organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-N-Methyl-2-[(2E)-3-phenyl­prop-2-en-1-yl­­idene]hydrazinecarbo­thio­amide

aDepartment of Chemistry, M. S. Ramaiah Institute of Technology, M.S.R.I.T. Post, Bangalore 560 054, Karnataka, India, bDepartment of Physics, M. S. Ramaiah Institute of Technology, M.S.R.I.T. Post, Bangalore 560 054, Karnataka, India, cDepartment of Chemistry, Sri Krishnadevaraya University, Anantapur 515 003 (AP), India, and dDepartment of Physics, Bangalore University, Bangalore 560 056, Karnataka, India
*Correspondence e-mail: muralikp21@gmail.com

(Received 8 August 2012; accepted 30 August 2012; online 5 September 2012)

The title compound, C11H13N3S, is close to being planar, with a dihedral angle of 9.64 (3)° between the benzene ring and the thio­semicarbazone mean plane, maintained by the presence of π-conjugation in the chain linking the the two systems. In the crystal, N—H⋯S hydrogen bonds form centrosymmetric dimers through a cyclic association [graph-set R22(8)].

Related literature

For the biological activity and pharmaceutical properties of thio­semicarbazones and their derivatives, see: Casas et al. (2000[Casas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197-261.]); Ferrari et al. (2000[Ferrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89-97.]); Murali Krishna et al. (2008[Murali Krishna, P., Hussain Reddy, K., Pandey, J. P. & Dayananda, S. (2008). Transition Met. Chem. 33, 661-668.]); Murali Krishna & Hussain Reddy (2009[Murali Krishna, P. & Hussain Reddy, K. (2009). Inorg. Chim. Acta, 362, 4185-4190.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related compounds, see: Chumakov et al. (2006[Chumakov, Yu. M., Samus, N. M., Bocelli, G., Suponitskii, Yu. K., Tsapkov, V. I. & Gulya, A. P. (2006). Russ. J. Coord. Chem. 32, 14-20.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13N3S

  • Mr = 219.31

  • Monoclinic, P 21 /n

  • a = 5.5265 (11) Å

  • b = 9.4670 (19) Å

  • c = 22.534 (5) Å

  • β = 91.206 (3)°

  • V = 1178.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 291 K

  • 0.45 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 8363 measured reflections

  • 2201 independent reflections

  • 1564 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.174

  • S = 1.06

  • 2201 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.86 2.67 3.368 (3) 139
Symmetry code: (i) -x, -y, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thiosemicarbazones, the derivatives of carbonyl compounds with thiosemicarbazides have been given a special place among sulfur containing compounds due to their propensity to react with a wide range of metals (Casas et al., 2000) and possess a wide spectrum of medicinal properties (Ferrari et al., 2000). It was advocated that their bioactivity arises because of the presence of the imino group (–NCH–) in addition to thioamino moieties present in the skeleton of the molecule. The title thiosemicarbazone derivative, C11H13N3S was synthesized and its crystal structure is reported here. It is possible that this compound may have biomedical properties similar to other nitrogen-sulfur donor ligands studied by our group.

In the title compound (Fig. 1), the aromatic ring and the thiosemicarbazone moiety are anti-related about the C7C8 bond and the molecule is almost planar, with maximum deviations from the l.s. plane of -0.127 (3) Å (N2) and 0.135 (5) Å (N3). The dihedral angle between the benzene ring and the thiosemicarbazone plane is 9.64 (2)°. The result is the presence of π-conjugation between the aromatic system and the thiosemicarbazide fragment of the molecule. All bond lengths and angles are normal (Allen et al., 1987). A comparison of the interatomic distances of C10—S1, C2—N2 and N2—N1 and the variations in bond angles N2–C10–N3 [115.8 (2)°], N2—C10—S1 [119.7 (2)°] and N3–C10–S1 [124.5 (2)°] in the ligand, indicate that in the TSC moiety of this substituted thiosemicarbazone there is extensive electron lone pair delocalization. The molecular conformation of this group is stabilized by intramolecular N3—H···N1 and C11—H···S1 interactions giving S(5) motifs (Bernstein et al., 1995). Intermolecular N—H···S hydrogen bonds (Table 1) give centrosymmetric dimers through a cyclic association [graph set R22(8)] (Fig. 2).

Related literature top

For the biological activity and pharmaceutical properties of thiosemicarbazones and their derivatives, see: Casas et al. (2000); Ferrari et al. (2000); Murali Krishna et al. (2008); Murali Krishna & Hussain Reddy (2009). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related compounds, see: Chumakov et al. (2006).

Experimental top

To a hot ethanolic (25 ml) solution of (2E)-3-phenylprop-2-enal (4.9 g, 0.03 mol) was added 50 ml of N-methylhydrazinecarbothioamide (0.03 mol) in 5% aqueous acetic acid (50 ml) and the reaction mixture was refluxed for 30–45 min. The crystalline solid product formed was collected by filtration, washed 5–6 times with 10 ml of hot water and then dried under vacuum and re-crystallized from methanol (20 ml). Good diffraction-quality pale yellow crystals of the title compound were obtained in a 1:1 mixture of ethanol and n-hexane.

Refinement top

All H atoms were fixed geometrically and treated as riding with N—H = 0.86 Å, C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) with Uiso(H) = 1.2Ueq(N, Caromatic) or Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

Thiosemicarbazones, the derivatives of carbonyl compounds with thiosemicarbazides have been given a special place among sulfur containing compounds due to their propensity to react with a wide range of metals (Casas et al., 2000) and possess a wide spectrum of medicinal properties (Ferrari et al., 2000). It was advocated that their bioactivity arises because of the presence of the imino group (–NCH–) in addition to thioamino moieties present in the skeleton of the molecule. The title thiosemicarbazone derivative, C11H13N3S was synthesized and its crystal structure is reported here. It is possible that this compound may have biomedical properties similar to other nitrogen-sulfur donor ligands studied by our group.

In the title compound (Fig. 1), the aromatic ring and the thiosemicarbazone moiety are anti-related about the C7C8 bond and the molecule is almost planar, with maximum deviations from the l.s. plane of -0.127 (3) Å (N2) and 0.135 (5) Å (N3). The dihedral angle between the benzene ring and the thiosemicarbazone plane is 9.64 (2)°. The result is the presence of π-conjugation between the aromatic system and the thiosemicarbazide fragment of the molecule. All bond lengths and angles are normal (Allen et al., 1987). A comparison of the interatomic distances of C10—S1, C2—N2 and N2—N1 and the variations in bond angles N2–C10–N3 [115.8 (2)°], N2—C10—S1 [119.7 (2)°] and N3–C10–S1 [124.5 (2)°] in the ligand, indicate that in the TSC moiety of this substituted thiosemicarbazone there is extensive electron lone pair delocalization. The molecular conformation of this group is stabilized by intramolecular N3—H···N1 and C11—H···S1 interactions giving S(5) motifs (Bernstein et al., 1995). Intermolecular N—H···S hydrogen bonds (Table 1) give centrosymmetric dimers through a cyclic association [graph set R22(8)] (Fig. 2).

For the biological activity and pharmaceutical properties of thiosemicarbazones and their derivatives, see: Casas et al. (2000); Ferrari et al. (2000); Murali Krishna et al. (2008); Murali Krishna & Hussain Reddy (2009). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related compounds, see: Chumakov et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing atom numbering, with probability ellipsoids drawn at the 50% level.
[Figure 2] Fig. 2. The packing diagram showing the molecular dimers with N— H···S interactions shown as dashed lines. H-atoms not involved in H-bonding are omitted.
(2E)-N-Methyl-2-[(2E)-3-phenylprop-2-en-1- ylidene]hydrazinecarbothioamide top
Crystal data top
C11H13N3SF(000) = 464
Mr = 219.31Dx = 1.236 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 290 reflections
a = 5.5265 (11) Åθ = 1.5–26.8°
b = 9.4670 (19) ŵ = 0.25 mm1
c = 22.534 (5) ÅT = 291 K
β = 91.206 (3)°Needle, pale yellow
V = 1178.7 (4) Å30.45 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1564 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.5°, θmin = 1.8°
ψ and ω scansh = 66
8363 measured reflectionsk = 1111
2201 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0883P)2 + 0.2979P]
where P = (Fo2 + 2Fc2)/3
2201 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C11H13N3SV = 1178.7 (4) Å3
Mr = 219.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.5265 (11) ŵ = 0.25 mm1
b = 9.4670 (19) ÅT = 291 K
c = 22.534 (5) Å0.45 × 0.26 × 0.24 mm
β = 91.206 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1564 reflections with I > 2σ(I)
8363 measured reflectionsRint = 0.031
2201 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
2201 reflectionsΔρmin = 0.32 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18251 (17)0.19579 (9)1.02989 (4)0.0887 (4)
N10.2855 (4)0.1898 (2)0.90259 (9)0.0638 (6)
N20.1638 (4)0.1576 (3)0.95336 (10)0.0675 (6)
H20.20670.0860.97460.081*
N30.0653 (4)0.3521 (3)0.93696 (10)0.0709 (7)
H30.02960.36710.90790.085*
C11.1293 (5)0.0205 (3)0.76071 (12)0.0668 (7)
H11.16670.08880.78910.08*
C21.2696 (5)0.0095 (4)0.71108 (13)0.0764 (8)
H2A1.40090.06980.70660.092*
C31.2180 (5)0.0884 (3)0.66856 (14)0.0753 (8)
H3A1.31350.09570.63520.09*
C41.0231 (6)0.1766 (3)0.67547 (14)0.0760 (8)
H40.98670.24350.64640.091*
C50.8811 (5)0.1673 (3)0.72468 (13)0.0685 (7)
H50.74930.22750.72830.082*
C60.9323 (4)0.0688 (3)0.76925 (11)0.0571 (6)
C70.7899 (4)0.0553 (3)0.82258 (11)0.0616 (7)
H70.83630.01570.8490.074*
C80.6004 (5)0.1334 (3)0.83780 (12)0.0626 (7)
H80.55320.20710.81280.075*
C90.4655 (5)0.1101 (3)0.89050 (11)0.0627 (7)
H90.50880.03680.91610.075*
C100.0242 (5)0.2395 (3)0.96975 (12)0.0621 (7)
C110.2592 (6)0.4535 (4)0.94608 (16)0.0907 (10)
H11A0.40340.4220.92560.136*
H11B0.21230.5440.93090.136*
H11C0.28960.46130.98770.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1036 (7)0.0873 (6)0.0769 (6)0.0033 (5)0.0421 (5)0.0020 (4)
N10.0603 (13)0.0759 (15)0.0558 (13)0.0073 (11)0.0119 (10)0.0001 (11)
N20.0673 (14)0.0775 (15)0.0582 (13)0.0019 (12)0.0148 (11)0.0093 (11)
N30.0657 (14)0.0768 (15)0.0705 (14)0.0019 (12)0.0103 (11)0.0037 (12)
C10.0565 (15)0.0770 (18)0.0668 (17)0.0015 (13)0.0017 (13)0.0026 (14)
C20.0565 (16)0.095 (2)0.077 (2)0.0084 (15)0.0084 (14)0.0134 (17)
C30.0700 (18)0.085 (2)0.0713 (18)0.0077 (16)0.0201 (14)0.0150 (16)
C40.084 (2)0.0718 (19)0.0728 (19)0.0015 (16)0.0184 (15)0.0046 (14)
C50.0659 (16)0.0680 (17)0.0722 (18)0.0046 (13)0.0148 (13)0.0011 (14)
C60.0461 (13)0.0651 (15)0.0601 (15)0.0095 (12)0.0042 (11)0.0082 (12)
C70.0517 (14)0.0700 (16)0.0628 (15)0.0083 (12)0.0008 (12)0.0007 (13)
C80.0555 (15)0.0743 (17)0.0581 (15)0.0084 (13)0.0056 (12)0.0023 (13)
C90.0577 (15)0.0745 (18)0.0560 (15)0.0083 (14)0.0034 (12)0.0030 (13)
C100.0608 (15)0.0658 (16)0.0601 (16)0.0071 (13)0.0094 (12)0.0074 (13)
C110.076 (2)0.081 (2)0.115 (3)0.0053 (16)0.0029 (18)0.0001 (19)
Geometric parameters (Å, º) top
S1—C101.680 (3)C3—H3A0.93
N1—C91.282 (3)C4—C51.375 (4)
N1—N21.373 (3)C4—H40.93
N2—C101.354 (3)C5—C61.395 (4)
N2—H20.86C5—H50.93
N3—C101.314 (4)C6—C71.456 (3)
N3—C111.456 (4)C7—C81.333 (4)
N3—H30.86C7—H70.93
C1—C21.378 (4)C8—C91.432 (4)
C1—C61.394 (4)C8—H80.93
C1—H10.93C9—H90.93
C2—C31.359 (4)C11—H11A0.96
C2—H2A0.93C11—H11B0.96
C3—C41.374 (4)C11—H11C0.96
C9—N1—N2116.3 (2)C1—C6—C5116.9 (2)
C10—N2—N1119.5 (2)C1—C6—C7119.8 (2)
C10—N2—H2120.2C5—C6—C7123.2 (2)
N1—N2—H2120.2C8—C7—C6127.2 (3)
C10—N3—C11125.0 (3)C8—C7—H7116.4
C10—N3—H3117.5C6—C7—H7116.4
C11—N3—H3117.5C7—C8—C9123.6 (3)
C2—C1—C6121.4 (3)C7—C8—H8118.2
C2—C1—H1119.3C9—C8—H8118.2
C6—C1—H1119.3N1—C9—C8120.3 (3)
C3—C2—C1120.7 (3)N1—C9—H9119.8
C3—C2—H2A119.7C8—C9—H9119.8
C1—C2—H2A119.7N3—C10—N2115.8 (2)
C2—C3—C4119.2 (3)N3—C10—S1124.5 (2)
C2—C3—H3A120.4N2—C10—S1119.7 (2)
C4—C3—H3A120.4N3—C11—H11A109.5
C5—C4—C3121.0 (3)N3—C11—H11B109.5
C5—C4—H4119.5H11A—C11—H11B109.5
C3—C4—H4119.5N3—C11—H11C109.5
C4—C5—C6120.9 (3)H11A—C11—H11C109.5
C4—C5—H5119.6H11B—C11—H11C109.5
C6—C5—H5119.6
C9—N1—N2—C10178.3 (2)C1—C6—C7—C8178.7 (2)
C6—C1—C2—C30.6 (4)C5—C6—C7—C81.9 (4)
C1—C2—C3—C40.2 (4)C6—C7—C8—C9178.0 (2)
C2—C3—C4—C50.3 (5)N2—N1—C9—C8178.6 (2)
C3—C4—C5—C60.5 (5)C7—C8—C9—N1179.7 (2)
C2—C1—C6—C51.4 (4)C11—N3—C10—N2179.2 (3)
C2—C1—C6—C7179.2 (2)C11—N3—C10—S12.5 (4)
C4—C5—C6—C11.3 (4)N1—N2—C10—N34.7 (4)
C4—C5—C6—C7179.3 (3)N1—N2—C10—S1176.89 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.673.368 (3)139
N3—H3···N10.862.202.604 (6)109
C11—H11C···S10.962.753.108 (6)103
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC11H13N3S
Mr219.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)5.5265 (11), 9.4670 (19), 22.534 (5)
β (°) 91.206 (3)
V3)1178.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.45 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8363, 2201, 1564
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.174, 1.06
No. of reflections2201
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.32

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.673.368 (3)139
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

We thank Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for the data collection at the CCD facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Garcia-Tasende, M. S. & Sordo, J. (2000). Coord. Chem. Rev. 209, 197–261.  Web of Science CrossRef CAS Google Scholar
First citationChumakov, Yu. M., Samus, N. M., Bocelli, G., Suponitskii, Yu. K., Tsapkov, V. I. & Gulya, A. P. (2006). Russ. J. Coord. Chem. 32, 14–20.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerrari, M. B., Capacchi, S., Reffo, G., Pelosi, G., Tarasconi, P., Albertini, R., Pinelli, S. & Lunghi, P. (2000). J. Inorg. Biochem. 81, 89–97.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMurali Krishna, P. & Hussain Reddy, K. (2009). Inorg. Chim. Acta, 362, 4185–4190.  Google Scholar
First citationMurali Krishna, P., Hussain Reddy, K., Pandey, J. P. & Dayananda, S. (2008). Transition Met. Chem. 33, 661–668.  Web of Science CrossRef Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds