organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3-Di­methyl­phen­yl)-4-methyl-N-(4-methyl­phenyl­sulfon­yl)benzene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, cQuestioned Documents Unit, Punjab Forensic Science Agency, Home Department, Lahore, Pakistan, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: koolmuneeb@yahoo.com

(Received 13 September 2012; accepted 19 September 2012; online 26 September 2012)

In the title compound, C22H23NO4S2, the dihedral angles between the dimethyl­phenyl ring and the two methyl­phenyl rings are 41.19 (15) and 20.50 (17)°; the dihedral angle between the methyl­phenyl rings is 48.11 (14)°. The C—N—S—C torsion angles are −87.6 (2) and 77.43 (18)°. The only possible directional inter­actions in the crystal are very weak C—H⋯π inter­actions and very weak ππ stacking between parallel methyl­phenyl rings [centroid-to-centroid separation = 4.010 (2) Å and slippage = 1.987 Å].

Related literature

For a related structure, see: Mughal et al. (2012[Mughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012). Acta Cryst. E68, o2973.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23NO4S2

  • Mr = 429.53

  • Triclinic, [P \overline 1]

  • a = 7.5523 (8) Å

  • b = 8.4635 (9) Å

  • c = 17.5004 (17) Å

  • α = 103.282 (7)°

  • β = 91.659 (7)°

  • γ = 108.382 (7)°

  • V = 1026.89 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.32 × 0.23 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.913, Tmax = 0.966

  • 16232 measured reflections

  • 4569 independent reflections

  • 2359 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.129

  • S = 0.96

  • 4569 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C16–C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8BCgi 0.96 2.96 3.912 (4) 169
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Rather than the intended product of 4-methyl-N-(2,3-dimethylphenyl)benzenesulfonamide, the title `double' sulfonamide (in which both amine N—N bonds have been replaced by N—S bonds), (I), (Fig. 1) was unexpectedly prepared. A similar double sulfonamide and previous related structures are described by Mughal et al. (2012).

The molecule of (I) cannot possess any local symmetry due to the two methyl groups of the xylene ring. If these are neglected, the rest of the molecule possesses approximate local twofold symmetry about the C1—N1 axis. The dihedral angles between the o-xylene ring (C1–C6) and the C9–C14 and C15–C20 toluyl rings are 41.19 (15) and 20.50 (17)°, respectively; the dihedral angle between the toluyl rings is 48.11 (14)°. The sulfonamide torsion angles in (I) are -87.6 (2)(2)° for C1—N1—S1—C9 and 77.43 (18)° for C1—N1—S2—C16. The bond-angle sum for N1 in (I) of 359.4° implies sp2 hybridization for the N atom. However, its (presumed) unhybridized p orbital is almost orthogonal to the aromatic π system of the C1–C6 ring and the C1—N1 bond length of 1.452 (3) Å is that expected for a C—N single bond.

The only direction interactions in the crystal of (I) are a possible very weak C—H···π bond (Table 1) and aromatic ππ stacking between inversion-related pairs of C9–C14 rings [centroid–centroid separation = 4.010 (2) Å; slippage = 1.987 Å].

Related literature top

For a related structure, see: Mughal et al. (2012).

Experimental top

0.10 g of 2,3-dimethyl aniline was dissolved in 15 ml dichloromethane and 0.157 g of toulene sulfonyl chloride was added. The mixture was stirred at room temperature overnight and the pH was maintained at 8–9 with triethylamine. On completion of the reaction (after TLC), 1 M HCl solution was added and the organic layer was separated and allowed to evaporate at room temperature to generate light-brown crystals in 97% yield. Yellow blocks were recrystallized from ethanol solution.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined as riding. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) was applied. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Structure description top

Rather than the intended product of 4-methyl-N-(2,3-dimethylphenyl)benzenesulfonamide, the title `double' sulfonamide (in which both amine N—N bonds have been replaced by N—S bonds), (I), (Fig. 1) was unexpectedly prepared. A similar double sulfonamide and previous related structures are described by Mughal et al. (2012).

The molecule of (I) cannot possess any local symmetry due to the two methyl groups of the xylene ring. If these are neglected, the rest of the molecule possesses approximate local twofold symmetry about the C1—N1 axis. The dihedral angles between the o-xylene ring (C1–C6) and the C9–C14 and C15–C20 toluyl rings are 41.19 (15) and 20.50 (17)°, respectively; the dihedral angle between the toluyl rings is 48.11 (14)°. The sulfonamide torsion angles in (I) are -87.6 (2)(2)° for C1—N1—S1—C9 and 77.43 (18)° for C1—N1—S2—C16. The bond-angle sum for N1 in (I) of 359.4° implies sp2 hybridization for the N atom. However, its (presumed) unhybridized p orbital is almost orthogonal to the aromatic π system of the C1–C6 ring and the C1—N1 bond length of 1.452 (3) Å is that expected for a C—N single bond.

The only direction interactions in the crystal of (I) are a possible very weak C—H···π bond (Table 1) and aromatic ππ stacking between inversion-related pairs of C9–C14 rings [centroid–centroid separation = 4.010 (2) Å; slippage = 1.987 Å].

For a related structure, see: Mughal et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
N-(2,3-Dimethylphenyl)-4-methyl-N-(4- methylphenylsulfonyl)benzenesulfonamide top
Crystal data top
C22H23NO4S2Z = 2
Mr = 429.53F(000) = 452
Triclinic, P1Dx = 1.389 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5523 (8) ÅCell parameters from 185 reflections
b = 8.4635 (9) Åθ = 3.3–19.5°
c = 17.5004 (17) ŵ = 0.29 mm1
α = 103.282 (7)°T = 296 K
β = 91.659 (7)°Block, yellow
γ = 108.382 (7)°0.32 × 0.23 × 0.12 mm
V = 1026.89 (18) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4569 independent reflections
Radiation source: fine-focus sealed tube2359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω scansθmax = 27.3°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.913, Tmax = 0.966k = 1010
16232 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
4569 reflections(Δ/σ)max = 0.002
266 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C22H23NO4S2γ = 108.382 (7)°
Mr = 429.53V = 1026.89 (18) Å3
Triclinic, P1Z = 2
a = 7.5523 (8) ÅMo Kα radiation
b = 8.4635 (9) ŵ = 0.29 mm1
c = 17.5004 (17) ÅT = 296 K
α = 103.282 (7)°0.32 × 0.23 × 0.12 mm
β = 91.659 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
4569 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2359 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.966Rint = 0.068
16232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 0.96Δρmax = 0.24 e Å3
4569 reflectionsΔρmin = 0.30 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1812 (4)0.1458 (4)0.21323 (18)0.0419 (8)
C20.1984 (4)0.0039 (4)0.22706 (18)0.0439 (8)
C30.2906 (4)0.0938 (4)0.17351 (19)0.0462 (8)
C40.3599 (5)0.0318 (4)0.1105 (2)0.0569 (9)
H40.41940.09230.07510.068*
C50.3422 (5)0.1202 (5)0.0990 (2)0.0580 (10)
H50.39140.16110.05650.070*
C60.2535 (5)0.2086 (4)0.14952 (18)0.0477 (8)
H60.24100.30990.14180.057*
C70.1242 (5)0.0688 (4)0.29584 (18)0.0546 (9)
H7A0.05850.00280.32390.082*
H7B0.22660.06630.33050.082*
H7C0.03980.18480.27760.082*
C80.3123 (5)0.2576 (4)0.1842 (2)0.0694 (11)
H8A0.38480.29740.14470.104*
H8B0.19060.34320.17890.104*
H8C0.37530.23720.23570.104*
C90.2566 (4)0.3436 (4)0.41450 (18)0.0433 (8)
C100.1242 (5)0.3167 (4)0.46751 (19)0.0514 (9)
H100.01540.34420.46200.062*
C110.1568 (5)0.2491 (4)0.52790 (19)0.0570 (9)
H110.06790.23070.56350.068*
C120.3164 (5)0.2071 (4)0.53832 (19)0.0500 (9)
C130.4476 (5)0.2369 (4)0.48554 (19)0.0533 (9)
H130.55680.21040.49180.064*
C140.4203 (5)0.3057 (4)0.42331 (18)0.0468 (8)
H140.51000.32590.38820.056*
C150.3467 (5)0.1285 (4)0.6041 (2)0.0719 (11)
H15A0.33660.20090.65360.108*
H15B0.46940.11750.60460.108*
H15C0.25350.01690.59610.108*
C160.1829 (4)0.3224 (4)0.18865 (18)0.0419 (8)
C170.1586 (4)0.2853 (4)0.10925 (19)0.0483 (8)
H170.12870.18780.08620.058*
C180.1790 (4)0.3935 (4)0.06515 (19)0.0504 (9)
H180.16080.36940.01190.061*
C190.2260 (4)0.5380 (4)0.09775 (19)0.0487 (8)
C200.2563 (4)0.5687 (4)0.17601 (19)0.0507 (9)
H200.29270.66280.19840.061*
C210.2338 (4)0.4631 (4)0.22206 (19)0.0451 (8)
H210.25280.48670.27520.054*
C220.2436 (5)0.6588 (4)0.0491 (2)0.0703 (11)
H22A0.34730.69780.06340.105*
H22B0.26460.59980.00590.105*
H22C0.13010.75580.05870.105*
S10.21539 (12)0.42043 (10)0.33376 (5)0.0459 (2)
S20.15010 (12)0.18724 (10)0.24649 (5)0.0463 (3)
O10.1014 (3)0.5258 (3)0.35325 (13)0.0608 (7)
O20.3882 (3)0.4819 (3)0.30225 (12)0.0556 (6)
O30.2238 (3)0.2258 (3)0.31952 (13)0.0610 (7)
O40.2068 (3)0.0159 (3)0.19840 (14)0.0591 (7)
N10.0840 (3)0.2420 (3)0.26533 (14)0.0391 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0376 (19)0.0415 (19)0.0474 (19)0.0163 (16)0.0025 (16)0.0090 (16)
C20.0392 (19)0.0467 (19)0.0449 (19)0.0117 (16)0.0030 (15)0.0144 (16)
C30.036 (2)0.051 (2)0.051 (2)0.0206 (17)0.0014 (16)0.0036 (17)
C40.051 (2)0.060 (2)0.060 (2)0.0245 (19)0.0056 (19)0.0086 (19)
C50.055 (2)0.073 (3)0.052 (2)0.024 (2)0.0149 (19)0.023 (2)
C60.050 (2)0.052 (2)0.049 (2)0.0225 (18)0.0090 (17)0.0189 (17)
C70.060 (2)0.049 (2)0.056 (2)0.0148 (18)0.0050 (18)0.0190 (18)
C80.073 (3)0.061 (2)0.086 (3)0.038 (2)0.010 (2)0.018 (2)
C90.046 (2)0.0410 (19)0.0442 (19)0.0171 (16)0.0063 (16)0.0090 (16)
C100.054 (2)0.058 (2)0.051 (2)0.0271 (19)0.0175 (18)0.0163 (18)
C110.062 (3)0.064 (2)0.047 (2)0.020 (2)0.0189 (19)0.0160 (19)
C120.057 (2)0.042 (2)0.047 (2)0.0137 (17)0.0012 (18)0.0095 (17)
C130.052 (2)0.050 (2)0.060 (2)0.0246 (18)0.0004 (19)0.0097 (19)
C140.045 (2)0.0447 (19)0.048 (2)0.0145 (17)0.0085 (17)0.0073 (16)
C150.089 (3)0.064 (3)0.062 (2)0.020 (2)0.000 (2)0.024 (2)
C160.0370 (19)0.0437 (19)0.051 (2)0.0186 (16)0.0045 (16)0.0171 (16)
C170.047 (2)0.046 (2)0.053 (2)0.0212 (17)0.0038 (17)0.0080 (17)
C180.050 (2)0.060 (2)0.0431 (19)0.0199 (19)0.0062 (17)0.0125 (18)
C190.044 (2)0.053 (2)0.053 (2)0.0193 (18)0.0010 (17)0.0174 (18)
C200.056 (2)0.047 (2)0.058 (2)0.0279 (18)0.0057 (18)0.0152 (18)
C210.042 (2)0.052 (2)0.049 (2)0.0246 (17)0.0092 (16)0.0157 (17)
C220.084 (3)0.078 (3)0.068 (3)0.043 (2)0.008 (2)0.034 (2)
S10.0543 (6)0.0368 (5)0.0494 (5)0.0175 (4)0.0080 (4)0.0127 (4)
S20.0412 (5)0.0448 (5)0.0622 (6)0.0189 (4)0.0124 (4)0.0242 (5)
O10.0785 (18)0.0464 (14)0.0692 (16)0.0382 (14)0.0113 (14)0.0123 (12)
O20.0524 (15)0.0477 (14)0.0604 (15)0.0034 (12)0.0131 (12)0.0193 (12)
O30.0601 (16)0.0763 (17)0.0700 (16)0.0367 (14)0.0329 (14)0.0406 (14)
O40.0485 (15)0.0355 (13)0.0910 (18)0.0114 (11)0.0001 (13)0.0159 (13)
N10.0349 (15)0.0394 (15)0.0456 (15)0.0154 (13)0.0042 (12)0.0112 (13)
Geometric parameters (Å, º) top
C1—C21.387 (4)C13—C141.386 (4)
C1—C61.396 (4)C13—H130.9300
C1—N11.452 (3)C14—H140.9300
C2—C31.409 (4)C15—H15A0.9600
C2—C71.487 (4)C15—H15B0.9600
C3—C41.374 (4)C15—H15C0.9600
C3—C81.498 (4)C16—C211.375 (4)
C4—C51.393 (4)C16—C171.383 (4)
C4—H40.9300C16—S21.758 (3)
C5—C61.356 (4)C17—C181.365 (4)
C5—H50.9300C17—H170.9300
C6—H60.9300C18—C191.383 (4)
C7—H7A0.9600C18—H180.9300
C7—H7B0.9600C19—C201.374 (4)
C7—H7C0.9600C19—C221.506 (4)
C8—H8A0.9600C20—C211.377 (4)
C8—H8B0.9600C20—H200.9300
C8—H8C0.9600C21—H210.9300
C9—C141.385 (4)C22—H22A0.9600
C9—C101.385 (4)C22—H22B0.9600
C9—S11.744 (3)C22—H22C0.9600
C10—C111.362 (4)S1—O11.419 (2)
C10—H100.9300S1—O21.423 (2)
C11—C121.379 (4)S1—N11.689 (3)
C11—H110.9300S2—O31.419 (2)
C12—C131.379 (4)S2—O41.422 (2)
C12—C151.500 (4)S2—N11.682 (2)
C2—C1—C6122.1 (3)C13—C14—H14120.7
C2—C1—N1120.2 (3)C12—C15—H15A109.5
C6—C1—N1117.7 (2)C12—C15—H15B109.5
C1—C2—C3117.6 (3)H15A—C15—H15B109.5
C1—C2—C7122.0 (3)C12—C15—H15C109.5
C3—C2—C7120.4 (3)H15A—C15—H15C109.5
C4—C3—C2119.9 (3)H15B—C15—H15C109.5
C4—C3—C8119.6 (3)C21—C16—C17120.3 (3)
C2—C3—C8120.5 (3)C21—C16—S2120.1 (2)
C3—C4—C5121.0 (3)C17—C16—S2119.5 (2)
C3—C4—H4119.5C18—C17—C16119.3 (3)
C5—C4—H4119.5C18—C17—H17120.4
C6—C5—C4120.2 (3)C16—C17—H17120.4
C6—C5—H5119.9C17—C18—C19121.5 (3)
C4—C5—H5119.9C17—C18—H18119.2
C5—C6—C1119.2 (3)C19—C18—H18119.2
C5—C6—H6120.4C20—C19—C18118.1 (3)
C1—C6—H6120.4C20—C19—C22120.7 (3)
C2—C7—H7A109.5C18—C19—C22121.1 (3)
C2—C7—H7B109.5C19—C20—C21121.4 (3)
H7A—C7—H7B109.5C19—C20—H20119.3
C2—C7—H7C109.5C21—C20—H20119.3
H7A—C7—H7C109.5C16—C21—C20119.2 (3)
H7B—C7—H7C109.5C16—C21—H21120.4
C3—C8—H8A109.5C20—C21—H21120.4
C3—C8—H8B109.5C19—C22—H22A109.5
H8A—C8—H8B109.5C19—C22—H22B109.5
C3—C8—H8C109.5H22A—C22—H22B109.5
H8A—C8—H8C109.5C19—C22—H22C109.5
H8B—C8—H8C109.5H22A—C22—H22C109.5
C14—C9—C10120.9 (3)H22B—C22—H22C109.5
C14—C9—S1119.0 (2)O1—S1—O2120.61 (13)
C10—C9—S1120.1 (2)O1—S1—N1106.68 (13)
C11—C10—C9118.6 (3)O2—S1—N1105.80 (12)
C11—C10—H10120.7O1—S1—C9109.75 (14)
C9—C10—H10120.7O2—S1—C9108.68 (14)
C10—C11—C12122.5 (3)N1—S1—C9103.99 (13)
C10—C11—H11118.7O3—S2—O4120.69 (14)
C12—C11—H11118.7O3—S2—N1107.89 (14)
C11—C12—C13118.0 (3)O4—S2—N1104.27 (12)
C11—C12—C15121.5 (3)O3—S2—C16109.27 (13)
C13—C12—C15120.5 (3)O4—S2—C16108.54 (14)
C12—C13—C14121.4 (3)N1—S2—C16105.04 (12)
C12—C13—H13119.3C1—N1—S2118.5 (2)
C14—C13—H13119.3C1—N1—S1117.88 (19)
C9—C14—C13118.6 (3)S2—N1—S1123.06 (14)
C9—C14—H14120.7
C6—C1—C2—C30.8 (5)C17—C16—C21—C201.4 (5)
N1—C1—C2—C3178.6 (3)S2—C16—C21—C20179.1 (2)
C6—C1—C2—C7178.9 (3)C19—C20—C21—C161.1 (5)
N1—C1—C2—C71.7 (5)C14—C9—S1—O1151.8 (3)
C1—C2—C3—C40.2 (5)C10—C9—S1—O130.0 (3)
C7—C2—C3—C4179.5 (3)C14—C9—S1—O218.0 (3)
C1—C2—C3—C8179.2 (3)C10—C9—S1—O2163.8 (3)
C7—C2—C3—C81.1 (5)C14—C9—S1—N194.4 (3)
C2—C3—C4—C50.6 (5)C10—C9—S1—N183.8 (3)
C8—C3—C4—C5179.9 (3)C21—C16—S2—O312.9 (3)
C3—C4—C5—C60.9 (6)C17—C16—S2—O3166.5 (3)
C4—C5—C6—C10.3 (5)C21—C16—S2—O4146.4 (3)
C2—C1—C6—C50.6 (5)C17—C16—S2—O433.1 (3)
N1—C1—C6—C5178.9 (3)C21—C16—S2—N1102.6 (3)
C14—C9—C10—C111.2 (5)C17—C16—S2—N178.0 (3)
S1—C9—C10—C11177.0 (3)C2—C1—N1—S287.0 (3)
C9—C10—C11—C120.2 (5)C6—C1—N1—S292.5 (3)
C10—C11—C12—C130.7 (5)C2—C1—N1—S1101.4 (3)
C10—C11—C12—C15178.4 (3)C6—C1—N1—S179.1 (3)
C11—C12—C13—C140.6 (5)O3—S2—N1—C1149.88 (19)
C15—C12—C13—C14178.5 (3)O4—S2—N1—C120.4 (2)
C10—C9—C14—C131.2 (5)C16—S2—N1—C193.7 (2)
S1—C9—C14—C13176.9 (2)O3—S2—N1—S139.04 (18)
C12—C13—C14—C90.4 (5)O4—S2—N1—S1168.49 (14)
C21—C16—C17—C182.4 (5)C16—S2—N1—S177.43 (18)
S2—C16—C17—C18178.1 (2)O1—S1—N1—C1156.45 (19)
C16—C17—C18—C190.9 (5)O2—S1—N1—C126.9 (2)
C17—C18—C19—C201.5 (5)C9—S1—N1—C187.6 (2)
C17—C18—C19—C22178.5 (3)O1—S1—N1—S214.67 (18)
C18—C19—C20—C212.5 (5)O2—S1—N1—S2144.26 (15)
C22—C19—C20—C21177.5 (3)C9—S1—N1—S2101.31 (17)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cgi0.962.963.912 (4)169
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC22H23NO4S2
Mr429.53
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5523 (8), 8.4635 (9), 17.5004 (17)
α, β, γ (°)103.282 (7), 91.659 (7), 108.382 (7)
V3)1026.89 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.32 × 0.23 × 0.12
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.913, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
16232, 4569, 2359
Rint0.068
(sin θ/λ)max1)0.645
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.129, 0.96
No. of reflections4569
No. of parameters266
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.30

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cgi0.962.963.912 (4)169
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for providing a grant under the project to strengthen the Materials Chemistry Laboratory at GC University, Lahore.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012). Acta Cryst. E68, o2973.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds