metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Ferrocenylmethyl-2-nitro­aniline

aDepartment of Chemistry, University of Ouargla, PO Box 511, Ouargla 30000, Algeria, bDepartment of Sciences and Technology, University Mohamed Khider of Biskra, PO Box 145, Biskra 07000, Algeria, and cVTRS Laboratory, Institute of Sciences and Technology, University of El-Oued, PO Box 789, El-Oued 39000, Algeria
*Correspondence e-mail: lanezt@gmail.com

(Received 26 August 2012; accepted 13 September 2012; online 29 September 2012)

In the title compound, [Fe(C5H5)(C12H11N2O2)], the two cyclo­penta­dienyl (Cp) rings are nearly eclipsed and parallel to each other, the dihedral angle between their mean planes being 2.54 (1)°. One of the Cp rings is substituted by a nitro­benzenamine group, which is essentially perpendicular to the substituted cyclo­penta­dienyl ring, with an N—C(H2)—C—C torsion angle of 89.8 (2)°. Intra­molecular N—H⋯O and N—H⋯N hydrogen bonds occur. In the crystal, weak C—H⋯O hydrogen bonds link adjacent mol­ecules.

Related literature

For background to the design and properties of ferrocene derivatives, see: Argyropoulos & Coutouli-Argyropoulou (2002[Argyropoulos, N. & Coutouli-Argyropoulou, E. (2002). J. Organomet. Chem. 654, 117-122.]); Cano et al. (1995[Cano, J., Benito, A., Martínez-Máñez, R., Soto, J., Payá, J., Lloret, F., Julve, M., Marcos, M. D. & Sinn, E. (1995). Inorg. Chim. Acta, 231, 45-56.]); Shaabani & Shaghaghi (2010[Shaabani, B. & Shaghaghi, Z. (2010). Tetrahedron, 66, 3259-3264.]). For the synthesis of (ferrocenylmeth­yl)trimethyl­ammonium iodide, see: Osgerby & Pauson (1961[Osgerby, J. M. & Pauson, P. L. (1961). J. Chem. Soc. pp. 4600-4604.]). For a related structure, see: Khelef et al. (2012[Khelef, A., Terki, B., Mahboub, M. S. & Lanez, T. (2012). Acta Cryst. E68, m647.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C12H11N2O2)]

  • Mr = 336.17

  • Monoclinic, P 21 /a

  • a = 10.3609 (3) Å

  • b = 7.8700 (2) Å

  • c = 17.7948 (7) Å

  • β = 93.043 (2)°

  • V = 1448.95 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 293 K

  • 0.3 × 0.1 × 0.1 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 14651 measured reflections

  • 3204 independent reflections

  • 2881 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.069

  • S = 1.05

  • 3204 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H10⋯O2 0.827 (16) 2.01 (2) 2.6511 (19) 133.3 (18)
N1—H10⋯N2 0.827 (16) 2.624 (19) 2.961 (2) 106.0 (16)
C4—H4⋯O2i 0.93 2.57 3.283 (2) 134
Symmetry code: (i) x, y+1, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Ferrocene derivatives have attracted the attention of many groups of researchers because of their utility in organic synthesis (Cano et al., 1995), medicinal chemistry (Argyropoulos & Coutouli-Argyropoulou, 2002) and in electrochemical studies (Shaabani & Shaghaghi, 2010). Herein, as a continuation of our research related to ferrocene derivatives (Khelef et al., 2012), we report the synthesis and X-ray diffraction characterization of the title compound.

In the title compound, [Fe(C5H5)(C12H11N2O2)], the two cyclopentadienyl (Cp) rings are nearly eclipsed and parallel to each other, the dihedral angle between the mean planes is 2.54 (1)°. One of the Cp ring is substituted by a nitrobenzenamine group which is essentially perpendicular to the substituted cyclopentadienyl ring, with a N—C(H2)—C—C torsion angle of -79.83 (2)°. Weak C—H···O hydrogen bonds link adjacent molecules (Table 1).

Related literature top

For background to the design and properties of ferrocene derivatives, see: Argyropoulos & Coutouli-Argyropoulou (2002); Cano et al. (1995); Shaabani & Shaghaghi (2010). For the synthesis of (ferrocenylmethyl)trimethylammonium iodide, see: Osgerby & Pauson (1961). For a related structure, see: Khelef et al. (2012).

Experimental top

(Ferrocenylmethyl)trimethylammonium iodide was synthesized according to the reported methods of Osgerby & Pauson (Osgerby & Pauson, 1961). N-(Ferrocenylmethyl)-2-nitrobenzenamine was synthesized as follows: 2-nitroaniline (2.14 g, 15.48 mmol) was added in small portions to a well stirred solution of (ferrocenylmethyl)trimethylammonium iodide (6 g, 15.48 mmol) in water (120 cm3). The resulting mixture was then heated at 110–115°C for 6 h. It was then allowed to cool to room temperature. The obtained precipitate was separated by filtration, washed with water to remove any trace of unchanged (ferrocenylmethy)trimethylammonium iodide and finally recrystallized from ethanol 95% to produce the title compound as cinnabar-red needles (4.85 g, 92%; m.p. 110–112°C).

1H NMR (CDCl3): 4.14 (d, 2H, J = 4.73 Hz, CH2Fc); 4.21 (t, 2H, J = 1.88 Hz, η5-C5H4 ortho); 4.27 (s, 5H, η5-C5H5); 4.28 (d, 2H, η5-C5H4 meta); 6.68 (t, 1H, J = 7.18 Hz, ArH); 6.90 (d, 1H, J = 8.49 Hz, ArH); 7.47 (t, 1H, J = 8.12 Hz, ArH); 8.23 (dd, 1H, J = 8.12 Hz, ArH); 8.37 (s, 1H, NH).

13C NMR (CDCl3): 42.3 (-ve DEPT) (1 C, CH2Fc); 67.3 (2 C, η5-C5H4 meta); 68.1 (2 C, η5-C5H4); 68.8 (5 C, η5-C5H5); 84.5 (1 C, η5-C5H4); 113.8 (1 C, C6H4); 115.3 (1 C, C6H4);126.9 (1 C, C6H4); 131.8 (1 C, C6H4); 136.3 (1 C, C6H4); 144.9 (1 C, C6H4).

Refinement top

All hydrogen positions, except H10, were calculated after each cycle of refinement using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms. The N-bound hydrogen atom, H10, was located in a difference Fourier map and freely refined.

Structure description top

Ferrocene derivatives have attracted the attention of many groups of researchers because of their utility in organic synthesis (Cano et al., 1995), medicinal chemistry (Argyropoulos & Coutouli-Argyropoulou, 2002) and in electrochemical studies (Shaabani & Shaghaghi, 2010). Herein, as a continuation of our research related to ferrocene derivatives (Khelef et al., 2012), we report the synthesis and X-ray diffraction characterization of the title compound.

In the title compound, [Fe(C5H5)(C12H11N2O2)], the two cyclopentadienyl (Cp) rings are nearly eclipsed and parallel to each other, the dihedral angle between the mean planes is 2.54 (1)°. One of the Cp ring is substituted by a nitrobenzenamine group which is essentially perpendicular to the substituted cyclopentadienyl ring, with a N—C(H2)—C—C torsion angle of -79.83 (2)°. Weak C—H···O hydrogen bonds link adjacent molecules (Table 1).

For background to the design and properties of ferrocene derivatives, see: Argyropoulos & Coutouli-Argyropoulou (2002); Cano et al. (1995); Shaabani & Shaghaghi (2010). For the synthesis of (ferrocenylmethyl)trimethylammonium iodide, see: Osgerby & Pauson (1961). For a related structure, see: Khelef et al. (2012).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme and 50% probability displacement ellipsoids.
N-Ferrocenylmethyl-2-nitroaniline top
Crystal data top
[Fe(C5H5)(C12H11N2O2)]Z = 4
Mr = 336.17F(000) = 696
Monoclinic, P21/aDx = 1.541 Mg m3
Hall symbol: -P 2yabMo Kα radiation, λ = 0.71073 Å
a = 10.3609 (3) Åθ = 1.2–27.4°
b = 7.8700 (2) ŵ = 1.05 mm1
c = 17.7948 (7) ÅT = 293 K
β = 93.043 (2)°Needle, red
V = 1448.95 (8) Å30.3 × 0.1 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
2881 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 27.4°, θmin = 1.2°
Detector resolution: 9 pixels mm-1h = 1313
CCD scansk = 1010
14651 measured reflectionsl = 2222
3204 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.5817P]
where P = (Fo2 + 2Fc2)/3
3204 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Fe(C5H5)(C12H11N2O2)]V = 1448.95 (8) Å3
Mr = 336.17Z = 4
Monoclinic, P21/aMo Kα radiation
a = 10.3609 (3) ŵ = 1.05 mm1
b = 7.8700 (2) ÅT = 293 K
c = 17.7948 (7) Å0.3 × 0.1 × 0.1 mm
β = 93.043 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2881 reflections with I > 2σ(I)
14651 measured reflectionsRint = 0.028
3204 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.40 e Å3
3204 reflectionsΔρmin = 0.25 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.175327 (16)0.49618 (2)0.136596 (10)0.01155 (8)
O10.08310 (11)0.31659 (13)0.38282 (7)0.0288 (3)
O20.09259 (10)0.23198 (13)0.33170 (7)0.0277 (3)
N10.13730 (11)0.09690 (15)0.31440 (7)0.0173 (2)
N20.00760 (11)0.20171 (15)0.36602 (7)0.0190 (2)
C10.34295 (12)0.55527 (19)0.08304 (8)0.0196 (3)
H10.38490.48760.04910.024*
C20.24330 (13)0.67691 (19)0.06407 (9)0.0219 (3)
H20.20890.70220.01600.026*
C30.20652 (13)0.75263 (18)0.13377 (10)0.0244 (3)
H30.14370.83600.13820.029*
C40.28328 (13)0.67775 (19)0.19565 (9)0.0224 (3)
H40.27880.70420.24640.027*
C50.36735 (12)0.55548 (19)0.16420 (9)0.0195 (3)
H50.42720.48790.19110.023*
C60.13517 (12)0.24086 (17)0.12877 (8)0.0155 (3)
H60.19140.15580.11470.019*
C70.04727 (12)0.33367 (17)0.07798 (8)0.0163 (3)
H70.03730.31990.02610.020*
C80.02175 (12)0.45125 (18)0.12293 (8)0.0162 (3)
H80.08480.52710.10490.019*
C90.02341 (11)0.43195 (17)0.20148 (8)0.0153 (3)
H90.00590.49290.24200.018*
C100.12191 (11)0.30137 (16)0.20541 (8)0.0144 (3)
C110.19956 (12)0.23941 (18)0.27600 (8)0.0173 (3)
H11A0.28460.20370.26190.021*
H11B0.21110.33340.31100.021*
C120.03771 (12)0.11221 (16)0.36170 (7)0.0141 (3)
C130.00039 (12)0.27404 (17)0.38947 (8)0.0161 (3)
H130.04170.37090.37350.019*
C140.09834 (13)0.29185 (17)0.43954 (8)0.0181 (3)
H140.11800.39940.45730.022*
C150.16826 (13)0.15031 (18)0.46392 (8)0.0201 (3)
H150.23350.16340.49740.024*
C160.13745 (14)0.00804 (16)0.43693 (9)0.0191 (3)
H160.18410.10250.45140.023*
C170.03569 (13)0.02881 (17)0.38750 (8)0.0157 (3)
H100.1571 (19)0.001 (2)0.3026 (12)0.028 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.01011 (11)0.00982 (11)0.01488 (12)0.00088 (6)0.00230 (8)0.00070 (6)
O10.0366 (6)0.0115 (5)0.0392 (7)0.0041 (4)0.0109 (5)0.0019 (4)
O20.0323 (5)0.0169 (5)0.0353 (6)0.0029 (4)0.0149 (5)0.0029 (4)
N10.0198 (5)0.0129 (6)0.0197 (6)0.0014 (4)0.0052 (4)0.0026 (5)
N20.0242 (6)0.0137 (6)0.0192 (6)0.0005 (5)0.0029 (5)0.0014 (4)
C10.0156 (6)0.0184 (7)0.0256 (8)0.0041 (5)0.0079 (5)0.0016 (6)
C20.0188 (6)0.0216 (7)0.0249 (8)0.0077 (5)0.0011 (5)0.0106 (6)
C30.0159 (6)0.0108 (6)0.0470 (10)0.0022 (5)0.0079 (6)0.0012 (6)
C40.0212 (6)0.0227 (7)0.0238 (8)0.0102 (6)0.0058 (5)0.0074 (6)
C50.0113 (5)0.0196 (7)0.0274 (8)0.0040 (5)0.0004 (5)0.0041 (6)
C60.0153 (6)0.0106 (6)0.0211 (7)0.0020 (5)0.0037 (5)0.0001 (5)
C70.0154 (6)0.0164 (6)0.0172 (7)0.0047 (5)0.0007 (5)0.0006 (5)
C80.0103 (5)0.0154 (6)0.0230 (7)0.0019 (5)0.0012 (5)0.0034 (5)
C90.0125 (5)0.0144 (6)0.0196 (7)0.0024 (5)0.0052 (5)0.0008 (5)
C100.0129 (5)0.0128 (6)0.0178 (7)0.0030 (5)0.0024 (5)0.0026 (5)
C110.0153 (6)0.0185 (7)0.0184 (7)0.0019 (5)0.0027 (5)0.0039 (5)
C120.0159 (6)0.0129 (6)0.0132 (6)0.0004 (5)0.0017 (5)0.0021 (5)
C130.0196 (6)0.0109 (6)0.0179 (7)0.0018 (5)0.0004 (5)0.0017 (5)
C140.0227 (6)0.0124 (6)0.0189 (7)0.0032 (5)0.0004 (5)0.0006 (5)
C150.0218 (6)0.0182 (7)0.0208 (7)0.0036 (5)0.0066 (5)0.0019 (5)
C160.0208 (7)0.0140 (7)0.0229 (8)0.0007 (5)0.0052 (6)0.0039 (5)
C170.0197 (6)0.0104 (6)0.0169 (7)0.0015 (5)0.0014 (5)0.0016 (5)
Geometric parameters (Å, º) top
Fe—C32.0450 (14)C4—H40.9300
Fe—C62.0552 (13)C5—H50.9300
Fe—C102.0562 (13)C6—C71.4466 (19)
Fe—C92.0638 (12)C6—C101.4579 (19)
Fe—C42.0669 (14)C6—H60.9300
Fe—C22.0691 (14)C7—C81.4382 (19)
Fe—C82.0738 (12)C7—H70.9300
Fe—C52.0769 (13)C8—C91.458 (2)
Fe—C12.0776 (13)C8—H80.9300
Fe—C72.0826 (13)C9—C101.4474 (18)
O1—N21.2423 (15)C9—H90.9300
O2—N21.2549 (15)C10—C111.5348 (18)
N1—C121.3711 (17)C11—H11A0.9700
N1—C111.4790 (17)C11—H11B0.9700
N1—H100.830 (18)C12—C131.4292 (18)
N2—C171.4471 (17)C12—C171.4346 (18)
C1—C21.435 (2)C13—C141.3926 (19)
C1—C51.453 (2)C13—H130.9300
C1—H10.9300C14—C151.4096 (19)
C2—C31.445 (2)C14—H140.9300
C2—H20.9300C15—C161.3790 (19)
C3—C41.449 (2)C15—H150.9300
C3—H30.9300C16—C171.4179 (19)
C4—C51.432 (2)C16—H160.9300
C3—Fe—C6174.23 (6)Fe—C3—H3125.6
C3—Fe—C10142.98 (6)C5—C4—C3107.29 (13)
C6—Fe—C1041.54 (5)C5—C4—Fe70.17 (8)
C3—Fe—C9112.44 (6)C3—C4—Fe68.56 (8)
C6—Fe—C968.95 (5)C5—C4—H4126.4
C10—Fe—C941.13 (5)C3—C4—H4126.4
C3—Fe—C441.26 (6)Fe—C4—H4126.5
C6—Fe—C4144.34 (6)C4—C5—C1108.18 (13)
C10—Fe—C4111.60 (6)C4—C5—Fe69.41 (7)
C9—Fe—C4107.04 (6)C1—C5—Fe69.55 (7)
C3—Fe—C241.13 (6)C4—C5—H5125.9
C6—Fe—C2134.76 (6)C1—C5—H5125.9
C10—Fe—C2174.42 (5)Fe—C5—H5126.7
C9—Fe—C2144.32 (6)C7—C6—C10109.39 (11)
C4—Fe—C269.45 (6)C7—C6—Fe70.56 (7)
C3—Fe—C8108.74 (6)C10—C6—Fe69.27 (7)
C6—Fe—C868.34 (5)C7—C6—H6125.3
C10—Fe—C869.41 (5)C10—C6—H6125.3
C9—Fe—C841.27 (5)Fe—C6—H6126.5
C4—Fe—C8132.87 (6)C8—C7—C6107.01 (12)
C2—Fe—C8114.18 (5)C8—C7—Fe69.43 (7)
C3—Fe—C568.49 (6)C6—C7—Fe68.52 (7)
C6—Fe—C5115.06 (6)C8—C7—H7126.5
C10—Fe—C5108.15 (5)C6—C7—H7126.5
C9—Fe—C5132.24 (6)Fe—C7—H7127.1
C4—Fe—C540.42 (6)C7—C8—C9108.81 (12)
C2—Fe—C568.87 (6)C7—C8—Fe70.09 (7)
C8—Fe—C5172.26 (6)C9—C8—Fe69.00 (7)
C3—Fe—C168.33 (6)C7—C8—H8125.6
C6—Fe—C1111.03 (5)C9—C8—H8125.6
C10—Fe—C1134.27 (5)Fe—C8—H8126.9
C9—Fe—C1172.94 (6)C10—C9—C8108.04 (12)
C4—Fe—C168.62 (6)C10—C9—Fe69.15 (7)
C2—Fe—C140.50 (6)C8—C9—Fe69.73 (7)
C8—Fe—C1145.71 (6)C10—C9—H9126.0
C5—Fe—C140.94 (6)C8—C9—H9126.0
C3—Fe—C7133.71 (6)Fe—C9—H9126.7
C6—Fe—C740.92 (5)C9—C10—C6106.74 (11)
C10—Fe—C769.88 (5)C9—C10—C11127.06 (12)
C9—Fe—C769.22 (5)C6—C10—C11126.19 (11)
C4—Fe—C7172.91 (5)C9—C10—Fe69.71 (7)
C2—Fe—C7109.79 (6)C6—C10—Fe69.19 (7)
C8—Fe—C740.49 (5)C11—C10—Fe125.33 (8)
C5—Fe—C7146.44 (6)N1—C11—C10113.36 (10)
C1—Fe—C7115.69 (6)N1—C11—H11A108.9
C12—N1—C11125.30 (12)C10—C11—H11A108.9
C12—N1—H10116.2 (13)N1—C11—H11B108.9
C11—N1—H10118.1 (13)C10—C11—H11B108.9
O1—N2—O2121.78 (12)H11A—C11—H11B107.7
O1—N2—C17118.86 (11)N1—C12—C13121.41 (12)
O2—N2—C17119.36 (11)N1—C12—C17123.88 (12)
C2—C1—C5108.55 (12)C13—C12—C17114.71 (11)
C2—C1—Fe69.43 (7)C14—C13—C12122.34 (12)
C5—C1—Fe69.51 (7)C14—C13—H13118.8
C2—C1—H1125.7C12—C13—H13118.8
C5—C1—H1125.7C13—C14—C15121.41 (12)
Fe—C1—H1126.9C13—C14—H14119.3
C1—C2—C3107.00 (13)C15—C14—H14119.3
C1—C2—Fe70.07 (8)C16—C15—C14118.34 (12)
C3—C2—Fe68.54 (8)C16—C15—H15120.8
C1—C2—H2126.5C14—C15—H15120.8
C3—C2—H2126.5C15—C16—C17120.91 (12)
Fe—C2—H2126.4C15—C16—H16119.5
C2—C3—C4108.99 (12)C17—C16—H16119.5
C2—C3—Fe70.33 (8)C16—C17—C12122.25 (12)
C4—C3—Fe70.18 (8)C16—C17—N2116.03 (11)
C2—C3—H3125.5C12—C17—N2121.70 (12)
C4—C3—H3125.5
C3—Fe—C1—C238.48 (9)C3—Fe—C7—C864.19 (11)
C6—Fe—C1—C2135.36 (9)C6—Fe—C7—C8118.91 (11)
C10—Fe—C1—C2177.19 (8)C10—Fe—C7—C881.50 (8)
C4—Fe—C1—C282.98 (10)C9—Fe—C7—C837.47 (8)
C8—Fe—C1—C253.30 (14)C2—Fe—C7—C8104.42 (9)
C5—Fe—C1—C2120.20 (12)C5—Fe—C7—C8174.23 (9)
C7—Fe—C1—C290.87 (9)C1—Fe—C7—C8148.06 (8)
C3—Fe—C1—C581.72 (9)C3—Fe—C7—C6176.90 (8)
C6—Fe—C1—C5104.44 (9)C10—Fe—C7—C637.40 (7)
C10—Fe—C1—C562.61 (11)C9—Fe—C7—C681.44 (8)
C4—Fe—C1—C537.21 (9)C2—Fe—C7—C6136.67 (8)
C2—Fe—C1—C5120.20 (12)C8—Fe—C7—C6118.91 (11)
C8—Fe—C1—C5173.50 (9)C5—Fe—C7—C655.33 (13)
C7—Fe—C1—C5148.93 (8)C1—Fe—C7—C693.04 (8)
C5—C1—C2—C30.17 (15)C6—C7—C8—C90.16 (14)
Fe—C1—C2—C358.82 (9)Fe—C7—C8—C958.25 (9)
C5—C1—C2—Fe58.65 (9)C6—C7—C8—Fe58.42 (8)
C3—Fe—C2—C1118.47 (12)C3—Fe—C8—C7136.60 (9)
C6—Fe—C2—C167.47 (11)C6—Fe—C8—C738.09 (8)
C9—Fe—C2—C1171.60 (9)C10—Fe—C8—C782.77 (8)
C4—Fe—C2—C180.77 (9)C9—Fe—C8—C7120.43 (11)
C8—Fe—C2—C1150.32 (9)C4—Fe—C8—C7176.41 (8)
C5—Fe—C2—C137.38 (9)C2—Fe—C8—C792.62 (9)
C7—Fe—C2—C1106.74 (9)C1—Fe—C8—C757.81 (13)
C6—Fe—C2—C3174.06 (8)C3—Fe—C8—C9102.97 (9)
C9—Fe—C2—C353.14 (13)C6—Fe—C8—C982.34 (8)
C4—Fe—C2—C337.70 (8)C10—Fe—C8—C937.66 (8)
C8—Fe—C2—C391.21 (9)C4—Fe—C8—C963.16 (11)
C5—Fe—C2—C381.08 (9)C2—Fe—C8—C9146.95 (8)
C1—Fe—C2—C3118.47 (12)C1—Fe—C8—C9178.24 (9)
C7—Fe—C2—C3134.79 (8)C7—Fe—C8—C9120.43 (11)
C1—C2—C3—C40.05 (15)C7—C8—C9—C100.20 (14)
Fe—C2—C3—C459.75 (9)Fe—C8—C9—C1058.72 (8)
C1—C2—C3—Fe59.79 (9)C7—C8—C9—Fe58.92 (9)
C10—Fe—C3—C2174.00 (8)C3—Fe—C9—C10147.17 (8)
C9—Fe—C3—C2149.68 (8)C6—Fe—C9—C1038.87 (8)
C4—Fe—C3—C2119.75 (11)C4—Fe—C9—C10103.56 (8)
C8—Fe—C3—C2105.61 (9)C2—Fe—C9—C10178.13 (9)
C5—Fe—C3—C282.08 (9)C8—Fe—C9—C10119.60 (11)
C1—Fe—C3—C237.90 (8)C5—Fe—C9—C1066.42 (10)
C7—Fe—C3—C267.50 (10)C7—Fe—C9—C1082.82 (8)
C10—Fe—C3—C454.25 (12)C3—Fe—C9—C893.23 (9)
C9—Fe—C3—C490.58 (8)C6—Fe—C9—C880.73 (8)
C2—Fe—C3—C4119.75 (11)C10—Fe—C9—C8119.60 (11)
C8—Fe—C3—C4134.64 (8)C4—Fe—C9—C8136.84 (8)
C5—Fe—C3—C437.66 (8)C2—Fe—C9—C858.53 (13)
C1—Fe—C3—C481.85 (9)C5—Fe—C9—C8173.98 (8)
C7—Fe—C3—C4172.75 (7)C7—Fe—C9—C836.78 (8)
C2—C3—C4—C50.10 (15)C8—C9—C10—C60.48 (13)
Fe—C3—C4—C559.74 (9)Fe—C9—C10—C659.56 (8)
C2—C3—C4—Fe59.84 (9)C8—C9—C10—C11178.65 (11)
C3—Fe—C4—C5118.75 (12)Fe—C9—C10—C11119.57 (12)
C6—Fe—C4—C558.96 (13)C8—C9—C10—Fe59.08 (9)
C10—Fe—C4—C592.96 (9)C7—C6—C10—C90.59 (14)
C9—Fe—C4—C5136.42 (8)Fe—C6—C10—C959.89 (8)
C2—Fe—C4—C581.17 (9)C7—C6—C10—C11178.55 (11)
C8—Fe—C4—C5174.41 (8)Fe—C6—C10—C11119.25 (12)
C1—Fe—C4—C537.67 (9)C7—C6—C10—Fe59.30 (9)
C6—Fe—C4—C3177.71 (8)C3—Fe—C10—C956.33 (12)
C10—Fe—C4—C3148.29 (8)C6—Fe—C10—C9117.97 (11)
C9—Fe—C4—C3104.83 (8)C4—Fe—C10—C991.48 (8)
C2—Fe—C4—C337.58 (8)C8—Fe—C10—C937.78 (8)
C8—Fe—C4—C366.84 (11)C5—Fe—C10—C9134.43 (8)
C5—Fe—C4—C3118.75 (12)C1—Fe—C10—C9172.19 (8)
C1—Fe—C4—C381.08 (9)C7—Fe—C10—C981.10 (8)
C3—C4—C5—C10.21 (15)C3—Fe—C10—C6174.30 (8)
Fe—C4—C5—C158.93 (9)C9—Fe—C10—C6117.97 (11)
C3—C4—C5—Fe58.72 (9)C4—Fe—C10—C6150.56 (7)
C2—C1—C5—C40.24 (15)C8—Fe—C10—C680.18 (8)
Fe—C1—C5—C458.84 (9)C5—Fe—C10—C6107.60 (8)
C2—C1—C5—Fe58.60 (9)C1—Fe—C10—C669.85 (10)
C3—Fe—C5—C438.42 (9)C7—Fe—C10—C636.87 (7)
C6—Fe—C5—C4146.53 (9)C3—Fe—C10—C1165.38 (14)
C10—Fe—C5—C4102.28 (9)C6—Fe—C10—C11120.33 (14)
C9—Fe—C5—C462.91 (11)C9—Fe—C10—C11121.71 (14)
C2—Fe—C5—C482.72 (9)C4—Fe—C10—C1130.23 (12)
C1—Fe—C5—C4119.71 (12)C8—Fe—C10—C11159.49 (12)
C7—Fe—C5—C4176.98 (10)C5—Fe—C10—C1112.73 (12)
C3—Fe—C5—C181.29 (9)C1—Fe—C10—C1150.48 (14)
C6—Fe—C5—C193.75 (9)C7—Fe—C10—C11157.20 (12)
C10—Fe—C5—C1138.00 (8)C12—N1—C11—C1079.74 (16)
C9—Fe—C5—C1177.38 (8)C9—C10—C11—N189.84 (16)
C4—Fe—C5—C1119.71 (12)C6—C10—C11—N191.19 (15)
C2—Fe—C5—C136.99 (9)Fe—C10—C11—N1180.00 (9)
C7—Fe—C5—C157.26 (13)C11—N1—C12—C1311.7 (2)
C10—Fe—C6—C7120.67 (10)C11—N1—C12—C17168.50 (13)
C9—Fe—C6—C782.17 (8)N1—C12—C13—C14177.79 (13)
C4—Fe—C6—C7172.30 (8)C17—C12—C13—C141.99 (19)
C2—Fe—C6—C765.41 (10)C12—C13—C14—C151.9 (2)
C8—Fe—C6—C737.70 (8)C13—C14—C15—C160.0 (2)
C5—Fe—C6—C7149.87 (8)C14—C15—C16—C171.7 (2)
C1—Fe—C6—C7105.40 (8)C15—C16—C17—C121.6 (2)
C9—Fe—C6—C1038.50 (7)C15—C16—C17—N2176.83 (13)
C4—Fe—C6—C1051.63 (12)N1—C12—C17—C16179.49 (13)
C2—Fe—C6—C10173.92 (7)C13—C12—C17—C160.3 (2)
C8—Fe—C6—C1082.97 (8)N1—C12—C17—N21.2 (2)
C5—Fe—C6—C1089.46 (8)C13—C12—C17—N2178.58 (12)
C1—Fe—C6—C10133.93 (8)O1—N2—C17—C169.75 (19)
C7—Fe—C6—C10120.67 (10)O2—N2—C17—C16169.57 (13)
C10—C6—C7—C80.47 (14)O1—N2—C17—C12171.86 (13)
Fe—C6—C7—C858.99 (9)O2—N2—C17—C128.8 (2)
C10—C6—C7—Fe58.52 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H10···O20.827 (16)2.01 (2)2.6511 (19)133.3 (18)
N1—H10···N20.827 (16)2.624 (19)2.961 (2)106.0 (16)
C4—H4···O2i0.932.573.283 (2)134
C16—H16···O10.932.362.683 (2)100
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C12H11N2O2)]
Mr336.17
Crystal system, space groupMonoclinic, P21/a
Temperature (K)293
a, b, c (Å)10.3609 (3), 7.8700 (2), 17.7948 (7)
β (°) 93.043 (2)
V3)1448.95 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.3 × 0.1 × 0.1
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14651, 3204, 2881
Rint0.028
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.069, 1.05
No. of reflections3204
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.25

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H10···O20.827 (16)2.01 (2)2.6511 (19)133.3 (18)
N1—H10···N20.827 (16)2.624 (19)2.961 (2)106.0 (16)
C4—H4···O2i0.932.57003.283 (2)134.00
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This research was financed by the Laboratory of Valorization and Promotion of Saharan Resources (project No. E03220080002). The authors acknowledge the assistance of Merazig Hocine in the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationArgyropoulos, N. & Coutouli-Argyropoulou, E. (2002). J. Organomet. Chem. 654, 117–122.  Web of Science CrossRef CAS Google Scholar
First citationCano, J., Benito, A., Martínez-Máñez, R., Soto, J., Payá, J., Lloret, F., Julve, M., Marcos, M. D. & Sinn, E. (1995). Inorg. Chim. Acta, 231, 45–56.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhelef, A., Terki, B., Mahboub, M. S. & Lanez, T. (2012). Acta Cryst. E68, m647.  CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOsgerby, J. M. & Pauson, P. L. (1961). J. Chem. Soc. pp. 4600–4604.  CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShaabani, B. & Shaghaghi, Z. (2010). Tetrahedron, 66, 3259–3264.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds