). J. Coord. Chem. 63, 2223-2238.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H3O2)2(C6H8N2)2]

  • Mr = 393.31

  • Triclinic, [P \overline 1]

  • a = 8.1685 (16) Å

  • b = 10.452 (2) Å

  • c = 12.231 (2) Å

  • α = 69.58 (3)°

  • β = 79.94 (3)°

  • γ = 72.42 (3)°

  • V = 930.1 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 298 K

  • 0.27 × 0.23 × 0.13 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.785, Tmax = 0.886

  • 11215 measured reflections

  • 4996 independent reflections

  • 2756 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.096

  • S = 0.92

  • 4996 reflections

  • 242 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 1.962 (2)
Co1—O3 2.352 (2)
Co1—O4 2.0028 (18)
Co1—N1 2.072 (2)
Co1—N3 2.074 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4 0.85 (2) 2.17 (2) 2.965 (3) 157 (3)
N2—H2B⋯O2i 0.84 (2) 2.16 (2) 2.978 (3) 166 (3)
N4—H4A⋯O1 0.83 (3) 2.10 (3) 2.859 (3) 153 (3)
N4—H4B⋯O3ii 0.84 (2) 2.06 (2) 2.881 (3) 164 (3)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+2, -y+2, -z+1.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2-Amino-3-methylpyridine (ampy) coordinates to metals mostly through the nitrogen atom of the pyridyl group (Arab Ahmadi et al., 2011; Tadjarodi et al., 2012 and 2010; Castillo et al., 2001; Ziegler et al., 2000; Amani Komaei et al., 1999) but it can also coordinate via the nitrogen atom of the amino group (Chen et al., 2005). In recent years, several structures of proton-transfer compounds, [(ampyH)2CoX4] (X = Cl, Br) have been reported by 2-Amino-3-methylpyridine (Carnevale et al. 2010).

Herein, we report the synthesis and structural determination of the title compound, [Co(ampy)2(CH3COO)2]. The coordination sphere of the mononuclear complex includes three oxygen atoms from two acetate ions and two pyridyl nitrogen atoms from two ampy ligands thus constructing a distorted trigonal bipyramidal geometry (Fig. 1). In the structure of [Co(ampy)2(CH3COO)2], several intramolecular and intermolecular N–H···O hydrogen bond interactions formed between the amino group of the ligand and the acetate oxygen atoms which can stabilize the crystal structure (Fig. 2 & Table 1).

Related literature top

For related coordination compounds of 2-amino-3-methylpyridine, see: Arab Ahmadi et al. (2011); Tadjarodi et al. (2010, 2012); Castillo et al. (2001); Ziegler et al. (2000); Amani Komaei et al. (1999); Chen et al. (2005). For proton-transfer compounds of 2-amino-3-methylpyridine, see: Carnevale et al. (2010).

Experimental top

A solution of 2-amino-3-methylpyridine (1 mmol) in ethanol was added to an aqueous solution of Co(CH3COO)2.4H2O (0.5 mmol) and stirred for 20 min at 50 °C. Slow evaporation of the resulting solution gave violet plate shaped crystals of the title compound suitable for X-ray analysis (decomposition >300 °C).

Refinement top

Hydrogen atoms attached to nitrogen atoms were found in difference Fourier map.H2A and H2B and H4B were refined with distance restraints of N—H 0.845 (18), 0.840 (18) and 0.839 (18), respectively. H atoms attached to carbon atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å (CH), with C—H = 0.96 Å (CH3), and Uiso(H) = 1.2,1.5Ueq(C).

Structure description top

2-Amino-3-methylpyridine (ampy) coordinates to metals mostly through the nitrogen atom of the pyridyl group (Arab Ahmadi et al., 2011; Tadjarodi et al., 2012 and 2010; Castillo et al., 2001; Ziegler et al., 2000; Amani Komaei et al., 1999) but it can also coordinate via the nitrogen atom of the amino group (Chen et al., 2005). In recent years, several structures of proton-transfer compounds, [(ampyH)2CoX4] (X = Cl, Br) have been reported by 2-Amino-3-methylpyridine (Carnevale et al. 2010).

Herein, we report the synthesis and structural determination of the title compound, [Co(ampy)2(CH3COO)2]. The coordination sphere of the mononuclear complex includes three oxygen atoms from two acetate ions and two pyridyl nitrogen atoms from two ampy ligands thus constructing a distorted trigonal bipyramidal geometry (Fig. 1). In the structure of [Co(ampy)2(CH3COO)2], several intramolecular and intermolecular N–H···O hydrogen bond interactions formed between the amino group of the ligand and the acetate oxygen atoms which can stabilize the crystal structure (Fig. 2 & Table 1).

For related coordination compounds of 2-amino-3-methylpyridine, see: Arab Ahmadi et al. (2011); Tadjarodi et al. (2010, 2012); Castillo et al. (2001); Ziegler et al. (2000); Amani Komaei et al. (1999); Chen et al. (2005). For proton-transfer compounds of 2-amino-3-methylpyridine, see: Carnevale et al. (2010).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of [Co(ampy)2(CH3COO)2] with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound showing hydrogen bonding as blue dashed lines.
(Acetato-κ2O,O')(acetato-κO)bis(2-amino-3- methylpyridine-κN1)cobalt(II) top
Crystal data top
[Co(C2H3O2)2(C6H8N2)2]Z = 2
Mr = 393.31F(000) = 410
Triclinic, P1Dx = 1.404 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1685 (16) ÅCell parameters from 4996 reflections
b = 10.452 (2) Åθ = 2.2–29.2°
c = 12.231 (2) ŵ = 0.95 mm1
α = 69.58 (3)°T = 298 K
β = 79.94 (3)°Plate, violet
γ = 72.42 (3)°0.27 × 0.23 × 0.13 mm
V = 930.1 (4) Å3
Data collection top
Stoe IPDS 2T
diffractometer
4996 independent reflections
Radiation source: fine-focus sealed tube2756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
rotation method scansθmax = 29.2°, θmin = 2.2°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
h = 1111
Tmin = 0.785, Tmax = 0.886k = 1414
11215 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0361P)2]
where P = (Fo2 + 2Fc2)/3
4996 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 0.35 e Å3
3 restraintsΔρmin = 0.19 e Å3
Crystal data top
[Co(C2H3O2)2(C6H8N2)2]γ = 72.42 (3)°
Mr = 393.31V = 930.1 (4) Å3
Triclinic, P1Z = 2
a = 8.1685 (16) ÅMo Kα radiation
b = 10.452 (2) ŵ = 0.95 mm1
c = 12.231 (2) ÅT = 298 K
α = 69.58 (3)°0.27 × 0.23 × 0.13 mm
β = 79.94 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
4996 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
2756 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.886Rint = 0.062
11215 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.35 e Å3
4996 reflectionsΔρmin = 0.19 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.71818 (5)0.93397 (4)0.77010 (3)0.04555 (13)
O10.6158 (3)1.0480 (2)0.62129 (18)0.0698 (6)
O20.4417 (3)1.2043 (3)0.6980 (2)0.0879 (8)
O30.9471 (3)1.0418 (2)0.70296 (17)0.0653 (6)
O40.8186 (2)0.9932 (2)0.87698 (16)0.0593 (5)
N10.5289 (3)0.8404 (3)0.8723 (2)0.0516 (6)
N20.6160 (3)0.8098 (3)1.0513 (2)0.0569 (6)
N30.8801 (3)0.7557 (2)0.73364 (18)0.0431 (5)
N40.9101 (4)0.8685 (3)0.5353 (2)0.0638 (7)
C10.5153 (3)0.7826 (3)0.9897 (2)0.0458 (6)
C20.4051 (4)0.6933 (3)1.0468 (3)0.0570 (8)
C30.3999 (5)0.6244 (4)1.1759 (3)0.0808 (11)
H3A0.32160.56551.19910.121*
H3B0.36180.69571.21410.121*
H3C0.51300.56761.19780.121*
C40.3094 (4)0.6719 (4)0.9766 (3)0.0737 (10)
H40.23640.61311.01100.088*
C50.3170 (4)0.7344 (4)0.8568 (3)0.0813 (11)
H50.24860.72060.81080.098*
C60.4280 (4)0.8170 (4)0.8083 (3)0.0684 (9)
H60.43500.85930.72760.082*
C70.9548 (3)0.7526 (3)0.6262 (2)0.0435 (6)
C81.0746 (4)0.6286 (3)0.6109 (3)0.0540 (7)
C91.1499 (5)0.6286 (4)0.4888 (3)0.0899 (12)
H9A1.23600.54130.49300.135*
H9B1.20130.70630.45300.135*
H9C1.06020.63810.44300.135*
C101.1139 (4)0.5139 (3)0.7075 (3)0.0636 (8)
H101.19330.43190.69970.076*
C111.0377 (4)0.5169 (3)0.8177 (3)0.0607 (8)
H111.06490.43850.88370.073*
C120.9222 (4)0.6381 (3)0.8255 (2)0.0521 (7)
H120.86890.64000.89880.063*
C130.5012 (4)1.1626 (3)0.6146 (3)0.0553 (7)
C140.4425 (6)1.2476 (5)0.4946 (4)0.1086 (15)
H14A0.32801.30660.50110.163*
H14B0.44301.18490.45280.163*
H14C0.51911.30570.45300.163*
C150.9323 (4)1.0452 (3)0.8040 (2)0.0492 (7)
C161.0438 (4)1.1079 (4)0.8434 (3)0.0724 (10)
H16A1.12671.03370.89250.109*
H16B0.97381.16900.88650.109*
H16C1.10271.16150.77630.109*
H2A0.666 (4)0.874 (3)1.016 (3)0.087*
H4A0.842 (4)0.941 (4)0.545 (3)0.087*
H2B0.587 (4)0.798 (4)1.1228 (17)0.087*
H4B0.960 (4)0.877 (4)0.4681 (19)0.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0517 (2)0.0480 (2)0.0384 (2)0.01574 (17)0.00583 (15)0.01758 (17)
O10.0657 (14)0.0686 (15)0.0551 (14)0.0066 (12)0.0049 (10)0.0157 (12)
O20.1122 (19)0.0934 (19)0.0651 (16)0.0283 (15)0.0210 (13)0.0454 (15)
O30.0945 (15)0.0705 (15)0.0374 (12)0.0391 (12)0.0109 (10)0.0177 (10)
O40.0669 (13)0.0814 (15)0.0415 (11)0.0407 (11)0.0106 (9)0.0227 (11)
N10.0485 (13)0.0653 (16)0.0505 (15)0.0228 (12)0.0103 (10)0.0300 (13)
N20.0629 (16)0.0674 (18)0.0432 (15)0.0304 (13)0.0048 (12)0.0134 (14)
N30.0491 (13)0.0397 (13)0.0371 (13)0.0156 (10)0.0050 (10)0.0088 (11)
N40.090 (2)0.0453 (16)0.0374 (15)0.0059 (14)0.0174 (13)0.0117 (13)
C10.0416 (14)0.0437 (16)0.0521 (17)0.0121 (12)0.0104 (12)0.0209 (14)
C20.0567 (17)0.0534 (19)0.062 (2)0.0219 (14)0.0157 (15)0.0234 (16)
C30.088 (3)0.077 (3)0.076 (3)0.046 (2)0.013 (2)0.012 (2)
C40.073 (2)0.076 (2)0.089 (3)0.0447 (19)0.0195 (19)0.037 (2)
C50.078 (2)0.112 (3)0.086 (3)0.056 (2)0.0105 (19)0.052 (3)
C60.070 (2)0.096 (3)0.058 (2)0.0366 (19)0.0070 (16)0.039 (2)
C70.0474 (15)0.0409 (16)0.0431 (16)0.0148 (12)0.0059 (12)0.0161 (14)
C80.0600 (18)0.0420 (17)0.0564 (19)0.0130 (14)0.0082 (14)0.0174 (15)
C90.116 (3)0.061 (2)0.072 (2)0.004 (2)0.030 (2)0.030 (2)
C100.0599 (19)0.0438 (18)0.079 (2)0.0070 (15)0.0005 (17)0.0184 (18)
C110.0646 (19)0.0485 (19)0.057 (2)0.0119 (15)0.0061 (15)0.0034 (15)
C120.0559 (17)0.0555 (19)0.0431 (17)0.0218 (15)0.0030 (13)0.0103 (15)
C130.0556 (18)0.062 (2)0.0513 (18)0.0127 (16)0.0026 (14)0.0246 (16)
C140.135 (4)0.091 (3)0.082 (3)0.021 (3)0.048 (3)0.030 (2)
C150.0570 (17)0.0450 (17)0.0443 (17)0.0170 (14)0.0021 (13)0.0124 (13)
C160.073 (2)0.093 (3)0.068 (2)0.045 (2)0.0090 (17)0.032 (2)
Geometric parameters (Å, º) top
Co1—O11.962 (2)C4—C51.380 (5)
Co1—O32.352 (2)C4—H40.9300
Co1—O42.0028 (18)C5—C61.359 (4)
Co1—N12.072 (2)C5—H50.9300
Co1—N32.074 (2)C6—H60.9300
O1—C131.265 (4)C7—C81.419 (4)
O2—C131.215 (3)C8—C101.360 (4)
O3—C151.233 (3)C8—C91.512 (4)
O4—C151.277 (3)C9—H9A0.9600
N1—C11.349 (3)C9—H9B0.9600
N1—C61.353 (3)C9—H9C0.9600
N2—C11.354 (4)C10—C111.389 (4)
N2—H2A0.845 (18)C10—H100.9300
N2—H2B0.840 (18)C11—C121.354 (4)
N3—C121.345 (4)C11—H110.9300
N3—C71.355 (3)C12—H120.9300
N4—C71.331 (4)C13—C141.501 (5)
N4—H4A0.83 (3)C14—H14A0.9600
N4—H4B0.839 (18)C14—H14B0.9600
C1—C21.414 (4)C14—H14C0.9600
C2—C41.367 (4)C15—C161.492 (4)
C2—C31.489 (4)C16—H16A0.9600
C3—H3A0.9600C16—H16B0.9600
C3—H3B0.9600C16—H16C0.9600
C3—H3C0.9600
O1—Co1—O4129.30 (10)N1—C6—C5122.9 (3)
O1—Co1—N1104.36 (10)N1—C6—H6118.5
O4—Co1—N1105.67 (8)C5—C6—H6118.5
O1—Co1—N3103.15 (9)N4—C7—N3118.0 (2)
O4—Co1—N3112.27 (9)N4—C7—C8121.0 (2)
N1—Co1—N397.38 (9)N3—C7—C8121.0 (3)
O1—Co1—O388.36 (9)C10—C8—C7117.8 (3)
O4—Co1—O358.90 (7)C10—C8—C9123.1 (3)
N1—Co1—O3164.49 (7)C7—C8—C9119.1 (3)
N3—Co1—O388.12 (8)C8—C9—H9A109.5
C13—O1—Co1119.87 (19)C8—C9—H9B109.5
C15—O3—Co183.56 (16)H9A—C9—H9B109.5
C15—O4—Co198.54 (16)C8—C9—H9C109.5
C1—N1—C6118.6 (2)H9A—C9—H9C109.5
C1—N1—Co1127.67 (17)H9B—C9—H9C109.5
C6—N1—Co1112.7 (2)C8—C10—C11121.3 (3)
C1—N2—H2A118 (2)C8—C10—H10119.4
C1—N2—H2B118 (2)C11—C10—H10119.4
H2A—N2—H2B116 (3)C12—C11—C10117.7 (3)
C12—N3—C7118.3 (2)C12—C11—H11121.2
C12—N3—Co1116.71 (17)C10—C11—H11121.2
C7—N3—Co1124.82 (18)N3—C12—C11123.9 (3)
C7—N4—H4A120 (3)N3—C12—H12118.0
C7—N4—H4B123 (3)C11—C12—H12118.0
H4A—N4—H4B116 (4)O2—C13—O1123.5 (3)
N1—C1—N2117.2 (2)O2—C13—C14121.0 (3)
N1—C1—C2121.9 (2)O1—C13—C14115.5 (3)
N2—C1—C2120.9 (3)C13—C14—H14A109.5
C4—C2—C1116.4 (3)C13—C14—H14B109.5
C4—C2—C3122.9 (3)H14A—C14—H14B109.5
C1—C2—C3120.8 (3)C13—C14—H14C109.5
C2—C3—H3A109.5H14A—C14—H14C109.5
C2—C3—H3B109.5H14B—C14—H14C109.5
H3A—C3—H3B109.5O3—C15—O4119.0 (2)
C2—C3—H3C109.5O3—C15—C16121.8 (3)
H3A—C3—H3C109.5O4—C15—C16119.2 (2)
H3B—C3—H3C109.5C15—C16—H16A109.5
C2—C4—C5122.5 (3)C15—C16—H16B109.5
C2—C4—H4118.7H16A—C16—H16B109.5
C5—C4—H4118.7C15—C16—H16C109.5
C6—C5—C4117.6 (3)H16A—C16—H16C109.5
C6—C5—H5121.2H16B—C16—H16C109.5
C4—C5—H5121.2
O4—Co1—O1—C1350.1 (3)Co1—N1—C1—C2164.79 (19)
N1—Co1—O1—C1374.6 (2)N1—C1—C2—C41.8 (4)
N3—Co1—O1—C13175.9 (2)N2—C1—C2—C4179.6 (3)
O3—Co1—O1—C1396.4 (2)N1—C1—C2—C3176.5 (3)
O1—Co1—O3—C15138.61 (18)N2—C1—C2—C31.3 (4)
O4—Co1—O3—C150.62 (17)C1—C2—C4—C50.6 (5)
N1—Co1—O3—C156.9 (4)C3—C2—C4—C5179.0 (3)
N3—Co1—O3—C15118.18 (18)C2—C4—C5—C61.7 (6)
O1—Co1—O4—C1556.9 (2)C1—N1—C6—C51.9 (5)
N1—Co1—O4—C15178.84 (17)Co1—N1—C6—C5167.7 (3)
N3—Co1—O4—C1573.83 (19)C4—C5—C6—N10.4 (5)
O3—Co1—O4—C150.60 (16)C12—N3—C7—N4178.7 (2)
O1—Co1—N1—C1161.2 (2)Co1—N3—C7—N46.2 (3)
O4—Co1—N1—C122.5 (2)C12—N3—C7—C80.1 (4)
N3—Co1—N1—C193.1 (2)Co1—N3—C7—C8174.98 (19)
O3—Co1—N1—C116.9 (5)N4—C7—C8—C10179.8 (3)
O1—Co1—N1—C630.3 (2)N3—C7—C8—C101.0 (4)
O4—Co1—N1—C6169.0 (2)N4—C7—C8—C90.9 (4)
N3—Co1—N1—C675.3 (2)N3—C7—C8—C9177.9 (3)
O3—Co1—N1—C6174.6 (3)C7—C8—C10—C110.9 (4)
O1—Co1—N3—C12157.47 (18)C9—C8—C10—C11177.9 (3)
O4—Co1—N3—C1259.53 (19)C8—C10—C11—C120.2 (4)
N1—Co1—N3—C1250.79 (19)C7—N3—C12—C111.3 (4)
O3—Co1—N3—C12114.65 (18)Co1—N3—C12—C11174.1 (2)
O1—Co1—N3—C727.4 (2)C10—C11—C12—N31.4 (4)
O4—Co1—N3—C7115.6 (2)Co1—O1—C13—O24.2 (4)
N1—Co1—N3—C7134.1 (2)Co1—O1—C13—C14175.0 (3)
O3—Co1—N3—C760.5 (2)Co1—O3—C15—O40.9 (3)
C6—N1—C1—N2179.0 (3)Co1—O3—C15—C16179.2 (3)
Co1—N1—C1—N213.1 (4)Co1—O4—C15—O31.1 (3)
C6—N1—C1—C23.1 (4)Co1—O4—C15—C16179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.85 (2)2.17 (2)2.965 (3)157 (3)
N2—H2B···O2i0.84 (2)2.16 (2)2.978 (3)166 (3)
N4—H4A···O10.83 (3)2.10 (3)2.859 (3)153 (3)
N4—H4B···O3ii0.84 (2)2.06 (2)2.881 (3)164 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Co(C2H3O2)2(C6H8N2)2]
Mr393.31
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.1685 (16), 10.452 (2), 12.231 (2)
α, β, γ (°)69.58 (3), 79.94 (3), 72.42 (3)
V3)930.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.27 × 0.23 × 0.13
Data collection
DiffractometerStoe IPDS 2T
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.785, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
11215, 4996, 2756
Rint0.062
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.096, 0.92
No. of reflections4996
No. of parameters242
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.19

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co1—O11.962 (2)Co1—N12.072 (2)
Co1—O32.352 (2)Co1—N32.074 (2)
Co1—O42.0028 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O40.845 (18)2.17 (2)2.965 (3)157 (3)
N2—H2B···O2i0.840 (18)2.156 (19)2.978 (3)166 (3)
N4—H4A···O10.83 (3)2.10 (3)2.859 (3)153 (3)
N4—H4B···O3ii0.839 (18)2.06 (2)2.881 (3)164 (3)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+2, z+1.
 

Acknowledgements

The authors wish to acknowledge Iran University of Science and Technology (IUST) for financial support.

References

First citationAmani Komaei, S., Van Albada, G. A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (1999). Polyhedron, 18, 1991–1997.  Google Scholar
First citationArab Ahmadi, R., Safari, N., Khavasi, H. R. & Amani, S. (2011). J. Coord. Chem. 64, 2056–2065.  Google Scholar
First citationCarnevale, D. J., Landee, C. P., Turnbull, M. M., Winn, M. & Xiao, F. (2010). J. Coord. Chem. 63, 2223–2238.  Web of Science CSD CrossRef CAS Google Scholar
First citationCastillo, O., Luque, A., Lloret, F. & Román, P. (2001). Inorg. Chem. Commun. 4, 350–353.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, Z.-F., Liu, B., Liang, H., Hu, R.-X. & Zhou, Z.-Y. (2005). J. Coord. Chem. 28, 561–565.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTadjarodi, A., Bijanzad, K. & Notash, B. (2010). Acta Cryst. E66, m1293–m1294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTadjarodi, A., Bijanzad, K. & Notash, B. (2012). Acta Cryst. E68, m1099.  CSD CrossRef IUCr Journals Google Scholar
First citationZiegler, C. J., Silverman, A. P. & Lippard, S. J. (2000). J. Biol. Inorg. Chem. 5, 774–783.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds