organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (3S,3′R)-1-methyl-2,2′′-dioxo-1′,2′,3′,5′,6′,7′,8′,8a′-octa­hydro­di­spiro­[indoline-3,2′-indolizine-3′,3′′-indoline]-1′-carboxyl­ate

aDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, bIndustrial Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 4 August 2012; accepted 31 August 2012; online 8 September 2012)

In the title compound, C25H25N3O4, the central pyrrolidine ring and the two pyrrolidine rings adopt twisted conformations, whereas the piperidine ring in the octa­hydro­indolizine fused ring system adopts a chair conformation. The indoline ring systems are almost perpendicular with respect to the mean plane of the octa­hydro­indolizine ring system, making dihedral angles of 84.4 (5) and 79.4 (5)°. The acetate group attached to the octa­hydro­indolizine ring system assumes an extended conformation. In the crystal, N—H⋯O hydrogen bonds result in the formation of a helical C(7) chain running parallel to [101]. The crystal packing features C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the biological activity of compounds with spiro-pyrrolidine ring systems, see: Sundar et al. (2011[Sundar, J. K., Rajesh, S. M., Sivamani, J., Perumal, S. & Natarajan, S. (2011). Chem. Cent. J. 5, 45.]); Crooks & Sommerville (1982[Crooks, P. A. & Sommerville, R. (1982). J. Pharm. Sci. 71, 291-294.]); Stylianakis et al. (2003[Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699-1703.]). For a related structure, see: Selvanayagam et al. (2012[Selvanayagam, S., Sridhar, B., Saravanan, P. & Raghunathan, R. (2012). Acta Cryst. E68, o800-o801.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli et al. (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C25H25N3O4

  • Mr = 431.48

  • Monoclinic, P 21 /n

  • a = 10.0516 (3) Å

  • b = 17.9539 (6) Å

  • c = 12.4471 (4) Å

  • β = 105.347 (2)°

  • V = 2166.17 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.983

  • 27282 measured reflections

  • 6752 independent reflections

  • 4374 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.143

  • S = 1.03

  • 6752 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O4i 0.86 2.21 2.9639 (15) 146
C2—H2A⋯O3ii 0.97 2.48 3.348 (2) 150
C25—H25CCg6iii 0.96 2.81 3.5617 (19) 135
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The spiro-pyrrolidine ring system is a structural motif present in many biologically important and pharmacologically relevant alkaloids. Some derivatives are used as antimicrobial and antitumour agents (Sundar et al., 2011), or possess analgesic (Crooks & Sommerville, 1982) and anti-influenza virus (Stylianakis et al., 2003) activities. In view of this importance and in continuation of our work on the crystal structure analyis of spiro-pyrrolidine derivatives, the crystal structure of the title compound has been determined and the results are presented here.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometry of the pyrrolidine and indoline group systems are comparable with those of related structures (Selvanayagam et al., 2012). The sum of the angles at N1 [336.3 (1)°], N2[360.0 (1)°] and N3 [359.8 (1)°] of the pyrrolidine rings are in accordance with sp3 hybridizations for N1 and sp2 hybridizations for N2 and N3. The indoline ring systems [N2/C6/C11—C17 and N3/C7/C18—C24] make dihedral angles of 84.4 (5)° and 79.4 (5)° with respect to the mean plane of the octahydroindolizine ring system, which clearly shows the indoline rings attached to the octahydroindolizine ring system are almost perpendicular to each other. The acetate group assumes an extended conformation as can be seen from the torsion angle C8—C9—O1—C10 = -177.9 (2)°.

The pyrrolidine rings [N1/C5—C8, N2/C6/C15—C17 and N3/C7/C22—C24] adopt twisted conformations, with puckering parameters q2 and φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δ, (Nardelli et al., 1983) as follows: q2 = 0.4349 (1) Å; 0.1063 (1) Å & 0.1221 (1) Å, φ = 194.8 (2)°; 123.4 (8)° & 127.6 (7)°, Δ2[(C7) = 4.86 (12)°]; [(C15) = 0.51 (15)] & [(C22) = 1.72 (14)]. The piperidine ring adopts a chair conformation, with the puckering parameters q2 = 0.0284 (2) Å; q3 = -0.5721 (2) Å & φ = 118 (3) ° and the smallest displacement asymmetric parameter, Δs (C2 & C5) = 2.32 (13)°.

Two intermolecular N2—H2C···O4 (-1/2 + x,1/2 - y,-1/2 + z) and C2—H2A···O3 (1/2 + x,1/2 - y,1/2 + z) hydrogen bonds both result in the formation of helicsu2496al C11(7) chains running running parallel to [1 0 1]. The crystal packing is stabilized by C—H···O, N—H···O and C–H···π interactions (Table. 1).

Related literature top

For the biological activity of compounds with spiro-pyrrolidine ring systems, see: Sundar et al. (2011); Crooks & Sommerville (1982); Stylianakis et al. (2003). For a related structure, see: Selvanayagam et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli et al. (1983).

Experimental top

A mixture of 1eq of (E)-methyl 2-(1-methyl-2-oxoindolin-3-ylidene) acetate, 1eq of isatin and 1.5eq of pipecolinic acid were dissolved in acetonitrile. This reaction mixture was refluxed at 80°C for 8 h. Completion of the reaction was monitored by thin layer chromatography. The reaction mixture was taken up in water, extracted with ethyl acetate and washed with water. The product was dried and purified by column chromatography using ethyl acetate and hexanes (1:9) as the elutent to afford pure dispiro oxindole (yield: 78%, M.p.: 541 K). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H distances fixed in the range 0.93–0.97 Å and N—H distances of 0.86 ° with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C/N) for all other H atoms.

Structure description top

The spiro-pyrrolidine ring system is a structural motif present in many biologically important and pharmacologically relevant alkaloids. Some derivatives are used as antimicrobial and antitumour agents (Sundar et al., 2011), or possess analgesic (Crooks & Sommerville, 1982) and anti-influenza virus (Stylianakis et al., 2003) activities. In view of this importance and in continuation of our work on the crystal structure analyis of spiro-pyrrolidine derivatives, the crystal structure of the title compound has been determined and the results are presented here.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometry of the pyrrolidine and indoline group systems are comparable with those of related structures (Selvanayagam et al., 2012). The sum of the angles at N1 [336.3 (1)°], N2[360.0 (1)°] and N3 [359.8 (1)°] of the pyrrolidine rings are in accordance with sp3 hybridizations for N1 and sp2 hybridizations for N2 and N3. The indoline ring systems [N2/C6/C11—C17 and N3/C7/C18—C24] make dihedral angles of 84.4 (5)° and 79.4 (5)° with respect to the mean plane of the octahydroindolizine ring system, which clearly shows the indoline rings attached to the octahydroindolizine ring system are almost perpendicular to each other. The acetate group assumes an extended conformation as can be seen from the torsion angle C8—C9—O1—C10 = -177.9 (2)°.

The pyrrolidine rings [N1/C5—C8, N2/C6/C15—C17 and N3/C7/C22—C24] adopt twisted conformations, with puckering parameters q2 and φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δ, (Nardelli et al., 1983) as follows: q2 = 0.4349 (1) Å; 0.1063 (1) Å & 0.1221 (1) Å, φ = 194.8 (2)°; 123.4 (8)° & 127.6 (7)°, Δ2[(C7) = 4.86 (12)°]; [(C15) = 0.51 (15)] & [(C22) = 1.72 (14)]. The piperidine ring adopts a chair conformation, with the puckering parameters q2 = 0.0284 (2) Å; q3 = -0.5721 (2) Å & φ = 118 (3) ° and the smallest displacement asymmetric parameter, Δs (C2 & C5) = 2.32 (13)°.

Two intermolecular N2—H2C···O4 (-1/2 + x,1/2 - y,-1/2 + z) and C2—H2A···O3 (1/2 + x,1/2 - y,1/2 + z) hydrogen bonds both result in the formation of helicsu2496al C11(7) chains running running parallel to [1 0 1]. The crystal packing is stabilized by C—H···O, N—H···O and C–H···π interactions (Table. 1).

For the biological activity of compounds with spiro-pyrrolidine ring systems, see: Sundar et al. (2011); Crooks & Sommerville (1982); Stylianakis et al. (2003). For a related structure, see: Selvanayagam et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli et al. (1983).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing in which the direction of the chains along the a-c diagonal axis is shown. Dashed lines show the intermolecular C—H···O and N—H···O hydrogen bonds.
Methyl (3S,3'R)-1-methyl-2,2''-dioxo-1',2',3',5',6',7',8',8a'- octahydrodispiro[indoline-3,2'-indolizine-3',3''-indoline]-1'-carboxylate top
Crystal data top
C25H25N3O4F(000) = 912
Mr = 431.48Dx = 1.323 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6752 reflections
a = 10.0516 (3) Åθ = 2.0–31.0°
b = 17.9539 (6) ŵ = 0.09 mm1
c = 12.4471 (4) ÅT = 293 K
β = 105.347 (2)°Block, white crystalline
V = 2166.17 (12) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6752 independent reflections
Radiation source: fine-focus sealed tube4374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and φ scansθmax = 31.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.978, Tmax = 0.983k = 2525
27282 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.2828P]
where P = (Fo2 + 2Fc2)/3
6752 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C25H25N3O4V = 2166.17 (12) Å3
Mr = 431.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0516 (3) ŵ = 0.09 mm1
b = 17.9539 (6) ÅT = 293 K
c = 12.4471 (4) Å0.25 × 0.22 × 0.19 mm
β = 105.347 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6752 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4374 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.033
27282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
6752 reflectionsΔρmin = 0.24 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.39509 (15)0.18055 (7)0.38847 (13)0.0389 (3)
H1A0.36610.17860.30770.047*
H1B0.35200.13940.41720.047*
C20.55128 (16)0.17364 (9)0.42873 (14)0.0475 (4)
H2A0.57830.16910.50920.057*
H2B0.58030.12880.39790.057*
C30.62352 (16)0.24026 (9)0.39500 (16)0.0528 (4)
H3A0.60720.24110.31460.063*
H3B0.72220.23620.42790.063*
C40.57047 (14)0.31205 (8)0.43361 (14)0.0421 (3)
H4A0.59540.31370.51440.051*
H4B0.61250.35450.40710.051*
C50.41569 (13)0.31611 (7)0.38920 (11)0.0312 (3)
H50.38980.31830.30760.037*
C60.20445 (12)0.26486 (7)0.39870 (10)0.0296 (3)
C70.19738 (12)0.35157 (7)0.42780 (10)0.0287 (3)
C80.34676 (13)0.37893 (7)0.43616 (11)0.0314 (3)
H80.39360.38150.51590.038*
C90.35351 (14)0.45585 (7)0.39114 (14)0.0411 (3)
C110.14592 (16)0.18861 (8)0.56175 (13)0.0434 (3)
H110.22420.20330.61610.052*
C120.04945 (18)0.14130 (9)0.58827 (16)0.0545 (4)
H120.06240.12520.66130.065*
C130.06500 (17)0.11821 (9)0.50720 (17)0.0571 (5)
H130.12900.08720.52680.068*
C140.08675 (15)0.14005 (8)0.39767 (15)0.0475 (4)
H140.16280.12330.34280.057*
C150.00836 (13)0.18761 (7)0.37260 (12)0.0357 (3)
C160.12326 (13)0.21318 (7)0.45356 (11)0.0332 (3)
C170.12949 (14)0.25295 (7)0.27335 (11)0.0349 (3)
C180.04727 (17)0.41569 (8)0.24454 (12)0.0447 (3)
H180.11020.40810.20270.054*
C190.07771 (19)0.45125 (9)0.19857 (15)0.0575 (5)
H190.09880.46700.12480.069*
C200.17011 (18)0.46340 (10)0.25991 (16)0.0591 (5)
H200.25290.48730.22690.071*
C210.14357 (15)0.44103 (8)0.36957 (15)0.0485 (4)
H210.20650.44950.41120.058*
C220.01959 (13)0.40548 (7)0.41489 (12)0.0344 (3)
C230.07557 (13)0.39205 (7)0.35351 (11)0.0325 (3)
C240.16580 (13)0.35799 (7)0.54149 (11)0.0315 (3)
N10.35207 (10)0.25114 (6)0.42717 (9)0.0302 (2)
N20.01226 (12)0.21398 (7)0.26806 (10)0.0399 (3)
H2C0.05170.20650.20770.048*
N30.03374 (11)0.38133 (6)0.52466 (10)0.0349 (3)
O10.38982 (14)0.45660 (6)0.29638 (11)0.0609 (3)
O20.33032 (14)0.51090 (6)0.43692 (13)0.0672 (4)
O30.16969 (12)0.27330 (6)0.19483 (8)0.0488 (3)
O40.24468 (10)0.34408 (6)0.63171 (8)0.0432 (2)
C250.03937 (16)0.38432 (10)0.61061 (14)0.0509 (4)
H25A0.02210.37060.68090.076*
H25B0.11590.35040.59240.076*
H25C0.07270.43400.61540.076*
C100.4028 (3)0.52914 (11)0.2504 (2)0.0971 (8)
H10A0.31670.55530.23780.146*
H10B0.42680.52360.18110.146*
H10C0.47370.55690.30170.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0442 (8)0.0309 (6)0.0414 (8)0.0046 (6)0.0107 (6)0.0048 (6)
C20.0450 (8)0.0427 (8)0.0523 (9)0.0141 (6)0.0088 (7)0.0067 (7)
C30.0377 (8)0.0529 (9)0.0708 (11)0.0085 (7)0.0194 (8)0.0090 (8)
C40.0315 (7)0.0413 (7)0.0546 (9)0.0007 (6)0.0134 (6)0.0045 (7)
C50.0314 (6)0.0300 (6)0.0329 (7)0.0007 (5)0.0099 (5)0.0019 (5)
C60.0296 (6)0.0300 (6)0.0278 (6)0.0002 (5)0.0050 (5)0.0023 (5)
C70.0267 (6)0.0308 (6)0.0269 (6)0.0012 (5)0.0042 (5)0.0024 (5)
C80.0281 (6)0.0311 (6)0.0345 (7)0.0006 (5)0.0072 (5)0.0050 (5)
C90.0332 (7)0.0304 (7)0.0605 (10)0.0013 (5)0.0137 (7)0.0040 (6)
C110.0428 (8)0.0429 (8)0.0431 (8)0.0014 (6)0.0086 (6)0.0068 (6)
C120.0558 (10)0.0529 (9)0.0585 (11)0.0014 (8)0.0218 (8)0.0191 (8)
C130.0422 (9)0.0482 (9)0.0847 (14)0.0038 (7)0.0235 (9)0.0130 (9)
C140.0323 (7)0.0394 (8)0.0696 (11)0.0032 (6)0.0114 (7)0.0023 (7)
C150.0296 (6)0.0304 (6)0.0457 (8)0.0032 (5)0.0073 (6)0.0040 (6)
C160.0320 (6)0.0295 (6)0.0371 (7)0.0001 (5)0.0077 (5)0.0007 (5)
C170.0362 (7)0.0333 (6)0.0312 (7)0.0025 (5)0.0021 (5)0.0042 (5)
C180.0539 (9)0.0390 (8)0.0361 (8)0.0001 (6)0.0031 (7)0.0017 (6)
C190.0641 (11)0.0469 (9)0.0455 (9)0.0034 (8)0.0136 (8)0.0082 (7)
C200.0417 (9)0.0468 (9)0.0727 (13)0.0083 (7)0.0129 (8)0.0059 (8)
C210.0304 (7)0.0407 (8)0.0698 (11)0.0028 (6)0.0053 (7)0.0004 (8)
C220.0288 (6)0.0293 (6)0.0423 (8)0.0009 (5)0.0046 (6)0.0011 (5)
C230.0308 (6)0.0299 (6)0.0333 (7)0.0006 (5)0.0020 (5)0.0005 (5)
C240.0306 (6)0.0311 (6)0.0319 (7)0.0016 (5)0.0067 (5)0.0028 (5)
N10.0283 (5)0.0279 (5)0.0333 (6)0.0015 (4)0.0061 (4)0.0021 (4)
N20.0341 (6)0.0414 (6)0.0375 (6)0.0029 (5)0.0020 (5)0.0079 (5)
N30.0319 (6)0.0375 (6)0.0366 (6)0.0026 (5)0.0115 (5)0.0006 (5)
O10.0904 (9)0.0347 (6)0.0664 (8)0.0031 (6)0.0362 (7)0.0076 (5)
O20.0742 (8)0.0343 (6)0.1035 (11)0.0019 (5)0.0418 (8)0.0131 (6)
O30.0554 (6)0.0600 (7)0.0290 (5)0.0038 (5)0.0078 (5)0.0021 (5)
O40.0426 (6)0.0548 (6)0.0282 (5)0.0092 (5)0.0024 (4)0.0019 (4)
C250.0466 (9)0.0592 (10)0.0551 (10)0.0026 (7)0.0280 (8)0.0015 (8)
C100.149 (2)0.0460 (11)0.110 (2)0.0063 (13)0.0586 (18)0.0246 (12)
Geometric parameters (Å, º) top
C1—N11.4613 (16)C12—H120.9300
C1—C21.521 (2)C13—C141.379 (3)
C1—H1A0.9700C13—H130.9300
C1—H1B0.9700C14—C151.3778 (19)
C2—C31.515 (2)C14—H140.9300
C2—H2A0.9700C15—C161.394 (2)
C2—H2B0.9700C15—N21.3949 (19)
C3—C41.521 (2)C17—O31.2087 (17)
C3—H3A0.9700C17—N21.3570 (18)
C3—H3B0.9700C18—C231.3772 (19)
C4—C51.5087 (19)C18—C191.390 (2)
C4—H4A0.9700C18—H180.9300
C4—H4B0.9700C19—C201.367 (3)
C5—N11.4672 (15)C19—H190.9300
C5—C81.5193 (16)C20—C211.380 (3)
C5—H50.9800C20—H200.9300
C6—N11.4525 (15)C21—C221.3807 (19)
C6—C161.5126 (17)C21—H210.9300
C6—C171.5574 (19)C22—C231.3942 (18)
C6—C71.6041 (17)C22—N31.3980 (18)
C7—C231.5109 (18)C24—O41.2169 (16)
C7—C241.5344 (17)C24—N31.3543 (16)
C7—C81.5569 (17)N2—H2C0.8600
C8—C91.4987 (18)N3—C251.4503 (17)
C8—H80.9800O1—C101.442 (2)
C9—O21.1942 (17)C25—H25A0.9600
C9—O11.3237 (19)C25—H25B0.9600
C11—C161.378 (2)C25—H25C0.9600
C11—C121.393 (2)C10—H10A0.9600
C11—H110.9300C10—H10B0.9600
C12—C131.378 (3)C10—H10C0.9600
N1—C1—C2109.38 (11)C12—C13—H13119.3
N1—C1—H1A109.8C14—C13—H13119.3
C2—C1—H1A109.8C15—C14—C13117.52 (15)
N1—C1—H1B109.8C15—C14—H14121.2
C2—C1—H1B109.8C13—C14—H14121.2
H1A—C1—H1B108.2C14—C15—C16122.15 (14)
C3—C2—C1111.89 (13)C14—C15—N2127.88 (14)
C3—C2—H2A109.2C16—C15—N2109.88 (12)
C1—C2—H2A109.2C11—C16—C15119.47 (13)
C3—C2—H2B109.2C11—C16—C6131.94 (12)
C1—C2—H2B109.2C15—C16—C6108.57 (12)
H2A—C2—H2B107.9O3—C17—N2126.05 (13)
C2—C3—C4110.35 (12)O3—C17—C6126.30 (12)
C2—C3—H3A109.6N2—C17—C6107.64 (11)
C4—C3—H3A109.6C23—C18—C19118.39 (15)
C2—C3—H3B109.6C23—C18—H18120.8
C4—C3—H3B109.6C19—C18—H18120.8
H3A—C3—H3B108.1C20—C19—C18121.13 (16)
C5—C4—C3109.82 (12)C20—C19—H19119.4
C5—C4—H4A109.7C18—C19—H19119.4
C3—C4—H4A109.7C19—C20—C21121.61 (15)
C5—C4—H4B109.7C19—C20—H20119.2
C3—C4—H4B109.7C21—C20—H20119.2
H4A—C4—H4B108.2C20—C21—C22117.14 (15)
N1—C5—C4109.79 (11)C20—C21—H21121.4
N1—C5—C8100.62 (9)C22—C21—H21121.4
C4—C5—C8115.22 (11)C21—C22—C23122.14 (14)
N1—C5—H5110.3C21—C22—N3127.87 (13)
C4—C5—H5110.3C23—C22—N3109.91 (11)
C8—C5—H5110.3C18—C23—C22119.57 (13)
N1—C6—C16115.10 (10)C18—C23—C7132.35 (12)
N1—C6—C17114.40 (10)C22—C23—C7108.08 (11)
C16—C6—C17101.08 (10)O4—C24—N3125.36 (12)
N1—C6—C7102.30 (9)O4—C24—C7126.32 (11)
C16—C6—C7115.59 (10)N3—C24—C7108.31 (11)
C17—C6—C7108.71 (10)C6—N1—C1116.04 (10)
C23—C7—C24101.32 (10)C6—N1—C5106.90 (10)
C23—C7—C8120.00 (11)C1—N1—C5113.03 (10)
C24—C7—C8110.24 (10)C17—N2—C15111.60 (11)
C23—C7—C6113.94 (10)C17—N2—H2C124.2
C24—C7—C6108.26 (10)C15—N2—H2C124.2
C8—C7—C6102.82 (9)C24—N3—C22110.72 (11)
C9—C8—C5118.03 (11)C24—N3—C25124.37 (13)
C9—C8—C7113.84 (10)C22—N3—C25124.84 (12)
C5—C8—C7105.66 (10)C9—O1—C10115.98 (15)
C9—C8—H8106.2N3—C25—H25A109.5
C5—C8—H8106.2N3—C25—H25B109.5
C7—C8—H8106.2H25A—C25—H25B109.5
O2—C9—O1123.47 (14)N3—C25—H25C109.5
O2—C9—C8123.39 (15)H25A—C25—H25C109.5
O1—C9—C8113.14 (12)H25B—C25—H25C109.5
C16—C11—C12118.79 (15)O1—C10—H10A109.5
C16—C11—H11120.6O1—C10—H10B109.5
C12—C11—H11120.6H10A—C10—H10B109.5
C13—C12—C11120.57 (16)O1—C10—H10C109.5
C13—C12—H12119.7H10A—C10—H10C109.5
C11—C12—H12119.7H10B—C10—H10C109.5
C12—C13—C14121.43 (15)
N1—C1—C2—C354.22 (17)C7—C6—C17—N2111.06 (11)
C1—C2—C3—C453.92 (19)C23—C18—C19—C200.7 (2)
C2—C3—C4—C555.34 (18)C18—C19—C20—C210.0 (3)
C3—C4—C5—N158.10 (15)C19—C20—C21—C220.2 (2)
C3—C4—C5—C8170.81 (12)C20—C21—C22—C230.3 (2)
N1—C6—C7—C23147.66 (10)C20—C21—C22—N3176.32 (14)
C16—C6—C7—C2386.48 (13)C19—C18—C23—C221.2 (2)
C17—C6—C7—C2326.31 (14)C19—C18—C23—C7179.05 (14)
N1—C6—C7—C24100.46 (11)C21—C22—C23—C181.0 (2)
C16—C6—C7—C2425.40 (14)N3—C22—C23—C18176.14 (12)
C17—C6—C7—C24138.19 (10)C21—C22—C23—C7179.20 (12)
N1—C6—C7—C816.20 (11)N3—C22—C23—C73.66 (15)
C16—C6—C7—C8142.06 (11)C24—C7—C23—C18170.03 (14)
C17—C6—C7—C8105.16 (11)C8—C7—C23—C1848.5 (2)
N1—C5—C8—C9163.80 (11)C6—C7—C23—C1873.96 (18)
C4—C5—C8—C978.22 (16)C24—C7—C23—C229.74 (13)
N1—C5—C8—C735.14 (12)C8—C7—C23—C22131.27 (12)
C4—C5—C8—C7153.12 (11)C6—C7—C23—C22106.27 (12)
C23—C7—C8—C915.14 (16)C23—C7—C24—O4167.64 (13)
C24—C7—C8—C9101.89 (13)C8—C7—C24—O439.52 (17)
C6—C7—C8—C9142.87 (11)C6—C7—C24—O472.24 (16)
C23—C7—C8—C5115.95 (12)C23—C7—C24—N312.89 (13)
C24—C7—C8—C5127.02 (11)C8—C7—C24—N3141.01 (11)
C6—C7—C8—C511.78 (12)C6—C7—C24—N3107.23 (11)
C5—C8—C9—O2163.28 (14)C16—C6—N1—C166.27 (14)
C7—C8—C9—O272.00 (19)C17—C6—N1—C150.20 (15)
C5—C8—C9—O115.76 (18)C7—C6—N1—C1167.55 (10)
C7—C8—C9—O1108.95 (14)C16—C6—N1—C5166.61 (10)
C16—C11—C12—C131.4 (2)C17—C6—N1—C576.93 (12)
C11—C12—C13—C141.0 (3)C7—C6—N1—C540.43 (11)
C12—C13—C14—C151.8 (2)C2—C1—N1—C6177.87 (11)
C13—C14—C15—C160.2 (2)C2—C1—N1—C558.12 (15)
C13—C14—C15—N2176.36 (14)C4—C5—N1—C6170.13 (10)
C12—C11—C16—C152.9 (2)C8—C5—N1—C648.25 (12)
C12—C11—C16—C6178.76 (14)C4—C5—N1—C160.98 (14)
C14—C15—C16—C112.1 (2)C8—C5—N1—C1177.14 (10)
N2—C15—C16—C11174.62 (12)O3—C17—N2—C15169.09 (14)
C14—C15—C16—C6179.17 (12)C6—C17—N2—C159.49 (14)
N2—C15—C16—C64.08 (14)C14—C15—N2—C17172.88 (13)
N1—C6—C16—C1145.73 (19)C16—C15—N2—C173.64 (15)
C17—C6—C16—C11169.56 (14)O4—C24—N3—C22168.88 (13)
C7—C6—C16—C1173.29 (18)C7—C24—N3—C2211.64 (14)
N1—C6—C16—C15132.75 (11)O4—C24—N3—C258.2 (2)
C17—C6—C16—C158.92 (13)C7—C24—N3—C25171.31 (12)
C7—C6—C16—C15108.23 (12)C21—C22—N3—C24171.74 (14)
N1—C6—C17—O343.25 (18)C23—C22—N3—C245.19 (15)
C16—C6—C17—O3167.55 (14)C21—C22—N3—C255.3 (2)
C7—C6—C17—O370.37 (16)C23—C22—N3—C25177.78 (13)
N1—C6—C17—N2135.32 (11)O2—C9—O1—C101.1 (3)
C16—C6—C17—N211.02 (13)C8—C9—O1—C10177.99 (17)
Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2C···O4i0.862.212.9639 (15)146
C2—H2A···O3ii0.972.483.348 (2)150
C25—H25C···Cg6iii0.962.813.5617 (19)135
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC25H25N3O4
Mr431.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.0516 (3), 17.9539 (6), 12.4471 (4)
β (°) 105.347 (2)
V3)2166.17 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
27282, 6752, 4374
Rint0.033
(sin θ/λ)max1)0.724
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.143, 1.03
No. of reflections6752
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2C···O4i0.862.212.9639 (15)146.3
C2—H2A···O3ii0.972.483.348 (2)149.5
C25—H25C···Cg6iii0.962.813.5617 (19)135
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z+1.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection. ASP thanks the University Grants Commission, India, for a Minor Research Project.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCrooks, P. A. & Sommerville, R. (1982). J. Pharm. Sci. 71, 291–294.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSelvanayagam, S., Sridhar, B., Saravanan, P. & Raghunathan, R. (2012). Acta Cryst. E68, o800–o801.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSundar, J. K., Rajesh, S. M., Sivamani, J., Perumal, S. & Natarajan, S. (2011). Chem. Cent. J. 5, 45.  Web of Science CSD CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds