organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Chloro-3-hy­dr­oxy-4-meth­­oxy­phen­yl)-1-(4,5-dimeth­­oxy-2-methyl­phen­yl)prop-2-en-1-one

aDepartment of Physics, Sardar Patel University, Vallabh Vidya Nagar, Gujarat 388 120, India, and bP. G. Center in Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat 383 215, India
*Correspondence e-mail: u_h_patel@yahoo.com

(Received 4 July 2012; accepted 6 September 2012; online 12 September 2012)

The title compound, C19H19ClO5, is a chloro derivative of a biologically significant chalcone family. The mean plane of the two substituted benzene rings are twisted by 55.33 (8)° with respect to each other. An intra­molecular C—H⋯Cl hydrogen bond generates an S(5) graph-set motif. In the crystal, a bifurcated O—H⋯(O,O) hydrogen bond leads to an R12(5) graph-set motif and to the formation of zigzag chains propagating along the c-axis direction. A weak ππ inter­action involving the methyl­phenyl rings [centroid–centroid distance = 3.8185 (10) Å] and C—H⋯π inter­actions also occur.

Related literature

For the biological activity of chalcones, see: Awasthi et al. (2009[Awasthi, S. K., Mishra, N., Kumar, B., Sharma, M., Bhattacharya, A., Mishra, L. C. & Bhasin, V. K. (2009). Med. Chem. Res. 18, 407-420.]); Cheng et al. (2000[Cheng, M. S., Shili, R. & Kenyon, G. (2000). Chin. Chem. Lett. 11, 851-854.]); Echeverria et al. (2009[Echeverria, C., Santibanez, J. F., Donoso-Tauda, O., Escobar, C. A. & Tagle, R. R. (2009). Int. J. Mol. Sci. 10, 221-231.]); Szliszka et al. (2010[Szliszka, E., Czuba, Z. P., Mazur, B., Sedek, L., Paradysz, A. & Krol, W. (2010). Int. J. Mol. Sci. 11, 1-13.]); Yadav et al. (2010[Yadav, H. L., Gupta, P., Pawar, P. S., Singour, P. K. & Patil, U. K. (2010). Med. Chem. Res. 19, 1-8.]); Bhatia et al. (2009[Bhatia, N. M., Mahadik, K. R. & Bhatia, M. S. (2009). Chem. Pap. Chem. Zvesti, 63, 456-463.]); Lahtchev et al. (2008[Lahtchev, K. L., Batovska, D. I., Parushev, S. P., Ubiyvovk, V. M. & Sibirny, A. A. (2008). Eur. J. Med. Chem. 43, 2220-2228.]); Yayli et al. (2006[Yayli, N., Ucuncu, O., Yasar, A., Kucuk, M., Akyuz, E. & Karaoglu, S. A. (2006). Turk. J. Chem. 30, 505-514.]); Sivakumar et al. (2010[Sivakumar, P. M., Prabhakar, P. K. & Doble, M. (2010). Med. Chem. Res. 19, 1-17.]). For our studies on the synthesis and crystal structures of chalcones, see: Patel et al. (2007a[Patel, U. H., Patel, B. D., Modh, R. D. & Patel, P. D. (2007a). Acta Cryst. E63, o3598-o3599.],b[Patel, U. H., Patel, P. D. & Thakker, N. (2007b). Acta Cryst. C63, o337-o339.]). For C—H⋯π inter­actions, see: Malone et al. (1997[Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavrry, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429-3436.]); For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19ClO5

  • Mr = 362.79

  • Orthorhombic, P b c n

  • a = 14.2134 (4) Å

  • b = 10.2802 (2) Å

  • c = 24.2786 (7) Å

  • V = 3547.51 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.32 × 0.21 × 0.07 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 34815 measured reflections

  • 3135 independent reflections

  • 2399 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.098

  • S = 1.05

  • 3135 reflections

  • 266 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯O4i 0.84 (3) 2.31 (3) 3.007 (2) 140 (3)
O1—H11⋯O5i 0.84 (3) 2.37 (3) 3.042 (2) 138 (2)
C8—H8⋯Cl1 0.95 (2) 2.62 (2) 3.044 (2) 107.9 (15)
C7—H72⋯Cg2i 0.96 2.92 3.720 (3) 142
C18—H181⋯Cg1ii 0.96 3.00 3.512 (2) 115
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Chalcones, belonging to flavonoid family, synthesized or the natural one, displayed many interesting properties including antimalarial (Awasthi et al., 2009; Cheng et al., 2000), anticancer (Echeverria et al., 2009 Szliszka et al., 2010), anti-inflammatory (Yadav et al., 2010), antibacterial (Bhatia et al.,2009), antifungal (Lahtchev et al.,2008), antimicrobial (Yayli et al.,2006) and antioxidant (Sivakumar et al., 2010) activities. In the chemical structure, three carbon αβ unsaturated carbonyl system, the back bone of the open chain flavonoids, joins two aromatic rings. In view of the pharmacological importance of chalcones and in continuation of our interest on the synthesis and crystal structure determination of interesting class of heterocyclic compounds (Patel et al., 2007a,b), we report here the synthesis and crystal structure of newly synthesized methoxy – chloro substituted C19H19ClO5 chalcone derivative.

In the title compound, C19H19ClO5 (I), two methoxy and one methyl groups present in one of the phenyl rings which is joined by a prop-2-en-1-one group to chloro – hydroxyl- methoxy substituted phenyl ring. Bond distances are at normal range (Allen et al., 1987). The dihedral angle between the mean plane of the two benzene rings is 55.33 (8)° and the angle between the mean plane of prop-2-en 1-one group (C8\C9\O3\C10) and the mean plane of the Chloro phenyl ring (C1\C2\C3\C4\C5\C6) and methyl phenyl ring (C11\C12\C13\C14\C15\C16) are 21.85 (12)° and 34.09 (12)° respectively.

In terms of graph set analysis (Bernstein et al., 1995), intra molecular interactions O1—H11···O2, C8—H8···O3 and C8—H8···Cl1 generate three pseudo rings of S(5) graph set motifs (Fig. 2). The O1—H11···O4 (-x + 1/2,-y + 1/2,z + 1/2) and O1—H11···O5 (-x + 1/2,-y + 1/2,z + 1/2) interactions form a pair of bifurcated donor bonds involving methoxy oxygen atoms O2 and O4 of the symmetry related molecule at -x + 1/2,-y + 1/2,z + 1/2 generating a ring of graph set motif R 12 (5) which form a zig - zag molecular chain running parallal to the [0 0 1] direction. This molecular arrangement facilitates in formation of a C—H···π interaction of type - III (Malone et al. (1997)) involving the centroids of the methyl phenyl ring to methoxy carbon C7 via H72. Another C—H···π interaction of type - III involves methoxy carbon C18 via H18 to the centroid of chloro phenyl ring. The weak ππ stacked interaction involving the centroids of the methyl phenyl ring with Cg–Cg separation distance of 3.8185 (10) Å further contributes to the molecular packing (Fig. 3). Superimposed symmetry related molecules connected by trifurcated O—H···O hydrogen bonds, C—H···Cl, C—H···O and ππ interactions lined up parallel to [0 0 1] direction.

Related literature top

For the biological activity of chalcones, see: Awasthi et al. (2009); Cheng et al. (2000); Echeverria et al. (2009); Szliszka et al. (2010); Yadav et al. (2010); Bhatia et al. (2009); Lahtchev et al. (2008); Yayli et al. (2006); Sivakumar et al. (2010). For our studies on the synthesis and crystal structures of chalcones, see: Patel et al. (2007a,b). For C—H···π interactions, see: Malone et al. (1997); For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995)

Experimental top

Preparation of 1-(4, 5-dimethoxy- 2- methyl-phenyl) ethanone (0.01 mole) and 2-chloro-3-hydroxy-4-methoxy benzaldehyde (0.01 mole) were dissolved in ethanol (40 ml) and a solution of potassium hydroxide (40%, 40 ml) was added in it (Fig. 1). The reaction mixture was stirred at room temperature for 24 h. After completion of the reaction as indicated by TLC, contents were poured in to crushed ice and acidified with diluted HCl. The solid separated was washed with water, filtered and dried. Yield: 89%, Elemental Analysis: C – 63.40%, H – 6.12%, Cl-9.30% IR(cm-1): 2956(C—H str. (asym)alkyl), 2893 (C—H str. (sym) alkyl), 1486 (C-Hdef. (asym) alkyl), 1377 (C—H def. (sym) alkyl), 3048 (C—H str.arom.), 1588, 1528.(C=C str. arom.), 1118 (C—H i.p.def arom.), 819 (C—H o.o.p.def.arom.), 3373(OH, phenol), 1278 (C—O—C (sym)ether), 1081(C—O—C (asym) ether), 985 (CH=CH def.chalcone), 3042(CH=CH str. chalcone), 1629 (C=C str. chalcone), 506 (C—Cl str.). 1H NMR (CDCl3) p.p.m.: 2.44(s, 3H, CH3), 3.89(s, 3H, OCH3), 3.93(s, 3H, OCH3), 3.94(s, 3H, OCH3), 6.74(s, 1H), 6.94(s, 1H), 7.06(d, 2H, J = 7.2 Hz), 7.45(d,1H,J=15.4 Hz,chalcone), 7.61(d, 1H, J = 15.6 Hz, chalcone), 13.46(s, OH).MS: m/z 365(M+2). 13C NMR (CDCl3) p.p.m.: 15.38(CH3), 55.79(OCH3), 56.01(OCH3), 56.04(OCH3), 122.75(CH=CH, chalcone), 126.31(CH=CH,chalcone), 146.25(C—Cl), 155.27(C—OH), 194.56(C=O).

Refinement top

The H atoms positions are geometrically fixed. These H atoms are constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for the phenyl H atoms and Uiso(H) = 1.5Ueq(C) for the methyl H atoms. Data collection: APEX2 (Bruker, 2008) Cell refinement: SAINT (Bruker, 2008) Data reduction: SAINT Program(S) used to solve structure: SHELXS97 (Sheldrick, 2008) Program(S) used to refine structure: SHELXL97(Sheldrick, 2008) Molecular graphics: PLATON (Spek, 2009) Software used to prepare material for publication: publCIF (Westrip, 2010)

Structure description top

Chalcones, belonging to flavonoid family, synthesized or the natural one, displayed many interesting properties including antimalarial (Awasthi et al., 2009; Cheng et al., 2000), anticancer (Echeverria et al., 2009 Szliszka et al., 2010), anti-inflammatory (Yadav et al., 2010), antibacterial (Bhatia et al.,2009), antifungal (Lahtchev et al.,2008), antimicrobial (Yayli et al.,2006) and antioxidant (Sivakumar et al., 2010) activities. In the chemical structure, three carbon αβ unsaturated carbonyl system, the back bone of the open chain flavonoids, joins two aromatic rings. In view of the pharmacological importance of chalcones and in continuation of our interest on the synthesis and crystal structure determination of interesting class of heterocyclic compounds (Patel et al., 2007a,b), we report here the synthesis and crystal structure of newly synthesized methoxy – chloro substituted C19H19ClO5 chalcone derivative.

In the title compound, C19H19ClO5 (I), two methoxy and one methyl groups present in one of the phenyl rings which is joined by a prop-2-en-1-one group to chloro – hydroxyl- methoxy substituted phenyl ring. Bond distances are at normal range (Allen et al., 1987). The dihedral angle between the mean plane of the two benzene rings is 55.33 (8)° and the angle between the mean plane of prop-2-en 1-one group (C8\C9\O3\C10) and the mean plane of the Chloro phenyl ring (C1\C2\C3\C4\C5\C6) and methyl phenyl ring (C11\C12\C13\C14\C15\C16) are 21.85 (12)° and 34.09 (12)° respectively.

In terms of graph set analysis (Bernstein et al., 1995), intra molecular interactions O1—H11···O2, C8—H8···O3 and C8—H8···Cl1 generate three pseudo rings of S(5) graph set motifs (Fig. 2). The O1—H11···O4 (-x + 1/2,-y + 1/2,z + 1/2) and O1—H11···O5 (-x + 1/2,-y + 1/2,z + 1/2) interactions form a pair of bifurcated donor bonds involving methoxy oxygen atoms O2 and O4 of the symmetry related molecule at -x + 1/2,-y + 1/2,z + 1/2 generating a ring of graph set motif R 12 (5) which form a zig - zag molecular chain running parallal to the [0 0 1] direction. This molecular arrangement facilitates in formation of a C—H···π interaction of type - III (Malone et al. (1997)) involving the centroids of the methyl phenyl ring to methoxy carbon C7 via H72. Another C—H···π interaction of type - III involves methoxy carbon C18 via H18 to the centroid of chloro phenyl ring. The weak ππ stacked interaction involving the centroids of the methyl phenyl ring with Cg–Cg separation distance of 3.8185 (10) Å further contributes to the molecular packing (Fig. 3). Superimposed symmetry related molecules connected by trifurcated O—H···O hydrogen bonds, C—H···Cl, C—H···O and ππ interactions lined up parallel to [0 0 1] direction.

For the biological activity of chalcones, see: Awasthi et al. (2009); Cheng et al. (2000); Echeverria et al. (2009); Szliszka et al. (2010); Yadav et al. (2010); Bhatia et al. (2009); Lahtchev et al. (2008); Yayli et al. (2006); Sivakumar et al. (2010). For our studies on the synthesis and crystal structures of chalcones, see: Patel et al. (2007a,b). For C—H···π interactions, see: Malone et al. (1997); For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995)

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Reaction Scheme for C19 H19 Cl O5.
[Figure 2] Fig. 2. Molecular structure of the title compound,showing the atom labeling scheme with 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. Packing diagram of the title molecule, showing trifurcated O—H···O interactions, C—H···π and π-π interactions on ac plane.
3-(2-Chloro-3-hydroxy-4-methoxyphenyl)-1-(4,5-dimethoxy-2- methylphenyl)prop-2-en-1-one top
Crystal data top
C19H19ClO5F(000) = 1520
Mr = 362.79Dx = 1.359 Mg m3
Orthorhombic, PbcnMelting point: 383 K
Hall symbol: -P 2n 2abMo Kα radiation, λ = 0.71073 Å
a = 14.2134 (4) ŵ = 0.24 mm1
b = 10.2802 (2) ÅT = 293 K
c = 24.2786 (7) ÅPlate, yellow
V = 3547.51 (16) Å30.32 × 0.21 × 0.07 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
Rint = 0.040
Graphite monochromatorθmax = 25°, θmin = 2.2°
scanh = 1616
34815 measured reflectionsk = 1212
3135 independent reflectionsl = 2828
2399 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0439P)2 + 1.2812P]
where P = (Fo2 + 2Fc2)/3
3135 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H19ClO5V = 3547.51 (16) Å3
Mr = 362.79Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 14.2134 (4) ŵ = 0.24 mm1
b = 10.2802 (2) ÅT = 293 K
c = 24.2786 (7) Å0.32 × 0.21 × 0.07 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2399 reflections with I > 2σ(I)
34815 measured reflectionsRint = 0.040
3135 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.16 e Å3
3135 reflectionsΔρmin = 0.21 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C180.04648 (18)0.0556 (2)0.06732 (9)0.0670 (7)
H1830.0040.10850.05360.072 (7)*
H1820.08230.02220.0370.087 (8)*
H1810.08650.10730.09050.077 (8)*
Cl10.45882 (4)0.06221 (6)0.43367 (2)0.06047 (19)
O10.44408 (10)0.21636 (16)0.53159 (6)0.0580 (4)
O20.29752 (10)0.35298 (14)0.56689 (5)0.0591 (4)
O50.00877 (10)0.04997 (13)0.09843 (5)0.0520 (4)
C20.36303 (12)0.21629 (17)0.50199 (7)0.0392 (4)
O40.04678 (10)0.24539 (12)0.15426 (6)0.0536 (4)
C90.20959 (14)0.06296 (18)0.33195 (7)0.0418 (4)
O30.26778 (11)0.12586 (15)0.28885 (6)0.0667 (4)
C10.35824 (12)0.14541 (16)0.45372 (7)0.0381 (4)
C120.12393 (13)0.10618 (18)0.22209 (7)0.0379 (4)
C140.03967 (12)0.01980 (18)0.14509 (7)0.0399 (4)
C60.27698 (13)0.14201 (16)0.42094 (7)0.0385 (4)
C160.11233 (13)0.12733 (17)0.21072 (7)0.0422 (4)
C100.21200 (13)0.03516 (17)0.28728 (7)0.0419 (4)
C110.14658 (12)0.02000 (17)0.23960 (7)0.0384 (4)
C30.28456 (13)0.28768 (17)0.51852 (7)0.0415 (4)
C80.27240 (14)0.05921 (18)0.37199 (7)0.0428 (4)
C150.05818 (13)0.10426 (19)0.16356 (8)0.0441 (5)
C50.20091 (15)0.21590 (19)0.43854 (8)0.0480 (5)
C40.20394 (14)0.28813 (19)0.48690 (8)0.0481 (5)
C130.07162 (13)0.12647 (17)0.17529 (7)0.0391 (4)
C70.2259 (2)0.4344 (3)0.58622 (10)0.0790 (8)
H720.24610.47640.61950.092 (8)*
H730.17060.38360.59360.130 (13)*
H710.21180.49890.55890.114 (11)*
C170.0853 (2)0.3566 (2)0.17956 (12)0.0850 (9)
H1710.06320.43320.1610.091 (8)*
H1730.15270.3530.17750.176 (18)*
H1720.06620.35950.21750.107 (11)*
C190.12707 (18)0.26652 (19)0.22824 (10)0.0631 (6)
H1910.18540.29790.21340.092 (9)*
H1920.07620.31910.21480.086 (8)*
H1930.1290.27120.26770.099 (9)*
H120.1442 (11)0.1768 (17)0.2420 (7)0.035 (5)*
H90.1571 (14)0.1257 (18)0.3312 (8)0.052 (6)*
H150.0328 (14)0.176 (2)0.1440 (8)0.055 (6)*
H80.3199 (16)0.005 (2)0.3690 (9)0.068 (7)*
H40.1507 (14)0.3358 (18)0.4991 (8)0.049 (5)*
H50.1437 (15)0.2187 (18)0.4170 (8)0.056 (6)*
H110.4370 (19)0.264 (3)0.5596 (11)0.086 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C180.0762 (17)0.0730 (15)0.0518 (13)0.0048 (14)0.0219 (13)0.0163 (12)
Cl10.0484 (3)0.0816 (4)0.0514 (3)0.0225 (3)0.0062 (2)0.0222 (3)
O10.0492 (9)0.0793 (10)0.0454 (8)0.0208 (7)0.0142 (7)0.0228 (8)
O20.0545 (9)0.0761 (10)0.0468 (8)0.0214 (7)0.0101 (6)0.0256 (7)
O50.0543 (8)0.0603 (8)0.0413 (7)0.0015 (7)0.0140 (6)0.0000 (6)
C20.0390 (10)0.0447 (10)0.0340 (9)0.0033 (8)0.0052 (8)0.0005 (8)
O40.0685 (10)0.0434 (7)0.0490 (8)0.0009 (7)0.0120 (7)0.0060 (6)
C90.0465 (11)0.0448 (10)0.0340 (9)0.0026 (9)0.0011 (8)0.0000 (8)
O30.0803 (11)0.0626 (9)0.0573 (9)0.0270 (8)0.0224 (8)0.0160 (7)
C10.0399 (10)0.0391 (9)0.0354 (9)0.0046 (8)0.0018 (8)0.0004 (7)
C120.0414 (10)0.0398 (10)0.0326 (9)0.0027 (8)0.0023 (8)0.0043 (8)
C140.0353 (9)0.0516 (11)0.0329 (9)0.0018 (8)0.0012 (8)0.0006 (8)
C60.0439 (10)0.0367 (9)0.0350 (9)0.0008 (8)0.0026 (8)0.0010 (7)
C160.0442 (11)0.0422 (10)0.0402 (10)0.0001 (8)0.0003 (8)0.0013 (8)
C100.0469 (11)0.0431 (10)0.0357 (9)0.0027 (9)0.0019 (8)0.0002 (8)
C110.0404 (10)0.0440 (10)0.0307 (9)0.0011 (8)0.0037 (8)0.0004 (7)
C30.0452 (11)0.0447 (10)0.0346 (9)0.0041 (8)0.0010 (8)0.0043 (8)
C80.0487 (11)0.0424 (10)0.0374 (9)0.0017 (9)0.0022 (9)0.0010 (8)
C150.0454 (11)0.0440 (11)0.0429 (10)0.0038 (9)0.0037 (8)0.0065 (9)
C50.0437 (12)0.0534 (11)0.0471 (11)0.0047 (9)0.0107 (9)0.0066 (9)
C40.0433 (11)0.0534 (11)0.0474 (11)0.0111 (9)0.0028 (9)0.0090 (9)
C130.0419 (10)0.0405 (10)0.0350 (9)0.0007 (8)0.0035 (8)0.0044 (8)
C70.0757 (19)0.0977 (19)0.0635 (15)0.0395 (17)0.0135 (13)0.0370 (15)
C170.133 (3)0.0413 (13)0.080 (2)0.0037 (14)0.0335 (18)0.0099 (12)
C190.0734 (17)0.0438 (11)0.0720 (16)0.0010 (11)0.0164 (13)0.0010 (10)
Geometric parameters (Å, º) top
C18—O51.427 (2)C14—C131.395 (2)
C18—H1830.96C6—C51.389 (3)
C18—H1820.96C6—C81.463 (2)
C18—H1810.96C16—C111.395 (2)
Cl1—C11.7356 (18)C16—C151.400 (3)
O1—C21.358 (2)C16—C191.507 (3)
O1—H110.85 (3)C10—C111.493 (2)
O2—C31.365 (2)C3—C41.379 (3)
O2—C71.399 (2)C8—H80.95 (2)
O5—C141.362 (2)C15—H150.95 (2)
C2—C11.382 (2)C5—C41.390 (3)
C2—C31.394 (2)C5—H50.97 (2)
O4—C131.371 (2)C4—H40.95 (2)
O4—C171.409 (3)C7—H720.96
C9—C81.320 (3)C7—H730.96
C9—C101.482 (3)C7—H710.96
C9—H90.99 (2)C17—H1710.96
O3—C101.225 (2)C17—H1730.96
C1—C61.403 (2)C17—H1720.96
C12—C131.374 (2)C19—H1910.96
C12—C111.403 (2)C19—H1920.96
C12—H120.919 (17)C19—H1930.96
C14—C151.377 (3)
O5—C18—H183109.5O2—C3—C4126.10 (17)
O5—C18—H182109.5O2—C3—C2113.49 (15)
H183—C18—H182109.5C4—C3—C2120.40 (16)
O5—C18—H181109.5C9—C8—C6127.66 (18)
H183—C18—H181109.5C9—C8—H8116.4 (13)
H182—C18—H181109.5C6—C8—H8115.9 (13)
C2—O1—H11109.0 (18)C14—C15—C16121.88 (17)
C3—O2—C7118.98 (16)C14—C15—H15119.1 (12)
C14—O5—C18117.19 (16)C16—C15—H15119.1 (12)
O1—C2—C1119.42 (16)C6—C5—C4121.87 (18)
O1—C2—C3121.74 (15)C6—C5—H5120.4 (12)
C1—C2—C3118.84 (16)C4—C5—H5117.8 (12)
C13—O4—C17117.48 (16)C3—C4—C5119.61 (18)
C8—C9—C10120.23 (18)C3—C4—H4119.4 (12)
C8—C9—H9122.9 (11)C5—C4—H4121.0 (12)
C10—C9—H9116.7 (11)O4—C13—C12125.64 (16)
C2—C1—C6122.34 (16)O4—C13—C14114.92 (15)
C2—C1—Cl1117.20 (14)C12—C13—C14119.43 (16)
C6—C1—Cl1120.44 (13)O2—C7—H72109.5
C13—C12—C11121.03 (17)O2—C7—H73109.5
C13—C12—H12119.0 (10)H72—C7—H73109.5
C11—C12—H12119.9 (10)O2—C7—H71109.5
O5—C14—C15125.34 (16)H72—C7—H71109.5
O5—C14—C13115.01 (16)H73—C7—H71109.5
C15—C14—C13119.65 (16)O4—C17—H171109.5
C5—C6—C1116.93 (16)O4—C17—H173109.5
C5—C6—C8122.23 (17)H171—C17—H173109.5
C1—C6—C8120.79 (16)O4—C17—H172109.5
C11—C16—C15117.97 (16)H171—C17—H172109.5
C11—C16—C19124.08 (17)H173—C17—H172109.5
C15—C16—C19117.91 (17)C16—C19—H191109.5
O3—C10—C9120.70 (17)C16—C19—H192109.5
O3—C10—C11120.46 (16)H191—C19—H192109.5
C9—C10—C11118.83 (16)C16—C19—H193109.5
C16—C11—C12119.93 (16)H191—C19—H193109.5
C16—C11—C10121.64 (16)H192—C19—H193109.5
C12—C11—C10118.34 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H11···O4i0.84 (3)2.31 (3)3.007 (2)140 (3)
O1—H11···O5i0.84 (3)2.37 (3)3.042 (2)138 (2)
C8—H8···Cl10.95 (2)2.62 (2)3.044 (2)107.9 (15)
C7—H72···Cg2i0.962.923.720 (3)142
C18—H181···Cg1ii0.963.003.512 (2)115
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H19ClO5
Mr362.79
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)14.2134 (4), 10.2802 (2), 24.2786 (7)
V3)3547.51 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.32 × 0.21 × 0.07
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
34815, 3135, 2399
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.098, 1.05
No. of reflections3135
No. of parameters266
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H11···O4i0.84 (3)2.31 (3)3.007 (2)140 (3)
O1—H11···O5i0.84 (3)2.37 (3)3.042 (2)138 (2)
C8—H8···Cl10.95 (2)2.62 (2)3.044 (2)107.9 (15)
C7—H72···Cg2i0.962.923.720 (3)142
C18—H181···Cg1ii0.963.003.512 (2)115
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y1/2, z+1/2.
 

Acknowledgements

We are thankful to the DST, New Delhi for providing the single-crystal diffractometer under DST–FIST at the Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat. SAG is also thankful to the UGC for financial support (RFSMS) to carry out this research work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAwasthi, S. K., Mishra, N., Kumar, B., Sharma, M., Bhattacharya, A., Mishra, L. C. & Bhasin, V. K. (2009). Med. Chem. Res. 18, 407–420.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhatia, N. M., Mahadik, K. R. & Bhatia, M. S. (2009). Chem. Pap. Chem. Zvesti, 63, 456–463.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, M. S., Shili, R. & Kenyon, G. (2000). Chin. Chem. Lett. 11, 851–854.  CAS Google Scholar
First citationEcheverria, C., Santibanez, J. F., Donoso-Tauda, O., Escobar, C. A. & Tagle, R. R. (2009). Int. J. Mol. Sci. 10, 221–231.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLahtchev, K. L., Batovska, D. I., Parushev, S. P., Ubiyvovk, V. M. & Sibirny, A. A. (2008). Eur. J. Med. Chem. 43, 2220–2228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMalone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavrry, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436.  CrossRef CAS Web of Science Google Scholar
First citationPatel, U. H., Patel, B. D., Modh, R. D. & Patel, P. D. (2007a). Acta Cryst. E63, o3598–o3599.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatel, U. H., Patel, P. D. & Thakker, N. (2007b). Acta Cryst. C63, o337–o339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, P. M., Prabhakar, P. K. & Doble, M. (2010). Med. Chem. Res. 19, 1–17.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzliszka, E., Czuba, Z. P., Mazur, B., Sedek, L., Paradysz, A. & Krol, W. (2010). Int. J. Mol. Sci. 11, 1–13.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, H. L., Gupta, P., Pawar, P. S., Singour, P. K. & Patil, U. K. (2010). Med. Chem. Res. 19, 1–8.  Google Scholar
First citationYayli, N., Ucuncu, O., Yasar, A., Kucuk, M., Akyuz, E. & Karaoglu, S. A. (2006). Turk. J. Chem. 30, 505–514.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds