organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro­phen­yl)-1-phenyl­formamido 3-(2-nitro­phen­yl)propano­ate

aGansu Health Center Hospital, Lanzhou 730000, Gansu Province, People's Republic of China, and bInstitute of Medicinal Chemistry School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu Province, People's Republic of China
*Correspondence e-mail: zhanghongxia0508@126.com

(Received 23 August 2012; accepted 4 September 2012; online 8 September 2012)

In the title mol­ecule, C22H17ClN2O5, the nitro-substituted benzene ring makes a dihedral angle of 79.22 (1)° with the benzoyl ring and 53.03 (1)° with the chloro-substituted benzene ring. An intra­molecular C—H⋯O hydrogen bond occurs. The crystal structure features weak C—H⋯Cl and C—H⋯O inter­actions.

Related literature

For applications of hydroxamic acid derivatives, see: Noh et al. (2009[Noh, E. J., Lim, D. S., Jeong, G. & Lee, J. S. (2009). Biochem. Biophys. Res. Commun. 378, 326-331.]); Zeng et al. (2003[Zeng, W., Zeng, G. Y. & Qin, S. Y. (2003). Chin. J. Org. Chem. 23, 1213-1218.]). For the preparation, see: Ayyangark et al. (1986[Ayyangark, N. R., Hrailme, C., Kalkotf, U. R. & Srinivasan, K. V. (1986). Synth. Commun. pp. 938-941.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17ClN2O5

  • Mr = 424.83

  • Monoclinic, P 21 /n

  • a = 14.698 (9) Å

  • b = 8.030 (5) Å

  • c = 17.495 (11) Å

  • β = 103.059 (7)°

  • V = 2011 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.26 × 0.23 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.943, Tmax = 0.952

  • 8356 measured reflections

  • 3697 independent reflections

  • 2285 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.114

  • S = 1.02

  • 3697 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯Cl1i 0.97 2.68 3.627 (3) 167
C7—H7A⋯O1ii 0.97 2.60 3.520 (3) 158
C8—H8A⋯O2 0.97 2.47 3.092 (3) 121
C18—H18⋯O1iii 0.93 2.62 3.517 (4) 161
C4—H4⋯O1iv 0.93 2.64 3.468 (4) 149
Symmetry codes: (i) -x+2, -y+2, -z; (ii) -x+1, -y+1, -z; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydroxamic acid derivatives have received considerable attention in recent years as the result of the discovery of their role in the biochemical toxicology of many drugs and other chemicals. Thus, these compounds continue to attract much attention as potential biological agents (Noh et al., 2009; Zeng et al., 2003).

The title compound, C22H17N2O5Cl, was prepared according to the method described by Ayyangark et al. (1986). The molecule contains three branched chains with its centre placed at midpoint of the N2 atom (Fig. 1). The phenyl ring C1—C6 makes dihedral angles of 79.22 (1)° with the phenyl ring C17—C22, and 53.03 (1)° with the phenyl ring C10—C15.

The crystal structure features weak C—H···Cl and C—H···O interactions (Table 1).

Related literature top

For applications of hydroxamic acid derivatives, see: Noh et al. (2009); Zeng et al. (2003). For the preparation, see: Ayyangark et al. (1986).

Experimental top

The title compound was prepared according to the method described by Ayyangark et al. (1986). The colourless crystals were grown from a solution of dichloromethane-methanol (1:3 v/v) by slow evaporation at room temperature.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso = 1.2Ueq(C) for aromatic H atoms, and with C—H = 0.97 Å and Uiso = 1.2Ueq(C) for methylene H atoms.

Structure description top

Hydroxamic acid derivatives have received considerable attention in recent years as the result of the discovery of their role in the biochemical toxicology of many drugs and other chemicals. Thus, these compounds continue to attract much attention as potential biological agents (Noh et al., 2009; Zeng et al., 2003).

The title compound, C22H17N2O5Cl, was prepared according to the method described by Ayyangark et al. (1986). The molecule contains three branched chains with its centre placed at midpoint of the N2 atom (Fig. 1). The phenyl ring C1—C6 makes dihedral angles of 79.22 (1)° with the phenyl ring C17—C22, and 53.03 (1)° with the phenyl ring C10—C15.

The crystal structure features weak C—H···Cl and C—H···O interactions (Table 1).

For applications of hydroxamic acid derivatives, see: Noh et al. (2009); Zeng et al. (2003). For the preparation, see: Ayyangark et al. (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering and 30% probability displacement ellipsoids (H atoms are shown as small spheres of arbitrary radius).
N-(2-Chlorophenyl)-1-phenylformamido 3-(2-nitrophenyl)propanoate top
Crystal data top
C22H17ClN2O5F(000) = 880
Mr = 424.83Dx = 1.403 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1690 reflections
a = 14.698 (9) Åθ = 2.4–22.2°
b = 8.030 (5) ŵ = 0.23 mm1
c = 17.495 (11) ÅT = 296 K
β = 103.059 (7)°Block, colourless
V = 2011 (2) Å30.26 × 0.23 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3697 independent reflections
Radiation source: fine-focus sealed tube2285 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1713
Tmin = 0.943, Tmax = 0.952k = 99
8356 measured reflectionsl = 2119
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0421P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.18 e Å3
3697 reflectionsΔρmin = 0.26 e Å3
271 parameters
Crystal data top
C22H17ClN2O5V = 2011 (2) Å3
Mr = 424.83Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.698 (9) ŵ = 0.23 mm1
b = 8.030 (5) ÅT = 296 K
c = 17.495 (11) Å0.26 × 0.23 × 0.22 mm
β = 103.059 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
3697 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2285 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.952Rint = 0.045
8356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
3697 reflectionsΔρmin = 0.26 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.54356 (14)0.7597 (3)0.08505 (13)0.0364 (5)
C20.47799 (16)0.8218 (3)0.14815 (14)0.0499 (7)
H20.43700.75020.18090.060*
C30.47420 (19)0.9893 (4)0.16184 (17)0.0625 (8)
H30.43141.03260.20470.075*
C40.53416 (19)1.0939 (4)0.11187 (18)0.0626 (8)
H40.53231.20810.12100.075*
C50.59688 (16)1.0288 (3)0.04832 (16)0.0525 (7)
H50.63591.10140.01450.063*
C60.60438 (14)0.8602 (3)0.03261 (13)0.0375 (6)
C70.67502 (14)0.8013 (3)0.03913 (13)0.0441 (6)
H7A0.65200.70070.05900.053*
H7B0.68200.88560.07970.053*
C80.77017 (14)0.7660 (3)0.02151 (13)0.0457 (6)
H8A0.76770.66010.00560.055*
H8B0.78410.85170.01320.055*
C90.84611 (15)0.7607 (3)0.09349 (15)0.0417 (6)
C101.07421 (15)0.7137 (3)0.15039 (14)0.0456 (6)
C111.05317 (18)0.5495 (4)0.15897 (17)0.0646 (8)
H110.99220.51890.15920.077*
C121.1218 (2)0.4293 (4)0.16719 (17)0.0701 (9)
H121.10670.31780.17180.084*
C131.21242 (19)0.4745 (4)0.16857 (16)0.0627 (8)
H131.25900.39380.17560.075*
C141.23411 (17)0.6372 (4)0.15972 (14)0.0567 (7)
H141.29540.66740.16060.068*
C151.16538 (16)0.7572 (3)0.14945 (13)0.0467 (6)
C160.99784 (16)0.9673 (3)0.18933 (15)0.0428 (6)
C170.92056 (15)1.0900 (3)0.16295 (14)0.0414 (6)
C180.86650 (17)1.1325 (3)0.21517 (15)0.0527 (7)
H180.87941.08610.26520.063*
C190.79360 (18)1.2432 (4)0.19365 (18)0.0616 (8)
H190.75671.26960.22870.074*
C200.7755 (2)1.3147 (4)0.12042 (19)0.0677 (8)
H200.72611.38910.10590.081*
C210.8295 (2)1.2771 (4)0.06901 (18)0.0666 (8)
H210.81761.32740.01990.080*
C220.90226 (18)1.1643 (3)0.08966 (16)0.0558 (7)
H220.93881.13850.05430.067*
Cl11.19330 (5)0.96079 (10)0.13393 (4)0.0716 (3)
N10.54447 (14)0.5788 (3)0.07543 (11)0.0415 (5)
N21.00361 (12)0.8386 (3)0.13960 (12)0.0529 (6)
O10.46940 (12)0.5048 (2)0.09402 (10)0.0596 (5)
O20.61882 (12)0.5081 (2)0.05065 (10)0.0556 (5)
O30.84162 (11)0.7242 (2)0.15847 (10)0.0573 (5)
O40.92840 (9)0.8124 (2)0.07409 (9)0.0457 (4)
O51.05461 (11)0.9793 (2)0.25171 (10)0.0536 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0354 (12)0.0330 (15)0.0410 (14)0.0018 (10)0.0094 (10)0.0036 (11)
C20.0460 (14)0.0504 (19)0.0493 (16)0.0066 (12)0.0021 (12)0.0035 (13)
C30.0597 (17)0.063 (2)0.0625 (19)0.0194 (15)0.0083 (14)0.0084 (16)
C40.0661 (18)0.0404 (17)0.085 (2)0.0127 (14)0.0254 (17)0.0051 (17)
C50.0465 (15)0.0398 (17)0.071 (2)0.0037 (12)0.0134 (14)0.0118 (14)
C60.0331 (12)0.0378 (16)0.0429 (14)0.0005 (10)0.0113 (11)0.0061 (12)
C70.0376 (13)0.0526 (17)0.0412 (14)0.0013 (11)0.0068 (11)0.0110 (12)
C80.0360 (12)0.0627 (18)0.0366 (14)0.0044 (12)0.0041 (10)0.0003 (13)
C90.0373 (13)0.0398 (16)0.0467 (16)0.0008 (11)0.0066 (11)0.0053 (13)
C100.0365 (13)0.0526 (18)0.0450 (15)0.0034 (12)0.0037 (11)0.0065 (13)
C110.0442 (15)0.057 (2)0.090 (2)0.0011 (14)0.0109 (15)0.0104 (17)
C120.068 (2)0.052 (2)0.087 (2)0.0074 (16)0.0099 (17)0.0058 (17)
C130.0543 (18)0.074 (2)0.0562 (18)0.0248 (16)0.0042 (13)0.0037 (16)
C140.0394 (14)0.087 (2)0.0448 (16)0.0105 (15)0.0123 (12)0.0005 (16)
C150.0445 (14)0.0617 (19)0.0346 (14)0.0025 (13)0.0103 (11)0.0032 (13)
C160.0369 (13)0.0468 (16)0.0459 (15)0.0082 (11)0.0119 (12)0.0032 (13)
C170.0410 (13)0.0376 (15)0.0448 (15)0.0030 (11)0.0081 (11)0.0044 (12)
C180.0545 (15)0.0526 (18)0.0480 (16)0.0045 (13)0.0056 (13)0.0054 (14)
C190.0560 (16)0.063 (2)0.066 (2)0.0100 (14)0.0133 (15)0.0114 (17)
C200.0652 (18)0.050 (2)0.078 (2)0.0126 (14)0.0057 (17)0.0105 (17)
C210.088 (2)0.0488 (19)0.0571 (19)0.0096 (16)0.0036 (17)0.0065 (15)
C220.0701 (18)0.0462 (18)0.0515 (17)0.0007 (14)0.0145 (14)0.0006 (14)
Cl10.0704 (5)0.0792 (6)0.0717 (5)0.0083 (4)0.0297 (4)0.0167 (4)
N10.0432 (12)0.0438 (14)0.0372 (11)0.0062 (11)0.0083 (9)0.0052 (10)
N20.0325 (11)0.0582 (15)0.0599 (14)0.0049 (10)0.0067 (10)0.0175 (12)
O10.0559 (11)0.0587 (13)0.0631 (12)0.0200 (9)0.0111 (9)0.0105 (10)
O20.0537 (11)0.0443 (12)0.0655 (12)0.0071 (8)0.0063 (9)0.0012 (9)
O30.0567 (10)0.0718 (14)0.0408 (11)0.0034 (9)0.0059 (8)0.0072 (10)
O40.0332 (8)0.0530 (11)0.0480 (10)0.0028 (7)0.0028 (8)0.0075 (8)
O50.0436 (9)0.0657 (13)0.0483 (11)0.0010 (8)0.0040 (8)0.0058 (9)
Geometric parameters (Å, º) top
C1—C21.384 (3)C12—C131.376 (4)
C1—C61.386 (3)C12—H120.9300
C1—N11.462 (3)C13—C141.362 (4)
C2—C31.365 (3)C13—H130.9300
C2—H20.9300C14—C151.378 (3)
C3—C41.378 (4)C14—H140.9300
C3—H30.9300C15—Cl11.722 (3)
C4—C51.377 (4)C16—O51.219 (3)
C4—H40.9300C16—N21.365 (3)
C5—C61.381 (3)C16—C171.496 (3)
C5—H50.9300C17—C181.382 (3)
C6—C71.513 (3)C17—C221.384 (3)
C7—C81.525 (3)C18—C191.377 (4)
C7—H7A0.9700C18—H180.9300
C7—H7B0.9700C19—C201.374 (4)
C8—C91.483 (3)C19—H190.9300
C8—H8A0.9700C20—C211.362 (4)
C8—H8B0.9700C20—H200.9300
C9—O31.190 (3)C21—C221.386 (4)
C9—O41.391 (3)C21—H210.9300
C10—C111.370 (4)C22—H220.9300
C10—C151.388 (3)N1—O21.221 (2)
C10—N21.425 (3)N1—O11.230 (2)
C11—C121.380 (4)N2—O41.417 (2)
C11—H110.9300
C2—C1—C6123.2 (2)C13—C12—H12120.0
C2—C1—N1115.9 (2)C11—C12—H12120.0
C6—C1—N1121.0 (2)C14—C13—C12120.1 (3)
C3—C2—C1119.2 (2)C14—C13—H13119.9
C3—C2—H2120.4C12—C13—H13119.9
C1—C2—H2120.4C13—C14—C15120.1 (3)
C2—C3—C4119.6 (3)C13—C14—H14119.9
C2—C3—H3120.2C15—C14—H14119.9
C4—C3—H3120.2C14—C15—C10120.3 (3)
C5—C4—C3119.8 (3)C14—C15—Cl1119.4 (2)
C5—C4—H4120.1C10—C15—Cl1120.4 (2)
C3—C4—H4120.1O5—C16—N2120.1 (2)
C4—C5—C6122.8 (2)O5—C16—C17122.9 (2)
C4—C5—H5118.6N2—C16—C17117.0 (2)
C6—C5—H5118.6C18—C17—C22119.0 (2)
C5—C6—C1115.4 (2)C18—C17—C16118.0 (2)
C5—C6—C7118.7 (2)C22—C17—C16123.0 (2)
C1—C6—C7125.9 (2)C19—C18—C17120.4 (3)
C6—C7—C8112.28 (19)C19—C18—H18119.8
C6—C7—H7A109.1C17—C18—H18119.8
C8—C7—H7A109.1C20—C19—C18120.0 (3)
C6—C7—H7B109.1C20—C19—H19120.0
C8—C7—H7B109.1C18—C19—H19120.0
H7A—C7—H7B107.9C21—C20—C19120.3 (3)
C9—C8—C7112.48 (19)C21—C20—H20119.9
C9—C8—H8A109.1C19—C20—H20119.9
C7—C8—H8A109.1C20—C21—C22120.3 (3)
C9—C8—H8B109.1C20—C21—H21119.9
C7—C8—H8B109.1C22—C21—H21119.9
H8A—C8—H8B107.8C17—C22—C21120.0 (3)
O3—C9—O4123.0 (2)C17—C22—H22120.0
O3—C9—C8128.7 (2)C21—C22—H22120.0
O4—C9—C8108.3 (2)O2—N1—O1123.2 (2)
C11—C10—C15119.0 (2)O2—N1—C1119.14 (19)
C11—C10—N2121.1 (2)O1—N1—C1117.7 (2)
C15—C10—N2119.8 (2)C16—N2—O4118.59 (18)
C10—C11—C12120.5 (3)C16—N2—C10126.6 (2)
C10—C11—H11119.8O4—N2—C10114.47 (18)
C12—C11—H11119.8C9—O4—N2114.17 (17)
C13—C12—C11120.0 (3)
C6—C1—C2—C32.3 (4)N2—C16—C17—C18131.7 (2)
N1—C1—C2—C3178.7 (2)O5—C16—C17—C22129.7 (3)
C1—C2—C3—C41.4 (4)N2—C16—C17—C2249.6 (3)
C2—C3—C4—C50.4 (4)C22—C17—C18—C192.1 (4)
C3—C4—C5—C61.4 (4)C16—C17—C18—C19179.1 (2)
C4—C5—C6—C10.5 (3)C17—C18—C19—C201.3 (4)
C4—C5—C6—C7179.5 (2)C18—C19—C20—C210.2 (4)
C2—C1—C6—C51.4 (3)C19—C20—C21—C221.1 (4)
N1—C1—C6—C5179.72 (19)C18—C17—C22—C211.2 (4)
C2—C1—C6—C7177.5 (2)C16—C17—C22—C21179.9 (2)
N1—C1—C6—C71.4 (3)C20—C21—C22—C170.4 (4)
C5—C6—C7—C889.7 (3)C2—C1—N1—O2145.1 (2)
C1—C6—C7—C891.5 (3)C6—C1—N1—O235.9 (3)
C6—C7—C8—C9161.9 (2)C2—C1—N1—O133.9 (3)
C7—C8—C9—O327.9 (4)C6—C1—N1—O1145.1 (2)
C7—C8—C9—O4150.2 (2)O5—C16—N2—O4169.69 (19)
C15—C10—C11—C120.5 (4)C17—C16—N2—O411.0 (3)
N2—C10—C11—C12178.2 (2)O5—C16—N2—C103.3 (4)
C10—C11—C12—C131.5 (4)C17—C16—N2—C10176.0 (2)
C11—C12—C13—C141.8 (4)C11—C10—N2—C16116.1 (3)
C12—C13—C14—C150.1 (4)C15—C10—N2—C1666.3 (3)
C13—C14—C15—C101.9 (4)C11—C10—N2—O457.2 (3)
C13—C14—C15—Cl1177.1 (2)C15—C10—N2—O4120.5 (2)
C11—C10—C15—C142.2 (4)O3—C9—O4—N27.8 (3)
N2—C10—C15—C14179.9 (2)C8—C9—O4—N2170.50 (18)
C11—C10—C15—Cl1176.8 (2)C16—N2—O4—C967.4 (3)
N2—C10—C15—Cl10.9 (3)C10—N2—O4—C9106.5 (2)
O5—C16—C17—C1849.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cl1i0.972.683.627 (3)167
C7—H7A···O1ii0.972.603.520 (3)158
C8—H8A···O20.972.473.092 (3)121
C18—H18···O1iii0.932.623.517 (4)161
C4—H4···O1iv0.932.643.468 (4)149
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+1, z; (iii) x+1/2, y+3/2, z+1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H17ClN2O5
Mr424.83
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)14.698 (9), 8.030 (5), 17.495 (11)
β (°) 103.059 (7)
V3)2011 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.26 × 0.23 × 0.22
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.943, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
8356, 3697, 2285
Rint0.045
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.114, 1.02
No. of reflections3697
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cl1i0.972.683.627 (3)167.2
C7—H7A···O1ii0.972.603.520 (3)157.8
C8—H8A···O20.972.473.092 (3)121.4
C18—H18···O1iii0.932.623.517 (4)161.3
C4—H4···O1iv0.932.643.468 (4)149.1
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y+1, z; (iii) x+1/2, y+3/2, z+1/2; (iv) x, y+1, z.
 

Acknowledgements

This work was supported by the Science and Technology plan projects of Lanzhou City (2008–1-74)

References

First citationAyyangark, N. R., Hrailme, C., Kalkotf, U. R. & Srinivasan, K. V. (1986). Synth. Commun. pp. 938–941.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNoh, E. J., Lim, D. S., Jeong, G. & Lee, J. S. (2009). Biochem. Biophys. Res. Commun. 378, 326–331.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, W., Zeng, G. Y. & Qin, S. Y. (2003). Chin. J. Org. Chem. 23, 1213–1218.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds