organic compounds
3-(2-Chloro-3-hydroxy-4-methoxyphenyl)-1-(4,5-dimethoxy-2-methylphenyl)prop-2-en-1-one
aDepartment of Physics, Sardar Patel University, Vallabh Vidya Nagar, Gujarat 388 120, India, and bP. G. Center in Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat 383 215, India
*Correspondence e-mail: u_h_patel@yahoo.com
The title compound, C19H19ClO5, is a chloro derivative of a biologically significant chalcone family. The mean plane of the two substituted benzene rings are twisted by 55.33 (8)° with respect to each other. An intramolecular C—H⋯Cl hydrogen bond generates an S(5) graph-set motif. In the crystal, a bifurcated O—H⋯(O,O) hydrogen bond leads to an R12(5) graph-set motif and to the formation of zigzag chains propagating along the c-axis direction. A weak π–π interaction involving the methylphenyl rings [centroid–centroid distance = 3.8185 (10) Å] and C—H⋯π interactions also occur.
Related literature
For the biological activity of et al. (2009); Cheng et al. (2000); Echeverria et al. (2009); Szliszka et al. (2010); Yadav et al. (2010); Bhatia et al. (2009); Lahtchev et al. (2008); Yayli et al. (2006); Sivakumar et al. (2010). For our studies on the synthesis and crystal structures of see: Patel et al. (2007a,b). For C—H⋯π interactions, see: Malone et al. (1997); For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).
see: AwasthiExperimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536812038275/zj2087sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812038275/zj2087Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812038275/zj2087Isup3.cml
Preparation of 1-(4, 5-dimethoxy- 2- methyl-phenyl) ethanone (0.01 mole) and 2-chloro-3-hydroxy-4-methoxy benzaldehyde (0.01 mole) were dissolved in ethanol (40 ml) and a solution of potassium hydroxide (40%, 40 ml) was added in it (Fig. 1). The reaction mixture was stirred at room temperature for 24 h. After completion of the reaction as indicated by TLC, contents were poured in to crushed ice and acidified with diluted HCl. The solid separated was washed with water, filtered and dried. Yield: 89%, Elemental Analysis: C – 63.40%, H – 6.12%, Cl-9.30% IR(cm-1): 2956(C—H str. (asym)alkyl), 2893 (C—H str. (sym) alkyl), 1486 (C-Hdef. (asym) alkyl), 1377 (C—H def. (sym) alkyl), 3048 (C—H str.arom.), 1588, 1528.(C=C str. arom.), 1118 (C—H i.p.def arom.), 819 (C—H o.o.p.def.arom.), 3373(OH, phenol), 1278 (C—O—C (sym)ether), 1081(C—O—C (asym) ether), 985 (CH=CH def.chalcone), 3042(CH=CH str. chalcone), 1629 (C=C str. chalcone), 506 (C—Cl str.). 1H NMR (CDCl3) p.p.m.: 2.44(s, 3H, CH3), 3.89(s, 3H, OCH3), 3.93(s, 3H, OCH3), 3.94(s, 3H, OCH3), 6.74(s, 1H), 6.94(s, 1H), 7.06(d, 2H, J = 7.2 Hz), 7.45(d,1H,J=15.4 Hz,chalcone), 7.61(d, 1H, J = 15.6 Hz, chalcone), 13.46(s, OH).MS: m/z 365(M+2). 13C NMR (CDCl3) p.p.m.: 15.38(CH3), 55.79(OCH3), 56.01(OCH3), 56.04(OCH3), 122.75(CH=CH, chalcone), 126.31(CH=CH,chalcone), 146.25(C—Cl), 155.27(C—OH), 194.56(C=O).
The H atoms positions are geometrically fixed. These H atoms are constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for the phenyl H atoms and Uiso(H) = 1.5Ueq(C) for the methyl H atoms. Data collection: APEX2 (Bruker, 2008) Cell
SAINT (Bruker, 2008) Data reduction: SAINT Program(S) used to solve structure: SHELXS97 (Sheldrick, 2008) Program(S) used to refine structure: SHELXL97(Sheldrick, 2008) Molecular graphics: PLATON (Spek, 2009) Software used to prepare material for publication: publCIF (Westrip, 2010)Chalcones, belonging to flavonoid family, synthesized or the natural one, displayed many interesting properties including antimalarial (Awasthi et al., 2009; Cheng et al., 2000), anticancer (Echeverria et al., 2009 Szliszka et al., 2010), anti-inflammatory (Yadav et al., 2010), antibacterial (Bhatia et al.,2009), antifungal (Lahtchev et al.,2008), antimicrobial (Yayli et al.,2006) and antioxidant (Sivakumar et al., 2010) activities. In the chemical structure, three carbon α – β unsaturated carbonyl system, the back bone of the open chain joins two aromatic rings. In view of the pharmacological importance of and in continuation of our interest on the synthesis and determination of interesting class of (Patel et al., 2007a,b), we report here the synthesis and of newly synthesized methoxy – chloro substituted C19H19ClO5 chalcone derivative.
In the title compound, C19H19ClO5 (I), two methoxy and one methyl groups present in one of the phenyl rings which is joined by a prop-2-en-1-one group to chloro – hydroxyl- methoxy substituted phenyl ring. Bond distances are at normal range (Allen et al., 1987). The dihedral angle between the mean plane of the two benzene rings is 55.33 (8)° and the angle between the mean plane of prop-2-en 1-one group (C8\C9\O3\C10) and the mean plane of the Chloro phenyl ring (C1\C2\C3\C4\C5\C6) and methyl phenyl ring (C11\C12\C13\C14\C15\C16) are 21.85 (12)° and 34.09 (12)° respectively.
In terms of graph set analysis (Bernstein et al., 1995), intra molecular interactions O1—H11···O2, C8—H8···O3 and C8—H8···Cl1 generate three pseudo rings of S(5) graph set motifs (Fig. 2). The O1—H11···O4 (-x + 1/2,-y + 1/2,z + 1/2) and O1—H11···O5 (-x + 1/2,-y + 1/2,z + 1/2) interactions form a pair of bifurcated donor bonds involving methoxy oxygen atoms O2 and O4 of the symmetry related molecule at -x + 1/2,-y + 1/2,z + 1/2 generating a ring of graph set motif R 12 (5) which form a zig - zag molecular chain running parallal to the [0 0 1] direction. This molecular arrangement facilitates in formation of a C—H···π interaction of type - III (Malone et al. (1997)) involving the centroids of the methyl phenyl ring to methoxy carbon C7 via H72. Another C—H···π interaction of type - III involves methoxy carbon C18 via H18 to the centroid of chloro phenyl ring. The weak π–π stacked interaction involving the centroids of the methyl phenyl ring with Cg–Cg separation distance of 3.8185 (10) Å further contributes to the molecular packing (Fig. 3). Superimposed symmetry related molecules connected by trifurcated O—H···O hydrogen bonds, C—H···Cl, C—H···O and π–π interactions lined up parallel to [0 0 1] direction.
For the biological activity of π interactions, see: Malone et al. (1997); For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995)
see: Awasthi et al. (2009); Cheng et al. (2000); Echeverria et al. (2009); Szliszka et al. (2010); Yadav et al. (2010); Bhatia et al. (2009); Lahtchev et al. (2008); Yayli et al. (2006); Sivakumar et al. (2010). For our studies on the synthesis and crystal structures of see: Patel et al. (2007a,b). For C—H···Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Reaction Scheme for C19 H19 Cl O5. | |
Fig. 2. Molecular structure of the title compound,showing the atom labeling scheme with 50% probability displacement ellipsoids. | |
Fig. 3. Packing diagram of the title molecule, showing trifurcated O—H···O interactions, C—H···π and π-π interactions on ac plane. |
C19H19ClO5 | F(000) = 1520 |
Mr = 362.79 | Dx = 1.359 Mg m−3 |
Orthorhombic, Pbcn | Melting point: 383 K |
Hall symbol: -P 2n 2ab | Mo Kα radiation, λ = 0.71073 Å |
a = 14.2134 (4) Å | µ = 0.24 mm−1 |
b = 10.2802 (2) Å | T = 293 K |
c = 24.2786 (7) Å | Plate, yellow |
V = 3547.51 (16) Å3 | 0.32 × 0.21 × 0.07 mm |
Z = 8 |
Bruker Kappa APEXII CCD diffractometer | Rint = 0.040 |
Graphite monochromator | θmax = 25°, θmin = 2.2° |
scan | h = −16→16 |
34815 measured reflections | k = −12→12 |
3135 independent reflections | l = −28→28 |
2399 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0439P)2 + 1.2812P] where P = (Fo2 + 2Fc2)/3 |
3135 reflections | (Δ/σ)max < 0.001 |
266 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C19H19ClO5 | V = 3547.51 (16) Å3 |
Mr = 362.79 | Z = 8 |
Orthorhombic, Pbcn | Mo Kα radiation |
a = 14.2134 (4) Å | µ = 0.24 mm−1 |
b = 10.2802 (2) Å | T = 293 K |
c = 24.2786 (7) Å | 0.32 × 0.21 × 0.07 mm |
Bruker Kappa APEXII CCD diffractometer | 2399 reflections with I > 2σ(I) |
34815 measured reflections | Rint = 0.040 |
3135 independent reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.16 e Å−3 |
3135 reflections | Δρmin = −0.21 e Å−3 |
266 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C18 | −0.04648 (18) | −0.0556 (2) | 0.06732 (9) | 0.0670 (7) | |
H183 | 0.004 | −0.1085 | 0.0536 | 0.072 (7)* | |
H182 | −0.0823 | −0.0222 | 0.037 | 0.087 (8)* | |
H181 | −0.0865 | −0.1073 | 0.0905 | 0.077 (8)* | |
Cl1 | 0.45882 (4) | 0.06221 (6) | 0.43367 (2) | 0.06047 (19) | |
O1 | 0.44408 (10) | 0.21636 (16) | 0.53159 (6) | 0.0580 (4) | |
O2 | 0.29752 (10) | 0.35298 (14) | 0.56689 (5) | 0.0591 (4) | |
O5 | −0.00877 (10) | 0.04997 (13) | 0.09843 (5) | 0.0520 (4) | |
C2 | 0.36303 (12) | 0.21629 (17) | 0.50199 (7) | 0.0392 (4) | |
O4 | 0.04678 (10) | 0.24539 (12) | 0.15426 (6) | 0.0536 (4) | |
C9 | 0.20959 (14) | 0.06296 (18) | 0.33195 (7) | 0.0418 (4) | |
O3 | 0.26778 (11) | −0.12586 (15) | 0.28885 (6) | 0.0667 (4) | |
C1 | 0.35824 (12) | 0.14541 (16) | 0.45372 (7) | 0.0381 (4) | |
C12 | 0.12393 (13) | 0.10618 (18) | 0.22209 (7) | 0.0379 (4) | |
C14 | 0.03967 (12) | 0.01980 (18) | 0.14509 (7) | 0.0399 (4) | |
C6 | 0.27698 (13) | 0.14201 (16) | 0.42094 (7) | 0.0385 (4) | |
C16 | 0.11233 (13) | −0.12733 (17) | 0.21072 (7) | 0.0422 (4) | |
C10 | 0.21200 (13) | −0.03516 (17) | 0.28728 (7) | 0.0419 (4) | |
C11 | 0.14658 (12) | −0.02000 (17) | 0.23960 (7) | 0.0384 (4) | |
C3 | 0.28456 (13) | 0.28768 (17) | 0.51852 (7) | 0.0415 (4) | |
C8 | 0.27240 (14) | 0.05921 (18) | 0.37199 (7) | 0.0428 (4) | |
C15 | 0.05818 (13) | −0.10426 (19) | 0.16356 (8) | 0.0441 (5) | |
C5 | 0.20091 (15) | 0.21590 (19) | 0.43854 (8) | 0.0480 (5) | |
C4 | 0.20394 (14) | 0.28813 (19) | 0.48690 (8) | 0.0481 (5) | |
C13 | 0.07162 (13) | 0.12647 (17) | 0.17529 (7) | 0.0391 (4) | |
C7 | 0.2259 (2) | 0.4344 (3) | 0.58622 (10) | 0.0790 (8) | |
H72 | 0.2461 | 0.4764 | 0.6195 | 0.092 (8)* | |
H73 | 0.1706 | 0.3836 | 0.5936 | 0.130 (13)* | |
H71 | 0.2118 | 0.4989 | 0.5589 | 0.114 (11)* | |
C17 | 0.0853 (2) | 0.3566 (2) | 0.17956 (12) | 0.0850 (9) | |
H171 | 0.0632 | 0.4332 | 0.161 | 0.091 (8)* | |
H173 | 0.1527 | 0.353 | 0.1775 | 0.176 (18)* | |
H172 | 0.0662 | 0.3595 | 0.2175 | 0.107 (11)* | |
C19 | 0.12707 (18) | −0.26652 (19) | 0.22824 (10) | 0.0631 (6) | |
H191 | 0.1854 | −0.2979 | 0.2134 | 0.092 (9)* | |
H192 | 0.0762 | −0.3191 | 0.2148 | 0.086 (8)* | |
H193 | 0.129 | −0.2712 | 0.2677 | 0.099 (9)* | |
H12 | 0.1442 (11) | 0.1768 (17) | 0.2420 (7) | 0.035 (5)* | |
H9 | 0.1571 (14) | 0.1257 (18) | 0.3312 (8) | 0.052 (6)* | |
H15 | 0.0328 (14) | −0.176 (2) | 0.1440 (8) | 0.055 (6)* | |
H8 | 0.3199 (16) | −0.005 (2) | 0.3690 (9) | 0.068 (7)* | |
H4 | 0.1507 (14) | 0.3358 (18) | 0.4991 (8) | 0.049 (5)* | |
H5 | 0.1437 (15) | 0.2187 (18) | 0.4170 (8) | 0.056 (6)* | |
H11 | 0.4370 (19) | 0.264 (3) | 0.5596 (11) | 0.086 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C18 | 0.0762 (17) | 0.0730 (15) | 0.0518 (13) | 0.0048 (14) | −0.0219 (13) | −0.0163 (12) |
Cl1 | 0.0484 (3) | 0.0816 (4) | 0.0514 (3) | 0.0225 (3) | −0.0062 (2) | −0.0222 (3) |
O1 | 0.0492 (9) | 0.0793 (10) | 0.0454 (8) | 0.0208 (7) | −0.0142 (7) | −0.0228 (8) |
O2 | 0.0545 (9) | 0.0761 (10) | 0.0468 (8) | 0.0214 (7) | −0.0101 (6) | −0.0256 (7) |
O5 | 0.0543 (8) | 0.0603 (8) | 0.0413 (7) | −0.0015 (7) | −0.0140 (6) | 0.0000 (6) |
C2 | 0.0390 (10) | 0.0447 (10) | 0.0340 (9) | 0.0033 (8) | −0.0052 (8) | 0.0005 (8) |
O4 | 0.0685 (10) | 0.0434 (7) | 0.0490 (8) | 0.0009 (7) | −0.0120 (7) | 0.0060 (6) |
C9 | 0.0465 (11) | 0.0448 (10) | 0.0340 (9) | 0.0026 (9) | −0.0011 (8) | 0.0000 (8) |
O3 | 0.0803 (11) | 0.0626 (9) | 0.0573 (9) | 0.0270 (8) | −0.0224 (8) | −0.0160 (7) |
C1 | 0.0399 (10) | 0.0391 (9) | 0.0354 (9) | 0.0046 (8) | 0.0018 (8) | 0.0004 (7) |
C12 | 0.0414 (10) | 0.0398 (10) | 0.0326 (9) | −0.0027 (8) | 0.0023 (8) | −0.0043 (8) |
C14 | 0.0353 (9) | 0.0516 (11) | 0.0329 (9) | −0.0018 (8) | −0.0012 (8) | −0.0006 (8) |
C6 | 0.0439 (10) | 0.0367 (9) | 0.0350 (9) | −0.0008 (8) | −0.0026 (8) | 0.0010 (7) |
C16 | 0.0442 (11) | 0.0422 (10) | 0.0402 (10) | −0.0001 (8) | −0.0003 (8) | −0.0013 (8) |
C10 | 0.0469 (11) | 0.0431 (10) | 0.0357 (9) | 0.0027 (9) | −0.0019 (8) | 0.0002 (8) |
C11 | 0.0404 (10) | 0.0440 (10) | 0.0307 (9) | 0.0011 (8) | 0.0037 (8) | −0.0004 (7) |
C3 | 0.0452 (11) | 0.0447 (10) | 0.0346 (9) | 0.0041 (8) | −0.0010 (8) | −0.0043 (8) |
C8 | 0.0487 (11) | 0.0424 (10) | 0.0374 (9) | 0.0017 (9) | −0.0022 (9) | −0.0010 (8) |
C15 | 0.0454 (11) | 0.0440 (11) | 0.0429 (10) | −0.0038 (9) | −0.0037 (8) | −0.0065 (9) |
C5 | 0.0437 (12) | 0.0534 (11) | 0.0471 (11) | 0.0047 (9) | −0.0107 (9) | −0.0066 (9) |
C4 | 0.0433 (11) | 0.0534 (11) | 0.0474 (11) | 0.0111 (9) | −0.0028 (9) | −0.0090 (9) |
C13 | 0.0419 (10) | 0.0405 (10) | 0.0350 (9) | 0.0007 (8) | 0.0035 (8) | 0.0044 (8) |
C7 | 0.0757 (19) | 0.0977 (19) | 0.0635 (15) | 0.0395 (17) | −0.0135 (13) | −0.0370 (15) |
C17 | 0.133 (3) | 0.0413 (13) | 0.080 (2) | −0.0037 (14) | −0.0335 (18) | 0.0099 (12) |
C19 | 0.0734 (17) | 0.0438 (11) | 0.0720 (16) | −0.0010 (11) | −0.0164 (13) | −0.0010 (10) |
C18—O5 | 1.427 (2) | C14—C13 | 1.395 (2) |
C18—H183 | 0.96 | C6—C5 | 1.389 (3) |
C18—H182 | 0.96 | C6—C8 | 1.463 (2) |
C18—H181 | 0.96 | C16—C11 | 1.395 (2) |
Cl1—C1 | 1.7356 (18) | C16—C15 | 1.400 (3) |
O1—C2 | 1.358 (2) | C16—C19 | 1.507 (3) |
O1—H11 | 0.85 (3) | C10—C11 | 1.493 (2) |
O2—C3 | 1.365 (2) | C3—C4 | 1.379 (3) |
O2—C7 | 1.399 (2) | C8—H8 | 0.95 (2) |
O5—C14 | 1.362 (2) | C15—H15 | 0.95 (2) |
C2—C1 | 1.382 (2) | C5—C4 | 1.390 (3) |
C2—C3 | 1.394 (2) | C5—H5 | 0.97 (2) |
O4—C13 | 1.371 (2) | C4—H4 | 0.95 (2) |
O4—C17 | 1.409 (3) | C7—H72 | 0.96 |
C9—C8 | 1.320 (3) | C7—H73 | 0.96 |
C9—C10 | 1.482 (3) | C7—H71 | 0.96 |
C9—H9 | 0.99 (2) | C17—H171 | 0.96 |
O3—C10 | 1.225 (2) | C17—H173 | 0.96 |
C1—C6 | 1.403 (2) | C17—H172 | 0.96 |
C12—C13 | 1.374 (2) | C19—H191 | 0.96 |
C12—C11 | 1.403 (2) | C19—H192 | 0.96 |
C12—H12 | 0.919 (17) | C19—H193 | 0.96 |
C14—C15 | 1.377 (3) | ||
O5—C18—H183 | 109.5 | O2—C3—C4 | 126.10 (17) |
O5—C18—H182 | 109.5 | O2—C3—C2 | 113.49 (15) |
H183—C18—H182 | 109.5 | C4—C3—C2 | 120.40 (16) |
O5—C18—H181 | 109.5 | C9—C8—C6 | 127.66 (18) |
H183—C18—H181 | 109.5 | C9—C8—H8 | 116.4 (13) |
H182—C18—H181 | 109.5 | C6—C8—H8 | 115.9 (13) |
C2—O1—H11 | 109.0 (18) | C14—C15—C16 | 121.88 (17) |
C3—O2—C7 | 118.98 (16) | C14—C15—H15 | 119.1 (12) |
C14—O5—C18 | 117.19 (16) | C16—C15—H15 | 119.1 (12) |
O1—C2—C1 | 119.42 (16) | C6—C5—C4 | 121.87 (18) |
O1—C2—C3 | 121.74 (15) | C6—C5—H5 | 120.4 (12) |
C1—C2—C3 | 118.84 (16) | C4—C5—H5 | 117.8 (12) |
C13—O4—C17 | 117.48 (16) | C3—C4—C5 | 119.61 (18) |
C8—C9—C10 | 120.23 (18) | C3—C4—H4 | 119.4 (12) |
C8—C9—H9 | 122.9 (11) | C5—C4—H4 | 121.0 (12) |
C10—C9—H9 | 116.7 (11) | O4—C13—C12 | 125.64 (16) |
C2—C1—C6 | 122.34 (16) | O4—C13—C14 | 114.92 (15) |
C2—C1—Cl1 | 117.20 (14) | C12—C13—C14 | 119.43 (16) |
C6—C1—Cl1 | 120.44 (13) | O2—C7—H72 | 109.5 |
C13—C12—C11 | 121.03 (17) | O2—C7—H73 | 109.5 |
C13—C12—H12 | 119.0 (10) | H72—C7—H73 | 109.5 |
C11—C12—H12 | 119.9 (10) | O2—C7—H71 | 109.5 |
O5—C14—C15 | 125.34 (16) | H72—C7—H71 | 109.5 |
O5—C14—C13 | 115.01 (16) | H73—C7—H71 | 109.5 |
C15—C14—C13 | 119.65 (16) | O4—C17—H171 | 109.5 |
C5—C6—C1 | 116.93 (16) | O4—C17—H173 | 109.5 |
C5—C6—C8 | 122.23 (17) | H171—C17—H173 | 109.5 |
C1—C6—C8 | 120.79 (16) | O4—C17—H172 | 109.5 |
C11—C16—C15 | 117.97 (16) | H171—C17—H172 | 109.5 |
C11—C16—C19 | 124.08 (17) | H173—C17—H172 | 109.5 |
C15—C16—C19 | 117.91 (17) | C16—C19—H191 | 109.5 |
O3—C10—C9 | 120.70 (17) | C16—C19—H192 | 109.5 |
O3—C10—C11 | 120.46 (16) | H191—C19—H192 | 109.5 |
C9—C10—C11 | 118.83 (16) | C16—C19—H193 | 109.5 |
C16—C11—C12 | 119.93 (16) | H191—C19—H193 | 109.5 |
C16—C11—C10 | 121.64 (16) | H192—C19—H193 | 109.5 |
C12—C11—C10 | 118.34 (16) |
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H11···O4i | 0.84 (3) | 2.31 (3) | 3.007 (2) | 140 (3) |
O1—H11···O5i | 0.84 (3) | 2.37 (3) | 3.042 (2) | 138 (2) |
C8—H8···Cl1 | 0.95 (2) | 2.62 (2) | 3.044 (2) | 107.9 (15) |
C7—H72···Cg2i | 0.96 | 2.92 | 3.720 (3) | 142 |
C18—H181···Cg1ii | 0.96 | 3.00 | 3.512 (2) | 115 |
Symmetry codes: (i) −x+1/2, −y+1/2, z+1/2; (ii) x−1/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C19H19ClO5 |
Mr | 362.79 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 293 |
a, b, c (Å) | 14.2134 (4), 10.2802 (2), 24.2786 (7) |
V (Å3) | 3547.51 (16) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.32 × 0.21 × 0.07 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 34815, 3135, 2399 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.098, 1.05 |
No. of reflections | 3135 |
No. of parameters | 266 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.16, −0.21 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).
Cg1 and Cg2 are the centroids of the C1–C6 and C11–C16 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H11···O4i | 0.84 (3) | 2.31 (3) | 3.007 (2) | 140 (3) |
O1—H11···O5i | 0.84 (3) | 2.37 (3) | 3.042 (2) | 138 (2) |
C8—H8···Cl1 | 0.95 (2) | 2.62 (2) | 3.044 (2) | 107.9 (15) |
C7—H72···Cg2i | 0.96 | 2.92 | 3.720 (3) | 142 |
C18—H181···Cg1ii | 0.96 | 3.00 | 3.512 (2) | 115 |
Symmetry codes: (i) −x+1/2, −y+1/2, z+1/2; (ii) x−1/2, y−1/2, −z+1/2. |
Acknowledgements
We are thankful to the DST, New Delhi for providing the single-crystal diffractometer under DST–FIST at the Department of Physics, Sardar Patel University, Vallabh Vidyanagar, Gujarat. SAG is also thankful to the UGC for financial support (RFSMS) to carry out this research work.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Awasthi, S. K., Mishra, N., Kumar, B., Sharma, M., Bhattacharya, A., Mishra, L. C. & Bhasin, V. K. (2009). Med. Chem. Res. 18, 407–420. Web of Science CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bhatia, N. M., Mahadik, K. R. & Bhatia, M. S. (2009). Chem. Pap. Chem. Zvesti, 63, 456–463. Web of Science CrossRef CAS Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cheng, M. S., Shili, R. & Kenyon, G. (2000). Chin. Chem. Lett. 11, 851–854. CAS Google Scholar
Echeverria, C., Santibanez, J. F., Donoso-Tauda, O., Escobar, C. A. & Tagle, R. R. (2009). Int. J. Mol. Sci. 10, 221–231. Web of Science CrossRef PubMed CAS Google Scholar
Lahtchev, K. L., Batovska, D. I., Parushev, S. P., Ubiyvovk, V. M. & Sibirny, A. A. (2008). Eur. J. Med. Chem. 43, 2220–2228. Web of Science CrossRef PubMed CAS Google Scholar
Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavrry, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436. CrossRef CAS Web of Science Google Scholar
Patel, U. H., Patel, B. D., Modh, R. D. & Patel, P. D. (2007a). Acta Cryst. E63, o3598–o3599. Web of Science CSD CrossRef IUCr Journals Google Scholar
Patel, U. H., Patel, P. D. & Thakker, N. (2007b). Acta Cryst. C63, o337–o339. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sivakumar, P. M., Prabhakar, P. K. & Doble, M. (2010). Med. Chem. Res. 19, 1–17. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Szliszka, E., Czuba, Z. P., Mazur, B., Sedek, L., Paradysz, A. & Krol, W. (2010). Int. J. Mol. Sci. 11, 1–13. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yadav, H. L., Gupta, P., Pawar, P. S., Singour, P. K. & Patil, U. K. (2010). Med. Chem. Res. 19, 1–8. Google Scholar
Yayli, N., Ucuncu, O., Yasar, A., Kucuk, M., Akyuz, E. & Karaoglu, S. A. (2006). Turk. J. Chem. 30, 505–514. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chalcones, belonging to flavonoid family, synthesized or the natural one, displayed many interesting properties including antimalarial (Awasthi et al., 2009; Cheng et al., 2000), anticancer (Echeverria et al., 2009 Szliszka et al., 2010), anti-inflammatory (Yadav et al., 2010), antibacterial (Bhatia et al.,2009), antifungal (Lahtchev et al.,2008), antimicrobial (Yayli et al.,2006) and antioxidant (Sivakumar et al., 2010) activities. In the chemical structure, three carbon α – β unsaturated carbonyl system, the back bone of the open chain flavonoids, joins two aromatic rings. In view of the pharmacological importance of chalcones and in continuation of our interest on the synthesis and crystal structure determination of interesting class of heterocyclic compounds (Patel et al., 2007a,b), we report here the synthesis and crystal structure of newly synthesized methoxy – chloro substituted C19H19ClO5 chalcone derivative.
In the title compound, C19H19ClO5 (I), two methoxy and one methyl groups present in one of the phenyl rings which is joined by a prop-2-en-1-one group to chloro – hydroxyl- methoxy substituted phenyl ring. Bond distances are at normal range (Allen et al., 1987). The dihedral angle between the mean plane of the two benzene rings is 55.33 (8)° and the angle between the mean plane of prop-2-en 1-one group (C8\C9\O3\C10) and the mean plane of the Chloro phenyl ring (C1\C2\C3\C4\C5\C6) and methyl phenyl ring (C11\C12\C13\C14\C15\C16) are 21.85 (12)° and 34.09 (12)° respectively.
In terms of graph set analysis (Bernstein et al., 1995), intra molecular interactions O1—H11···O2, C8—H8···O3 and C8—H8···Cl1 generate three pseudo rings of S(5) graph set motifs (Fig. 2). The O1—H11···O4 (-x + 1/2,-y + 1/2,z + 1/2) and O1—H11···O5 (-x + 1/2,-y + 1/2,z + 1/2) interactions form a pair of bifurcated donor bonds involving methoxy oxygen atoms O2 and O4 of the symmetry related molecule at -x + 1/2,-y + 1/2,z + 1/2 generating a ring of graph set motif R 12 (5) which form a zig - zag molecular chain running parallal to the [0 0 1] direction. This molecular arrangement facilitates in formation of a C—H···π interaction of type - III (Malone et al. (1997)) involving the centroids of the methyl phenyl ring to methoxy carbon C7 via H72. Another C—H···π interaction of type - III involves methoxy carbon C18 via H18 to the centroid of chloro phenyl ring. The weak π–π stacked interaction involving the centroids of the methyl phenyl ring with Cg–Cg separation distance of 3.8185 (10) Å further contributes to the molecular packing (Fig. 3). Superimposed symmetry related molecules connected by trifurcated O—H···O hydrogen bonds, C—H···Cl, C—H···O and π–π interactions lined up parallel to [0 0 1] direction.