organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Methyl­phen­yl)-N-{[(2-nitro­phen­yl)acet­yl]­­oxy}benzamide

aGansu Health Center Hospital, Lanzhou 730000, Gansu Province, People's Republic of China, and bInstitute of Medicinal Chemistry, School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu Province, People's Republic of China
*Correspondence e-mail: qudonghui1020@126.com

(Received 12 September 2012; accepted 15 September 2012; online 22 September 2012)

In the title mol­ecule, C22H18N2O5, the nitro-substituted benzene ring makes dihedral angles of 71.56 (1)° with the benzoyl ring and 16.28 (1)° with the methyl-substituted benzene ring. The crystal structure features C—H⋯O inter­actions, which generate chains.

Related literature

For biological applications of hydroxamic acid derivatives, see: Noh et al. (2009[Noh, E. J., Lim, D. S., Jeong, G. & Lee, J. S. (2009). Biochem. Biophys. Res. Commun. 378, 326-331.]); Zeng et al. (2003[Zeng, W., Zeng, G. Y. & Qin, S. Y. (2003). Chin. J. Org. Chem. 23, 1213-1218.]). For the preparation of the title compound, see: Ayyangark et al. (1986[Ayyangark, N. R., Hrailme, C., Kalkotf, U. R. & Srinivasan, K. V. (1986). Synth. Commun. pp. 938-941.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18N2O5

  • Mr = 390.38

  • Orthorhombic, P 21 21 21

  • a = 9.246 (3) Å

  • b = 11.911 (4) Å

  • c = 17.923 (6) Å

  • V = 1974.0 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.980

  • 8939 measured reflections

  • 3605 independent reflections

  • 2280 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.01

  • 3605 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.93 2.55 3.456 (4) 165
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydroxamic acid derivatives have received considerable attention in recent years as the result of the discovery of their role in the biochemical toxicology of many drugs and other chemicals. Thus, these compounds continue to attract much attention as potential biological agents (Noh et al., 2009; Zeng et al., 2003).

The title compound, C22H18N2O5, was prepared according to the method described by Ayyangark et al. (1986). The molecule contains three branched chains with its centre placed at midpoint of the N2 atom (Fig. 1). The nitro-substituted benzene ring makes a dihedral angle of 71.56 (1)° with the benzoyl ring and 16.28 (1)° with the methyl-substituted benzene ring. The crystal structure features weak intra- and inter-molecular C—H···O interactions (Table 1).

Related literature top

For biological applications of hydroxamic acid derivatives, see: Noh et al. (2009); Zeng et al. (2003). For the preparation of the title compound, see: Ayyangark et al. (1986).

Experimental top

The title compound was prepared according to the method described by Ayyangark et al. (1986). The yellow crystals were grown from a solution of dichloromethane–methanol (1:3 v/v) by slow evaporation at room temperature.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso = 1.2Ueq(C) for aromatic H atoms, with C—H = 0.97 Å and Uiso = 1.2Ueq(C) for methylene H atoms, and with C—H = 0.96 Å and Uiso = 1.5Ueq(C) for methyl H atoms.

Structure description top

Hydroxamic acid derivatives have received considerable attention in recent years as the result of the discovery of their role in the biochemical toxicology of many drugs and other chemicals. Thus, these compounds continue to attract much attention as potential biological agents (Noh et al., 2009; Zeng et al., 2003).

The title compound, C22H18N2O5, was prepared according to the method described by Ayyangark et al. (1986). The molecule contains three branched chains with its centre placed at midpoint of the N2 atom (Fig. 1). The nitro-substituted benzene ring makes a dihedral angle of 71.56 (1)° with the benzoyl ring and 16.28 (1)° with the methyl-substituted benzene ring. The crystal structure features weak intra- and inter-molecular C—H···O interactions (Table 1).

For biological applications of hydroxamic acid derivatives, see: Noh et al. (2009); Zeng et al. (2003). For the preparation of the title compound, see: Ayyangark et al. (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering and 50% probability displacement ellipsoids (H atoms are shown as small spheres of arbitrary radius).
N-(4-Methylphenyl)-N-{[(2-nitrophenyl)acetyl]oxy}benzamide top
Crystal data top
C22H18N2O5F(000) = 816
Mr = 390.38Dx = 1.314 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2167 reflections
a = 9.246 (3) Åθ = 2.5–20.3°
b = 11.911 (4) ŵ = 0.09 mm1
c = 17.923 (6) ÅT = 296 K
V = 1974.0 (11) Å3Block, yellow
Z = 40.25 × 0.23 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
3605 independent reflections
Radiation source: fine-focus sealed tube2280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 911
Tmin = 0.977, Tmax = 0.980k = 1414
8939 measured reflectionsl = 1821
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0508P)2 + 0.0436P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.040(Δ/σ)max = 0.001
wR(F2) = 0.111Δρmax = 0.11 e Å3
S = 1.01Δρmin = 0.12 e Å3
3605 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008)
264 parametersExtinction coefficient: 0.0097 (13)
0 restraints
Crystal data top
C22H18N2O5V = 1974.0 (11) Å3
Mr = 390.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.246 (3) ŵ = 0.09 mm1
b = 11.911 (4) ÅT = 296 K
c = 17.923 (6) Å0.25 × 0.23 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
3605 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2280 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.980Rint = 0.033
8939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.01Δρmax = 0.11 e Å3
3605 reflectionsΔρmin = 0.12 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3532 (3)0.1353 (2)0.07101 (14)0.0662 (7)
C20.2883 (3)0.1027 (3)0.13739 (17)0.0852 (9)
H20.27950.02710.14960.102*
C30.2368 (3)0.1853 (4)0.18535 (16)0.0961 (11)
H30.19330.16580.23030.115*
C40.2508 (4)0.2945 (3)0.16565 (19)0.0956 (10)
H40.21730.35020.19770.115*
C50.3124 (3)0.3237 (3)0.10045 (17)0.0817 (8)
H50.31860.39950.08860.098*
C60.3665 (3)0.2469 (2)0.05063 (13)0.0637 (7)
C70.4263 (3)0.2894 (2)0.02163 (14)0.0747 (8)
H7A0.51960.25480.03060.090*
H7B0.44090.36980.01810.090*
C80.3285 (3)0.2649 (2)0.08568 (14)0.0648 (7)
C90.1744 (3)0.3805 (2)0.21269 (15)0.0675 (7)
C100.0711 (3)0.3651 (2)0.27535 (14)0.0613 (7)
C110.0023 (3)0.4586 (2)0.30155 (17)0.0779 (8)
H110.01730.52910.28170.094*
C120.1047 (4)0.4469 (3)0.35739 (19)0.0914 (10)
H120.15260.50980.37570.110*
C130.1356 (4)0.3429 (3)0.38569 (17)0.0914 (9)
H130.20470.33530.42300.110*
C140.0659 (3)0.2509 (3)0.35956 (16)0.0808 (8)
H140.08820.18040.37860.097*
C150.0376 (3)0.2615 (2)0.30509 (15)0.0687 (7)
H150.08580.19800.28800.082*
C160.3668 (3)0.2615 (2)0.27241 (13)0.0587 (6)
C170.4158 (3)0.1531 (2)0.26885 (16)0.0714 (7)
H170.39640.10950.22700.086*
C180.4936 (3)0.1090 (2)0.32708 (16)0.0750 (8)
H180.52810.03580.32360.090*
C190.5220 (3)0.1707 (2)0.39074 (14)0.0668 (7)
C200.4722 (3)0.2792 (2)0.39293 (15)0.0727 (8)
H200.48980.32260.43510.087*
C210.3968 (3)0.3255 (2)0.33402 (15)0.0680 (7)
H210.36630.39980.33610.082*
C220.6051 (4)0.1213 (3)0.45524 (15)0.0997 (11)
H22A0.54070.07850.48620.150*
H22B0.64750.18080.48410.150*
H22C0.68020.07330.43650.150*
N10.4064 (4)0.0451 (2)0.02206 (17)0.0970 (8)
N20.2881 (2)0.3064 (2)0.21067 (12)0.0713 (6)
O10.2230 (3)0.20874 (17)0.08620 (10)0.0923 (7)
O20.37898 (19)0.32093 (15)0.14693 (9)0.0750 (5)
O30.1555 (2)0.44895 (17)0.16349 (12)0.0973 (7)
O40.3608 (4)0.0472 (2)0.03322 (16)0.1591 (12)
O50.4911 (4)0.0655 (2)0.02581 (17)0.1589 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0596 (16)0.0736 (17)0.0655 (17)0.0017 (14)0.0069 (14)0.0037 (14)
C20.072 (2)0.104 (2)0.080 (2)0.0155 (18)0.0139 (17)0.0225 (19)
C30.0593 (19)0.175 (4)0.0541 (18)0.000 (2)0.0040 (15)0.003 (2)
C40.080 (2)0.123 (3)0.084 (2)0.017 (2)0.0039 (19)0.026 (2)
C50.085 (2)0.0853 (19)0.0753 (19)0.0026 (17)0.0079 (17)0.0145 (17)
C60.0573 (16)0.0715 (17)0.0622 (15)0.0049 (14)0.0097 (13)0.0099 (14)
C70.078 (2)0.0780 (17)0.0681 (17)0.0196 (15)0.0065 (16)0.0010 (14)
C80.0636 (18)0.0685 (16)0.0624 (15)0.0117 (15)0.0025 (14)0.0002 (13)
C90.0651 (19)0.0595 (16)0.0780 (18)0.0091 (15)0.0111 (15)0.0001 (14)
C100.0515 (15)0.0589 (15)0.0735 (17)0.0002 (13)0.0114 (13)0.0039 (13)
C110.0778 (19)0.0615 (16)0.095 (2)0.0096 (17)0.0190 (19)0.0074 (15)
C120.080 (2)0.098 (2)0.096 (2)0.028 (2)0.015 (2)0.037 (2)
C130.072 (2)0.117 (3)0.085 (2)0.006 (2)0.0023 (18)0.013 (2)
C140.0641 (19)0.089 (2)0.090 (2)0.0034 (17)0.0018 (17)0.0038 (18)
C150.0571 (18)0.0627 (17)0.0864 (18)0.0001 (13)0.0021 (15)0.0073 (14)
C160.0491 (14)0.0635 (15)0.0636 (15)0.0052 (12)0.0035 (13)0.0056 (13)
C170.0775 (19)0.0649 (17)0.0717 (17)0.0025 (15)0.0056 (15)0.0173 (14)
C180.0778 (19)0.0603 (16)0.0869 (19)0.0090 (16)0.0150 (17)0.0030 (15)
C190.0643 (17)0.0671 (17)0.0690 (17)0.0077 (14)0.0126 (15)0.0068 (14)
C200.0708 (19)0.0748 (18)0.0725 (17)0.0015 (15)0.0061 (16)0.0120 (14)
C210.0658 (17)0.0614 (15)0.0768 (18)0.0042 (15)0.0112 (14)0.0112 (13)
C220.107 (3)0.114 (2)0.0781 (19)0.025 (2)0.0122 (19)0.0285 (18)
N10.119 (2)0.0711 (18)0.101 (2)0.0019 (18)0.0082 (18)0.0082 (16)
N20.0609 (14)0.0913 (16)0.0618 (13)0.0061 (13)0.0007 (12)0.0030 (11)
O10.0954 (14)0.1119 (16)0.0698 (12)0.0502 (14)0.0065 (11)0.0052 (11)
O20.0661 (12)0.0943 (13)0.0647 (11)0.0177 (11)0.0017 (10)0.0068 (10)
O30.0899 (15)0.0888 (13)0.1131 (16)0.0055 (13)0.0006 (13)0.0337 (13)
O40.238 (4)0.0828 (17)0.157 (2)0.020 (2)0.017 (3)0.0193 (16)
O50.192 (3)0.116 (2)0.169 (3)0.001 (2)0.093 (3)0.0317 (19)
Geometric parameters (Å, º) top
C1—C61.384 (4)C12—H120.9300
C1—C21.387 (3)C13—C141.354 (4)
C1—N11.472 (4)C13—H130.9300
C2—C31.390 (4)C14—C151.373 (4)
C2—H20.9300C14—H140.9300
C3—C41.354 (5)C15—H150.9300
C3—H30.9300C16—C171.369 (4)
C4—C51.346 (4)C16—C211.370 (3)
C4—H40.9300C16—N21.429 (3)
C5—C61.373 (4)C17—C181.372 (4)
C5—H50.9300C17—H170.9300
C6—C71.496 (3)C18—C191.383 (4)
C7—C81.490 (3)C18—H180.9300
C7—H7A0.9700C19—C201.372 (3)
C7—H7B0.9700C19—C221.508 (4)
C8—O11.183 (3)C20—C211.380 (3)
C8—O21.367 (3)C20—H200.9300
C9—O31.214 (3)C21—H210.9300
C9—N21.372 (3)C22—H22A0.9600
C9—C101.486 (4)C22—H22B0.9600
C10—C151.379 (3)C22—H22C0.9600
C10—C111.386 (3)N1—O51.187 (3)
C11—C121.385 (4)N1—O41.194 (3)
C11—H110.9300N2—O21.429 (3)
C12—C131.369 (4)
C6—C1—C2122.2 (3)C14—C13—H13119.9
C6—C1—N1120.9 (3)C12—C13—H13119.9
C2—C1—N1116.9 (3)C13—C14—C15120.2 (3)
C1—C2—C3118.7 (3)C13—C14—H14119.9
C1—C2—H2120.6C15—C14—H14119.9
C3—C2—H2120.6C14—C15—C10120.9 (3)
C4—C3—C2119.0 (3)C14—C15—H15119.6
C4—C3—H3120.5C10—C15—H15119.6
C2—C3—H3120.5C17—C16—C21119.7 (2)
C5—C4—C3121.0 (3)C17—C16—N2119.1 (2)
C5—C4—H4119.5C21—C16—N2121.2 (2)
C3—C4—H4119.5C16—C17—C18119.9 (2)
C4—C5—C6123.1 (3)C16—C17—H17120.0
C4—C5—H5118.4C18—C17—H17120.0
C6—C5—H5118.4C17—C18—C19121.6 (2)
C5—C6—C1115.8 (3)C17—C18—H18119.2
C5—C6—C7118.2 (3)C19—C18—H18119.2
C1—C6—C7125.9 (2)C20—C19—C18117.4 (2)
C8—C7—C6112.1 (2)C20—C19—C22121.1 (3)
C8—C7—H7A109.2C18—C19—C22121.5 (2)
C6—C7—H7A109.2C19—C20—C21121.6 (3)
C8—C7—H7B109.2C19—C20—H20119.2
C6—C7—H7B109.2C21—C20—H20119.2
H7A—C7—H7B107.9C16—C21—C20119.8 (2)
O1—C8—O2123.5 (2)C16—C21—H21120.1
O1—C8—C7128.1 (2)C20—C21—H21120.1
O2—C8—C7108.4 (2)C19—C22—H22A109.5
O3—C9—N2121.5 (3)C19—C22—H22B109.5
O3—C9—C10122.6 (3)H22A—C22—H22B109.5
N2—C9—C10115.7 (2)C19—C22—H22C109.5
C15—C10—C11118.6 (3)H22A—C22—H22C109.5
C15—C10—C9123.1 (2)H22B—C22—H22C109.5
C11—C10—C9118.1 (2)O5—N1—O4122.9 (3)
C12—C11—C10119.9 (3)O5—N1—C1120.1 (3)
C12—C11—H11120.1O4—N1—C1117.0 (3)
C10—C11—H11120.1C9—N2—O2113.2 (2)
C13—C12—C11120.1 (3)C9—N2—C16127.6 (2)
C13—C12—H12119.9O2—N2—C16111.39 (19)
C11—C12—H12119.9C8—O2—N2112.48 (19)
C14—C13—C12120.3 (3)
C6—C1—C2—C30.8 (4)C21—C16—C17—C180.5 (4)
N1—C1—C2—C3179.9 (3)N2—C16—C17—C18179.0 (2)
C1—C2—C3—C40.3 (4)C16—C17—C18—C191.3 (4)
C2—C3—C4—C50.6 (5)C17—C18—C19—C201.5 (4)
C3—C4—C5—C61.0 (5)C17—C18—C19—C22178.9 (3)
C4—C5—C6—C10.5 (4)C18—C19—C20—C210.0 (4)
C4—C5—C6—C7177.2 (3)C22—C19—C20—C21179.6 (3)
C2—C1—C6—C50.4 (4)C17—C16—C21—C202.0 (4)
N1—C1—C6—C5179.7 (3)N2—C16—C21—C20179.6 (2)
C2—C1—C6—C7176.0 (2)C19—C20—C21—C161.8 (4)
N1—C1—C6—C73.3 (4)C6—C1—N1—O518.3 (5)
C5—C6—C7—C8106.5 (3)C2—C1—N1—O5162.4 (3)
C1—C6—C7—C869.8 (4)C6—C1—N1—O4161.9 (3)
C6—C7—C8—O18.2 (4)C2—C1—N1—O417.4 (4)
C6—C7—C8—O2170.7 (2)O3—C9—N2—O21.1 (3)
O3—C9—C10—C15141.9 (3)C10—C9—N2—O2176.52 (19)
N2—C9—C10—C1533.4 (3)O3—C9—N2—C16147.4 (3)
O3—C9—C10—C1133.6 (4)C10—C9—N2—C1637.2 (3)
N2—C9—C10—C11151.1 (2)C17—C16—N2—C9144.5 (3)
C15—C10—C11—C121.2 (4)C21—C16—N2—C937.0 (4)
C9—C10—C11—C12176.8 (2)C17—C16—N2—O268.7 (3)
C10—C11—C12—C131.3 (4)C21—C16—N2—O2109.7 (3)
C11—C12—C13—C140.3 (5)O1—C8—O2—N21.6 (4)
C12—C13—C14—C150.8 (4)C7—C8—O2—N2177.4 (2)
C13—C14—C15—C100.9 (4)C9—N2—O2—C884.8 (2)
C11—C10—C15—C140.1 (4)C16—N2—O2—C8123.4 (2)
C9—C10—C15—C14175.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O50.972.272.734 (4)108
C12—H12···O1i0.932.553.456 (4)165
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H18N2O5
Mr390.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)9.246 (3), 11.911 (4), 17.923 (6)
V3)1974.0 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.23 × 0.22
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
8939, 3605, 2280
Rint0.033
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.01
No. of reflections3605
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.12

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O50.972.272.734 (4)108
C12—H12···O1i0.932.553.456 (4)165
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Science and Technology Plan Projects of Lanzhou City (grant No. 2008-1-74)

References

First citationAyyangark, N. R., Hrailme, C., Kalkotf, U. R. & Srinivasan, K. V. (1986). Synth. Commun. pp. 938–941.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNoh, E. J., Lim, D. S., Jeong, G. & Lee, J. S. (2009). Biochem. Biophys. Res. Commun. 378, 326–331.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, W., Zeng, G. Y. & Qin, S. Y. (2003). Chin. J. Org. Chem. 23, 1213–1218.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds