organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-5-Bromo-2-hy­dr­oxy-3-meth­­oxy­benzyl­­idene]-4-meth­­oxy­benzohydrazide monohydrate

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 19 July 2012; accepted 27 July 2012; online 1 September 2012)

In the title compound, C16H15BrN2O4·H2O, the hydrazide mol­ecule is nearly planar, with a largest deviation from the mean plane through the non-H atoms of 0.106 (4) Å and a dihedral angle between the benzene rings of 1.98 (16)°. This mol­ecule adopts an E conformation about the C=N bond and an intra­molecular O—H⋯N hydrogen bond increases the rigidity. In the crystal, some mol­ecules of the title hydrazide are replaced by mol­ecules of its 6-bromo isomer, and the Br atom from this admixture mol­ecule was refined to give a partial occupancy of 0.0523 (13). The hydrazide and water mol­ecules are linked through classical N—H⋯O and O—H⋯O hydrogen bonds, forming layers parallel to (110). C—H⋯π inter­actions are also present.

Related literature

For the biological activity of hydrazone compounds, see: Metwally et al. (2006[Metwally, K. A., Abdel-Aziz, L. M., Lashine, E. M., Husseiny, M. I. & Badawya, R. H. (2006). Bioorg. Med. Chem. 14, 8675-8682.]); Cukurovali et al. (2006[Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.]). For the synthesis of related compounds, see: Emmanuel et al. (2011[Emmanuel, J., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3267.]); Mangalam & Kurup (2011[Mangalam, N. A. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 76, 22-28.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Tan (2012[Tan, Y. (2012). Acta Cryst. E68, o1079.]); Hou & Bi (2012[Hou, J.-L. & Bi, Y. (2012). Acta Cryst. E68, o1725.]); Shen et al. (2012[Shen, X.-H., Shao, L.-J., Zhu, Z.-F. & Zhu, L.-X. (2012). Acta Cryst. E68, o1078.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15BrN2O4·H2O

  • Mr = 397.22

  • Monoclinic, P 21 /n

  • a = 4.9730 (4) Å

  • b = 13.5721 (12) Å

  • c = 24.907 (2) Å

  • β = 90.921 (4)°

  • V = 1680.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.47 mm−1

  • T = 296 K

  • 0.40 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.414, Tmax = 0.539

  • 12692 measured reflections

  • 2939 independent reflections

  • 2268 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.06

  • 2939 reflections

  • 247 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C9–C14 benzene ring

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O1Wi 0.86 (1) 1.96 (2) 2.820 (4) 174 (3)
O2—H2⋯N1 0.87 (3) 1.83 (3) 2.595 (3) 146 (5)
O1W—H1W⋯O2 0.85 (3) 2.23 (3) 2.974 (4) 147 (4)
O1W—H2W⋯O3ii 0.86 (3) 1.82 (3) 2.675 (3) 177 (4)
C16—H16CCg2iii 0.96 2.70 3.517 (3) 144
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Aroylhydrazones derived from the condensation reactions of aroylhydrazides with aldehydes show excellent biological properties (Cukurovali et al., 2006; Metwally et al., 2006). As an extention of the work on the structures of hydrazone derivatives (Tan, 2012; Hou & Bi, 2012; Shen et al., 2012), we report here the crystal structure of a new aroylhydrazone compound. The molecular structure of the title compound is shown in Fig. 1.

The molecule adopts an E conformation about the C7N1 bond and exists in keto form with C8O3 bond length of 1.216 (2) Å, which is very close to a normal CO bond length 1.21 Å (Allen et al., 1987).

In the crystal, approximately 5% of molecules of the title hydrazide are replaced by molecules of its 6-bromo isomer, and the Br1B atom of this admixture molecule was included in the refinement. Since the molecule of 6-bromo isomer is likely nonplanar due to sterical tensions, it does not occupy exactly the same position as the molecule of 5-bromo isomer. As a result, Br1B deviates by 0.58 (4) Å from the mean plane of C1–C6 benzene ring, and the distance C1—Br1B is 1.67 (5) Å, that is much smaller than the typical bond length C—Br. On this reason, geometric parameters involving Br1B are not included in the cif-file.

Parallel arrangement of molecules in crystal is shown in Fig. 2. Adjacent molecules are linked through classical N—H···O and O—H···O hydrogen bonds, and a C—H···π interaction between one of the methyl H atoms and the phenyl ring of the adjacent molecule is also observed (see Table 1, Fig. 3). Weak π···π interactions are also present with a shortest separation between benzene ring centroids of 4.973 (3) Å.

Related literature top

For the biological activity of hydrazone compounds, see: Metwally et al. (2006); Cukurovali et al. (2006). For the synthesis of related compounds, see: Emmanuel et al. (2011); Mangalam & Kurup (2011). For standard bond lengths, see: Allen et al. (1987). For related structures, see: Tan (2012); Hou & Bi (2012); Shen et al. (2012).

Experimental top

The title compound was prepared by adapting a reported procedure (Emmanuel et al., 2011; Mangalam & Kurup, 2011) by refluxing a mixture of methanolic solutions of 4-methoxybenzhydrazide (0.1661 g, 1 mmol) and 5-bromo-3-methoxysalicylaldehyde (0.2309 g, 1 mmol) for 4 h. The formed crystals were collected, washed with few drops of methanol and dried over P4O10 in vacuo. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation from its methanolic solution. They contains approximately 5% of the 6-bromo isomer of the title compound.

Refinement top

Bromine atoms Br1A and Br1B were refined freely, with the sum of their occupancy factors constrained to 1.0. All H atoms on C except of H1A and H1B were placed in calculated positions, with C—H bond distances 0.93–0.97 Å and Uiso=1.2Ueq (1.5 for CH3). The H1A atom was refined with restrained distance C1—H1A using DFIX instruction and with occupancy factor equal to that of Br1A. The H1B was placed in calculated position with occupancy factor equal to that of Br1B, and its coordinates were fixed. Hydrogen atoms attached to O and N atoms were located from difference maps, and the (N,O)—H distances were restrained using DFIX instructions.

Structure description top

Aroylhydrazones derived from the condensation reactions of aroylhydrazides with aldehydes show excellent biological properties (Cukurovali et al., 2006; Metwally et al., 2006). As an extention of the work on the structures of hydrazone derivatives (Tan, 2012; Hou & Bi, 2012; Shen et al., 2012), we report here the crystal structure of a new aroylhydrazone compound. The molecular structure of the title compound is shown in Fig. 1.

The molecule adopts an E conformation about the C7N1 bond and exists in keto form with C8O3 bond length of 1.216 (2) Å, which is very close to a normal CO bond length 1.21 Å (Allen et al., 1987).

In the crystal, approximately 5% of molecules of the title hydrazide are replaced by molecules of its 6-bromo isomer, and the Br1B atom of this admixture molecule was included in the refinement. Since the molecule of 6-bromo isomer is likely nonplanar due to sterical tensions, it does not occupy exactly the same position as the molecule of 5-bromo isomer. As a result, Br1B deviates by 0.58 (4) Å from the mean plane of C1–C6 benzene ring, and the distance C1—Br1B is 1.67 (5) Å, that is much smaller than the typical bond length C—Br. On this reason, geometric parameters involving Br1B are not included in the cif-file.

Parallel arrangement of molecules in crystal is shown in Fig. 2. Adjacent molecules are linked through classical N—H···O and O—H···O hydrogen bonds, and a C—H···π interaction between one of the methyl H atoms and the phenyl ring of the adjacent molecule is also observed (see Table 1, Fig. 3). Weak π···π interactions are also present with a shortest separation between benzene ring centroids of 4.973 (3) Å.

For the biological activity of hydrazone compounds, see: Metwally et al. (2006); Cukurovali et al. (2006). For the synthesis of related compounds, see: Emmanuel et al. (2011); Mangalam & Kurup (2011). For standard bond lengths, see: Allen et al. (1987). For related structures, see: Tan (2012); Hou & Bi (2012); Shen et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of asymmetric unit of C16H15BrN2O4.H2O with atom labelling scheme and thermal ellipsoids drawn at the 50% probability level. Bromine and hydrogen atoms of the admixture molecule are omitted.
[Figure 2] Fig. 2. Packing diagram of the title compound.
[Figure 3] Fig. 3. Hydrogen bonds and C—H···π interactions in the crystal structure of C16H15BrN2O4.H2O.
N'-[(E)-5-bromo-2-hydroxy-3-methoxybenzylidene]-4- methoxybenzohydrazide monohydrate top
Crystal data top
C16H15BrN2O4·H2OF(000) = 808
Mr = 397.22Dx = 1.570 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4929 reflections
a = 4.9730 (4) Åθ = 2.9–25.6°
b = 13.5721 (12) ŵ = 2.47 mm1
c = 24.907 (2) ÅT = 296 K
β = 90.921 (4)°Block, brown
V = 1680.8 (2) Å30.40 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2939 independent reflections
Radiation source: fine-focus sealed tube2268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω and φ scanh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 1616
Tmin = 0.414, Tmax = 0.539l = 2929
12692 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.043P)2 + 0.7865P]
where P = (Fo2 + 2Fc2)/3
2939 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.52 e Å3
6 restraintsΔρmin = 0.34 e Å3
Crystal data top
C16H15BrN2O4·H2OV = 1680.8 (2) Å3
Mr = 397.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.9730 (4) ŵ = 2.47 mm1
b = 13.5721 (12) ÅT = 296 K
c = 24.907 (2) Å0.40 × 0.30 × 0.25 mm
β = 90.921 (4)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2939 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2268 reflections with I > 2σ(I)
Tmin = 0.414, Tmax = 0.539Rint = 0.036
12692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0356 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.52 e Å3
2939 reflectionsΔρmin = 0.34 e Å3
247 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1W0.6146 (7)0.53984 (18)0.20575 (11)0.0857 (8)
H1W0.479 (6)0.521 (3)0.1873 (16)0.129*
H2W0.651 (9)0.496 (2)0.2293 (14)0.129*
Br1A0.86593 (7)0.06757 (2)0.072139 (15)0.06810 (16)0.9477 (13)
H1A0.476 (8)0.0862 (12)0.1601 (13)0.058 (11)*0.9477 (13)
Br1B0.5677 (14)0.0463 (4)0.1799 (3)0.064 (3)0.0523 (13)
H1B0.76300.12000.08800.058 (11)*0.0523 (13)
O10.5501 (5)0.43453 (15)0.08852 (9)0.0653 (6)
O20.2111 (4)0.39584 (17)0.16439 (9)0.0629 (6)
O30.2919 (5)0.39947 (18)0.27910 (10)0.0789 (7)
O41.0445 (4)0.21328 (16)0.45317 (8)0.0616 (6)
N10.0049 (5)0.2680 (2)0.22932 (9)0.0554 (6)
N20.1688 (5)0.2415 (2)0.26906 (9)0.0528 (6)
C10.4937 (6)0.1490 (2)0.14527 (12)0.0534 (7)
C20.6652 (6)0.1699 (2)0.10475 (11)0.0502 (7)
C30.6936 (6)0.2646 (2)0.08475 (11)0.0514 (7)
H30.81490.27750.05760.062*
C40.5407 (6)0.3389 (2)0.10554 (11)0.0489 (7)
C50.3586 (5)0.3192 (2)0.14656 (11)0.0478 (7)
C60.3366 (6)0.2237 (2)0.16659 (11)0.0492 (7)
C70.1512 (6)0.1998 (2)0.20906 (11)0.0559 (7)
H70.13820.13540.22160.067*
C80.3172 (6)0.3134 (2)0.29184 (11)0.0511 (7)
C90.5107 (5)0.2833 (2)0.33332 (10)0.0444 (6)
C100.6695 (6)0.3560 (2)0.35495 (12)0.0514 (7)
H100.65320.42020.34240.062*
C110.8522 (6)0.3363 (2)0.39472 (12)0.0514 (7)
H110.95680.38660.40880.062*
C120.8775 (5)0.2411 (2)0.41334 (11)0.0459 (7)
C130.7265 (6)0.1670 (2)0.39097 (12)0.0530 (7)
H130.74890.10240.40250.064*
C140.5433 (6)0.1873 (2)0.35177 (12)0.0515 (7)
H140.44060.13670.33750.062*
C150.7560 (7)0.4612 (2)0.05349 (14)0.0685 (9)
H15A0.92700.44370.06920.103*
H15B0.75030.53100.04730.103*
H15C0.73170.42720.02000.103*
C161.2105 (6)0.2868 (3)0.47648 (13)0.0702 (9)
H16A1.09980.33870.49080.105*
H16B1.31320.25810.50480.105*
H16C1.33050.31310.44950.105*
H210.165 (7)0.1796 (9)0.2766 (13)0.067 (10)*
H20.116 (8)0.375 (4)0.1910 (13)0.130 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.122 (2)0.0518 (14)0.0830 (19)0.0127 (14)0.0071 (16)0.0124 (12)
Br1A0.0682 (2)0.0490 (2)0.0875 (3)0.00715 (17)0.01531 (18)0.00284 (18)
Br1B0.080 (5)0.040 (4)0.072 (5)0.002 (3)0.010 (3)0.004 (3)
O10.0735 (14)0.0462 (12)0.0770 (14)0.0028 (10)0.0238 (12)0.0056 (11)
O20.0632 (14)0.0619 (13)0.0643 (14)0.0019 (11)0.0177 (11)0.0062 (11)
O30.0930 (18)0.0588 (14)0.0854 (17)0.0022 (13)0.0209 (14)0.0284 (12)
O40.0562 (12)0.0676 (14)0.0615 (12)0.0041 (11)0.0159 (10)0.0053 (11)
N10.0516 (14)0.0730 (18)0.0415 (13)0.0144 (13)0.0024 (11)0.0006 (12)
N20.0566 (15)0.0569 (17)0.0453 (13)0.0085 (13)0.0100 (11)0.0035 (12)
C10.0563 (18)0.0503 (18)0.0536 (17)0.0071 (15)0.0001 (14)0.0039 (15)
C20.0459 (16)0.0512 (17)0.0536 (17)0.0003 (13)0.0002 (13)0.0052 (14)
C30.0462 (16)0.0546 (18)0.0535 (17)0.0059 (14)0.0074 (13)0.0012 (14)
C40.0508 (16)0.0435 (16)0.0526 (16)0.0040 (13)0.0049 (13)0.0019 (13)
C50.0460 (15)0.0545 (18)0.0431 (15)0.0040 (13)0.0025 (12)0.0071 (13)
C60.0466 (16)0.0577 (18)0.0434 (15)0.0107 (14)0.0012 (12)0.0007 (13)
C70.0575 (18)0.0621 (19)0.0481 (16)0.0116 (16)0.0041 (14)0.0027 (15)
C80.0568 (17)0.0482 (18)0.0483 (16)0.0048 (14)0.0034 (13)0.0089 (14)
C90.0444 (15)0.0444 (15)0.0442 (15)0.0014 (12)0.0037 (12)0.0050 (12)
C100.0540 (17)0.0422 (16)0.0579 (17)0.0009 (13)0.0047 (14)0.0044 (13)
C110.0476 (16)0.0480 (17)0.0586 (18)0.0083 (13)0.0014 (14)0.0048 (14)
C120.0390 (14)0.0509 (17)0.0478 (15)0.0006 (12)0.0022 (12)0.0001 (13)
C130.0577 (17)0.0416 (16)0.0600 (18)0.0024 (13)0.0070 (14)0.0041 (13)
C140.0557 (17)0.0428 (16)0.0562 (17)0.0023 (13)0.0092 (14)0.0008 (13)
C150.074 (2)0.0533 (19)0.079 (2)0.0056 (16)0.0200 (18)0.0094 (17)
C160.0533 (19)0.093 (3)0.065 (2)0.0132 (18)0.0134 (16)0.0010 (18)
Geometric parameters (Å, º) top
O1W—H1W0.85 (3)C5—C61.394 (4)
O1W—H2W0.86 (3)C6—C71.451 (4)
Br1A—C21.901 (3)C7—H70.9300
O1—C41.366 (3)C8—C91.480 (4)
O1—C151.404 (4)C9—C101.379 (4)
O2—C51.352 (3)C9—C141.393 (4)
O2—H20.87 (3)C10—C111.381 (4)
O3—C81.217 (3)C10—H100.9300
O4—C121.357 (3)C11—C121.379 (4)
O4—C161.425 (4)C11—H110.9300
N1—C71.285 (4)C12—C131.378 (4)
N1—N21.372 (3)C13—C141.374 (4)
N2—C81.353 (4)C13—H130.9300
N2—H210.861 (14)C14—H140.9300
C1—C21.362 (4)C15—H15A0.9600
C1—C61.390 (4)C15—H15B0.9600
C1—H1A0.93 (4)C15—H15C0.9600
C2—C31.386 (4)C16—H16A0.9600
C3—C41.370 (4)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
C4—C51.402 (4)
H1W—O1W—H2W108 (2)N2—C8—C9117.3 (2)
C4—O1—C15117.8 (2)C10—C9—C14118.0 (3)
C5—O2—H2108 (3)C10—C9—C8117.3 (2)
C12—O4—C16117.9 (2)C14—C9—C8124.7 (3)
C7—N1—N2117.5 (3)C9—C10—C11122.0 (3)
C8—N2—N1117.9 (3)C9—C10—H10119.0
C8—N2—H21128 (2)C11—C10—H10119.0
N1—N2—H21114 (2)C12—C11—C10119.2 (3)
C2—C1—C6119.6 (3)C12—C11—H11120.4
C2—C1—H1A123 (2)C10—C11—H11120.4
C6—C1—H1A117 (2)O4—C12—C13115.9 (3)
C1—C2—C3121.9 (3)O4—C12—C11124.5 (3)
C1—C2—Br1A120.3 (2)C13—C12—C11119.6 (3)
C3—C2—Br1A117.8 (2)C14—C13—C12120.8 (3)
C4—C3—C2119.1 (3)C14—C13—H13119.6
C4—C3—H3120.5C12—C13—H13119.6
C2—C3—H3120.5C13—C14—C9120.3 (3)
O1—C4—C3124.1 (2)C13—C14—H14119.9
O1—C4—C5115.7 (2)C9—C14—H14119.9
C3—C4—C5120.3 (3)O1—C15—H15A109.5
O2—C5—C6123.5 (2)O1—C15—H15B109.5
O2—C5—C4116.9 (3)H15A—C15—H15B109.5
C6—C5—C4119.6 (3)O1—C15—H15C109.5
C1—C6—C5119.6 (3)H15A—C15—H15C109.5
C1—C6—C7118.9 (3)H15B—C15—H15C109.5
C5—C6—C7121.5 (3)O4—C16—H16A109.5
N1—C7—C6119.7 (3)O4—C16—H16B109.5
N1—C7—H7120.1H16A—C16—H16B109.5
C6—C7—H7120.1O4—C16—H16C109.5
O3—C8—N2121.5 (3)H16A—C16—H16C109.5
O3—C8—C9121.2 (3)H16B—C16—H16C109.5
C7—N1—N2—C8177.9 (3)C1—C6—C7—N1179.8 (3)
C6—C1—C2—C31.7 (5)C5—C6—C7—N10.7 (4)
C6—C1—C2—Br1A176.3 (2)N1—N2—C8—O32.6 (4)
C1—C2—C3—C41.4 (4)N1—N2—C8—C9177.9 (2)
Br1A—C2—C3—C4176.5 (2)O3—C8—C9—C103.1 (4)
C15—O1—C4—C310.0 (4)N2—C8—C9—C10177.4 (2)
C15—O1—C4—C5170.6 (3)O3—C8—C9—C14177.1 (3)
C2—C3—C4—O1179.3 (3)N2—C8—C9—C142.4 (4)
C2—C3—C4—C50.1 (4)C14—C9—C10—C111.6 (4)
O1—C4—C5—O20.6 (4)C8—C9—C10—C11178.5 (3)
C3—C4—C5—O2178.8 (3)C9—C10—C11—C120.2 (4)
O1—C4—C5—C6179.7 (3)C16—O4—C12—C13178.2 (3)
C3—C4—C5—C60.9 (4)C16—O4—C12—C111.8 (4)
C2—C1—C6—C50.6 (4)C10—C11—C12—O4178.2 (3)
C2—C1—C6—C7178.8 (3)C10—C11—C12—C131.9 (4)
O2—C5—C6—C1179.0 (3)O4—C12—C13—C14177.5 (3)
C4—C5—C6—C10.6 (4)C11—C12—C13—C142.5 (4)
O2—C5—C6—C70.4 (4)C12—C13—C14—C91.1 (4)
C4—C5—C6—C7179.9 (3)C10—C9—C14—C130.9 (4)
N2—N1—C7—C6179.5 (2)C8—C9—C14—C13179.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 benzene ring
D—H···AD—HH···AD···AD—H···A
N2—H21···O1Wi0.86 (1)1.96 (2)2.820 (4)174 (3)
O2—H2···N10.87 (3)1.83 (3)2.595 (3)146 (5)
O1W—H1W···O20.85 (3)2.23 (3)2.974 (4)147 (4)
O1W—H2W···O3ii0.86 (3)1.82 (3)2.675 (3)177 (4)
C16—H16C···Cg2iii0.962.703.517 (3)144
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H15BrN2O4·H2O
Mr397.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)4.9730 (4), 13.5721 (12), 24.907 (2)
β (°) 90.921 (4)
V3)1680.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.47
Crystal size (mm)0.40 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.414, 0.539
No. of measured, independent and
observed [I > 2σ(I)] reflections
12692, 2939, 2268
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.06
No. of reflections2939
No. of parameters247
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2010), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 benzene ring
D—H···AD—HH···AD···AD—H···A
N2—H21···O1Wi0.861 (14)1.963 (15)2.820 (4)174 (3)
O2—H2···N10.87 (3)1.83 (3)2.595 (3)146 (5)
O1W—H1W···O20.85 (3)2.23 (3)2.974 (4)147 (4)
O1W—H2W···O3ii0.86 (3)1.82 (3)2.675 (3)177 (4)
C16—H16C···Cg2iii0.9602.69893.517 (3)143.56
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z.
 

Acknowledgements

The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for providing the single-crystal X-ray diffraction data. PRR thanks the Council of Scientific and Industrial Research, New Delhi, India, for a Junior Research Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEmmanuel, J., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHou, J.-L. & Bi, Y. (2012). Acta Cryst. E68, o1725.  CSD CrossRef IUCr Journals Google Scholar
First citationMangalam, N. A. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 76, 22–28.  Google Scholar
First citationMetwally, K. A., Abdel-Aziz, L. M., Lashine, E. M., Husseiny, M. I. & Badawya, R. H. (2006). Bioorg. Med. Chem. 14, 8675–8682.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, X.-H., Shao, L.-J., Zhu, Z.-F. & Zhu, L.-X. (2012). Acta Cryst. E68, o1078.  CSD CrossRef IUCr Journals Google Scholar
First citationTan, Y. (2012). Acta Cryst. E68, o1079.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds