organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl N-[2-(4-phen­­oxy­phen­­oxy)eth­yl]carbamate

aSchool of Chemistry, National University of Ireland, Galway, University road, Galway, Ireland, and bSchool of Chemistry, Limerick, Ireland
*Correspondence e-mail: p.mcardle@nuigalway.ie

(Received 14 August 2012; accepted 28 August 2012; online 5 September 2012)

The title compound, C17H19NO4, which is a non-toxic insect growth regulator with the common name fenoxycarb, contains two independent and conformationally different mol­ecules in the asymmetric unit. Although the inter-ring dihedral angles are similar [62.21 (15) and 63.00 (14)°], the side-chain orientations differ. In the crystal, the mol­ecules are linked through N—H⋯O hydrogen-bonding associations, giving chains which extend along [110], while intra- and inter­molecular aromatic C—H⋯π inter­actions give sheet structures parallel to [110].

Related literature

For studies on the role of fenoxycarb as an insect growth regulator, see: Paya et al. (2009[Paya, P., Oliva, J., Zafrilla, P., Camara, M. A. & Barba, A. (2009). Ecotoxicology, 18, 1137-1142.]); Sullivan (2010[Sullivan, J. J. (2010). Reviews of Environmental Contamination and Toxicology, Vol 202, edited by D. M. Whitacre, pp. 155-184. New York: Springer.]); Kavallieratos et al. (2012[Kavallieratos, N. G., Athanassiou, C. G., Vayias, B. J. & Tomanovic, Z. (2012). J. Food Prot. 75, 942-950.]); Goncu & Parlak (2012[Goncu, E. & Parlak, O. (2012). Fol. Histochem. Cytobiol. Pol. Acad. Sci. Pol. Histochem. Cytochem. Soc. 50, 52-57.]). For related structures containing the phenyl ether motif, see: Ammon et al. (1983[Ammon, H. L., Bhattacharjee, S. K., Ravi, P. S. & Potlock, S. J. (1983). Acta Cryst. C39, 304-306.]); Clayden et al. (1990[Clayden, N. J., Williams, D. & O'Mahoney, C. A. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 729-733.]); Glidewell et al. (2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o185-o187.]). For hydrogen-bond data, see Lifson et al. (1979[Lifson, S., Hagler, A. T. & Dauber, P. (1979). J. Am. Chem. Soc. 101, 5111-5121.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO4

  • Mr = 301.33

  • Triclinic, [P \overline 1]

  • a = 5.9035 (3) Å

  • b = 7.5712 (4) Å

  • c = 35.373 (2) Å

  • α = 85.618 (5)°

  • β = 86.213 (5)°

  • γ = 89.046 (4)°

  • V = 1572.88 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.40 × 0.30 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur, Sapphire3 CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.894, Tmax = 1.000

  • 25379 measured reflections

  • 5745 independent reflections

  • 2937 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.126

  • S = 0.97

  • 5745 reflections

  • 399 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1–C6, C7–C12, C18–C23 and C24–C29 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O7i 0.86 1.96 2.815 (4) 178
N2—H2N2⋯O3 0.86 1.94 2.795 (4) 173
C2—H2⋯Cg3ii 0.93 2.85 3.562 (3) 134
C5—H5⋯Cg3iii 0.93 2.85 3.562 (3) 134
C9—H9⋯Cg4 0.93 2.86 3.622 (3) 139
C12—H12⋯Cg4i 0.93 2.84 3.590 (3) 138
C19—H19⋯Cg1 0.93 2.92 3.657 (3) 137
C22—H22⋯Cg1iv 0.93 2.84 3.583 (3) 137
C26—H26⋯Cg2v 0.93 2.87 3.579 (3) 134
C29—H29⋯Cg2vi 0.93 2.80 3.527 (3) 135
Symmetry codes: (i) x-1, y-1, z; (ii) x-1, y, z; (iii) x, y-1, z; (iv) x+1, y+1, z; (v) x+1, y, z; (vi) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SORTX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound fenoxycarb, C17H19NO4 is an insect growth regulator with juvenile hormone activity (Paya et al., 2009; Sullivan et al., 2010; Kavallieratos et al., 2012; Goncu & Parlak, 2012). As part of our studies on the crystallization behaviour of this compound the crystal structure of fenocarb has been determined.

There are two chemically identical but conformationally different molecules in the asymmetric unit (Fig. 1). Although the two benzene rings adopt similar orientations [inter-ring dihedral angles, 62.21 (15) and 63.00 (14)°], the side chains differ in the region associated with the intermolecular N—H···O hydrogen-bonding interactions between the two molecules, with torsion angles O2—C13—C14—N1 and C13—C14—N1—C15 [-64.6 (4) and -85.2 (4)° in molecule 1] and O6—C30—C31—N2 and C30—C31—N2—C32 [57.4 (3) and -151.2 (3)° in molecule 2] (Fig. 2). The N2—H···O3 and N1—H···O3i hydrogen bonds bonds (Table 1) generate a one-dimensional motif that is parallel to [110] (Fig. 3). The hydrogen bonds are estimated to be of moderate strength at 8 kcal/mol (Lifson et al., 1979) and they are supported by weaker C—H···π contacts. With the aromatic ring centroids numbered in order of carbon number the distances for the interactions H26···Cg2, H29···Cg2, H9···Cg4 and H12···Cg4 are 2.87, 2.80, 2.86 and 2.86 Å respectively. The one-dimensional chains are built into two-dimensional sheets by further C—H···π contacts involving H19···Cg1, H22···Cg1, H2···Cg3 and H5···Cg3 are 2.92, 2.84, 2.85 and 2.85 Å respectively (Fig. 4). There are no π-π contacts involving the aromatic rings as adjacent rings are non-coplanar. The unit cell packing is shown in Fig.5.

Related literature top

For studies on the role of fenoxycarb as an insect growth regulator, see: Paya et al. (2009); Sullivan et al. (2010); Kavallieratos et al. (2012); Goncu & Parlak (2012). For related structures containing the phenyl ether motif, see: Ammon et al. (1983); Clayden et al. (1990); Glidewell et al. (2005). For hydrogen-bond data, see Lifson et al. (1979).

Experimental top

The title compound of high purity (>98.8%) was obtained from Syngenta, Switzerland. Colourless, lath shaped crystals were grown from a solution in ethanol by slow evaporation at room temperature.

Refinement top

All H atoms were included in the refinement in calculated positions [N—H = 0.88 Å, C—H(aromatic) = 0.93 Å, C—H(methylene) = 0.97 Å or C—H(methyl) = 0.96 Å] and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq (C, N) or 1.5Ueq(C methyl).

Structure description top

The title compound fenoxycarb, C17H19NO4 is an insect growth regulator with juvenile hormone activity (Paya et al., 2009; Sullivan et al., 2010; Kavallieratos et al., 2012; Goncu & Parlak, 2012). As part of our studies on the crystallization behaviour of this compound the crystal structure of fenocarb has been determined.

There are two chemically identical but conformationally different molecules in the asymmetric unit (Fig. 1). Although the two benzene rings adopt similar orientations [inter-ring dihedral angles, 62.21 (15) and 63.00 (14)°], the side chains differ in the region associated with the intermolecular N—H···O hydrogen-bonding interactions between the two molecules, with torsion angles O2—C13—C14—N1 and C13—C14—N1—C15 [-64.6 (4) and -85.2 (4)° in molecule 1] and O6—C30—C31—N2 and C30—C31—N2—C32 [57.4 (3) and -151.2 (3)° in molecule 2] (Fig. 2). The N2—H···O3 and N1—H···O3i hydrogen bonds bonds (Table 1) generate a one-dimensional motif that is parallel to [110] (Fig. 3). The hydrogen bonds are estimated to be of moderate strength at 8 kcal/mol (Lifson et al., 1979) and they are supported by weaker C—H···π contacts. With the aromatic ring centroids numbered in order of carbon number the distances for the interactions H26···Cg2, H29···Cg2, H9···Cg4 and H12···Cg4 are 2.87, 2.80, 2.86 and 2.86 Å respectively. The one-dimensional chains are built into two-dimensional sheets by further C—H···π contacts involving H19···Cg1, H22···Cg1, H2···Cg3 and H5···Cg3 are 2.92, 2.84, 2.85 and 2.85 Å respectively (Fig. 4). There are no π-π contacts involving the aromatic rings as adjacent rings are non-coplanar. The unit cell packing is shown in Fig.5.

For studies on the role of fenoxycarb as an insect growth regulator, see: Paya et al. (2009); Sullivan et al. (2010); Kavallieratos et al. (2012); Goncu & Parlak (2012). For related structures containing the phenyl ether motif, see: Ammon et al. (1983); Clayden et al. (1990); Glidewell et al. (2005). For hydrogen-bond data, see Lifson et al. (1979).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SORTX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The atom numbering scheme for the two independent molecules in the asymmetric unit of fenoxycarb. Displacement ellipsoids for non-H atoms are are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular overlay of the two conformationally different fenoxycarb molecules.
[Figure 3] Fig. 3. The one-dimensional hydrogen-bonded chains in the crystal structure of fenoxycarb.
[Figure 4] Fig. 4. A view down the H-bonded chains showing C—H···π interactions.
[Figure 5] Fig. 5. The unit cell packing of fenoxycarb viewed down a.
Ethyl N-[2-(4-phenoxyphenoxy)ethyl]carbamate top
Crystal data top
C17H19NO4Z = 4
Mr = 301.33F(000) = 640
Triclinic, P1Dx = 1.273 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 5.9035 (3) ÅCell parameters from 2643 reflections
b = 7.5712 (4) Åθ = 2.8–29.2°
c = 35.373 (2) ŵ = 0.09 mm1
α = 85.618 (5)°T = 150 K
β = 86.213 (5)°Parallelepiped, colourless
γ = 89.046 (4)°0.40 × 0.30 × 0.15 mm
V = 1572.88 (15) Å3
Data collection top
Oxford Diffraction Xcalibur, Sapphire3 CCD-detector
diffractometer
5745 independent reflections
Radiation source: Enhance (Mo) X-ray Source2937 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 16.1048 pixels mm-1θmax = 25.4°, θmin = 2.8°
ω scansh = 67
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 99
Tmin = 0.894, Tmax = 1.000l = 4236
25379 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0202P)2]
where P = (Fo2 + 2Fc2)/3
5745 reflections(Δ/σ)max < 0.001
399 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H19NO4γ = 89.046 (4)°
Mr = 301.33V = 1572.88 (15) Å3
Triclinic, P1Z = 4
a = 5.9035 (3) ÅMo Kα radiation
b = 7.5712 (4) ŵ = 0.09 mm1
c = 35.373 (2) ÅT = 150 K
α = 85.618 (5)°0.40 × 0.30 × 0.15 mm
β = 86.213 (5)°
Data collection top
Oxford Diffraction Xcalibur, Sapphire3 CCD-detector
diffractometer
5745 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2937 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 1.000Rint = 0.074
25379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 0.97Δρmax = 0.21 e Å3
5745 reflectionsΔρmin = 0.22 e Å3
399 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0999 (3)0.0094 (3)0.14727 (6)0.0292 (6)
O20.2377 (3)0.0627 (3)0.28990 (6)0.0284 (6)
O40.2198 (4)0.1319 (3)0.41170 (6)0.0397 (7)
N10.3603 (5)0.0324 (4)0.36637 (8)0.0341 (7)
H1N10.25100.10300.37390.044*
O30.5364 (4)0.2199 (3)0.37656 (8)0.0543 (8)
C10.0310 (5)0.0155 (4)0.11300 (9)0.0229 (8)
C20.0716 (5)0.1035 (4)0.08305 (9)0.0260 (8)
H20.21090.16060.08710.034*
C30.0335 (6)0.1065 (4)0.04699 (10)0.0329 (9)
H30.03490.16510.02660.043*
C40.2414 (6)0.0216 (4)0.04128 (10)0.0330 (9)
H40.31290.02350.01700.043*
C50.3429 (6)0.0661 (4)0.07175 (10)0.0336 (9)
H50.48280.12240.06790.044*
C60.2356 (5)0.0698 (4)0.10793 (9)0.0266 (8)
H60.30190.12950.12840.035*
C70.0047 (5)0.0086 (4)0.18145 (9)0.0222 (8)
C80.1958 (5)0.0809 (4)0.18832 (9)0.0268 (8)
H80.27010.15130.16880.035*
C90.2801 (5)0.0672 (4)0.22452 (9)0.0270 (8)
H90.41040.12760.22900.035*
C100.1681 (5)0.0371 (4)0.25359 (9)0.0239 (8)
C110.0258 (5)0.1266 (4)0.24658 (9)0.0241 (8)
H110.10130.19660.26600.031*
C120.1071 (5)0.1122 (4)0.21074 (9)0.0246 (8)
H120.23760.17220.20620.032*
C130.4498 (5)0.0105 (4)0.29752 (9)0.0306 (9)
H13A0.43530.13780.29870.040*
H13B0.56470.01370.27760.040*
C140.5151 (5)0.0751 (4)0.33510 (9)0.0339 (9)
H14A0.52020.20260.33380.044*
H14B0.66620.03720.33980.044*
C150.3848 (6)0.1153 (5)0.38376 (10)0.0326 (9)
C160.2336 (6)0.2855 (5)0.43345 (11)0.0469 (11)
H16A0.23670.39340.41680.061*
H16B0.37000.27950.44740.061*
C170.0265 (7)0.2828 (5)0.46030 (10)0.0620 (13)
H17A0.10680.29130.44610.087*
H17B0.02950.38110.47580.087*
H17C0.02390.17410.47620.087*
O50.4018 (3)0.4830 (3)0.14990 (6)0.0274 (6)
O60.7396 (3)0.4935 (3)0.29179 (6)0.0293 (6)
O80.6720 (4)0.6213 (3)0.41569 (7)0.0368 (6)
N20.8499 (4)0.4950 (4)0.36737 (8)0.0337 (7)
H2N20.74510.41680.37090.044*
O70.9987 (4)0.7375 (3)0.38924 (7)0.0562 (8)
C180.5324 (5)0.5007 (4)0.11550 (9)0.0236 (8)
C190.4372 (5)0.4303 (4)0.08561 (9)0.0256 (8)
H190.30030.37040.08940.033*
C200.5461 (5)0.4492 (4)0.05006 (9)0.0285 (8)
H200.48410.39990.02980.037*
C210.7470 (5)0.5407 (4)0.04410 (9)0.0310 (9)
H210.81860.55530.01990.040*
C220.8410 (5)0.6104 (4)0.07428 (9)0.0296 (9)
H220.97790.67020.07040.039*
C230.7322 (5)0.5919 (4)0.11049 (9)0.0243 (8)
H230.79380.64040.13080.032*
C240.5056 (5)0.4846 (4)0.18424 (9)0.0218 (8)
C250.6998 (5)0.3895 (4)0.19176 (9)0.0251 (8)
H250.77550.32770.17290.033*
C260.7829 (5)0.3860 (4)0.22775 (9)0.0241 (8)
H260.91510.32270.23290.031*
C270.6686 (5)0.4770 (4)0.25594 (9)0.0226 (8)
C280.4693 (5)0.5692 (4)0.24816 (9)0.0252 (8)
H280.39050.62860.26710.033*
C290.3880 (5)0.5730 (4)0.21237 (9)0.0240 (8)
H290.25480.63480.20720.031*
C300.9338 (5)0.3936 (4)0.30377 (9)0.0307 (9)
H30A1.04970.39170.28300.040*
H30B0.89160.27260.31180.040*
C311.0216 (5)0.4823 (5)0.33638 (9)0.0366 (9)
H31A1.15110.41560.34560.048*
H31B1.07260.60030.32750.048*
C320.8522 (6)0.6256 (5)0.39035 (10)0.0343 (9)
C330.6632 (6)0.7599 (5)0.44188 (10)0.0467 (11)
H33A0.67600.87520.42800.061*
H33B0.78700.74520.45860.061*
C340.4383 (6)0.7456 (5)0.46465 (10)0.0549 (12)
H34A0.31730.75340.44770.077*
H34B0.42300.84020.48130.077*
H34C0.43140.63390.47950.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0267 (13)0.0378 (15)0.0230 (14)0.0023 (11)0.0034 (10)0.0012 (11)
O20.0311 (14)0.0302 (14)0.0238 (14)0.0025 (11)0.0039 (10)0.0008 (11)
O40.0506 (17)0.0392 (16)0.0299 (16)0.0070 (13)0.0029 (13)0.0109 (12)
N10.0404 (19)0.0306 (18)0.0310 (19)0.0116 (15)0.0027 (14)0.0018 (14)
O30.0543 (18)0.0398 (17)0.069 (2)0.0240 (15)0.0118 (15)0.0133 (15)
C10.0230 (19)0.0206 (18)0.025 (2)0.0017 (15)0.0006 (15)0.0030 (15)
C20.026 (2)0.0239 (19)0.028 (2)0.0029 (16)0.0054 (15)0.0003 (16)
C30.040 (2)0.028 (2)0.031 (2)0.0004 (18)0.0102 (17)0.0003 (17)
C40.035 (2)0.034 (2)0.030 (2)0.0045 (18)0.0020 (17)0.0077 (17)
C50.032 (2)0.030 (2)0.040 (2)0.0057 (17)0.0042 (18)0.0065 (18)
C60.027 (2)0.0239 (19)0.029 (2)0.0033 (16)0.0048 (16)0.0033 (16)
C70.027 (2)0.0185 (18)0.0217 (19)0.0059 (15)0.0040 (15)0.0054 (15)
C80.031 (2)0.0200 (19)0.028 (2)0.0001 (16)0.0019 (15)0.0026 (16)
C90.027 (2)0.0198 (19)0.033 (2)0.0002 (16)0.0024 (16)0.0009 (16)
C100.025 (2)0.0218 (19)0.024 (2)0.0077 (16)0.0020 (15)0.0018 (15)
C110.027 (2)0.0189 (18)0.026 (2)0.0015 (15)0.0045 (15)0.0020 (15)
C120.0228 (19)0.0198 (19)0.031 (2)0.0023 (15)0.0022 (15)0.0040 (16)
C130.028 (2)0.036 (2)0.028 (2)0.0001 (17)0.0012 (15)0.0051 (17)
C140.037 (2)0.036 (2)0.029 (2)0.0015 (18)0.0076 (17)0.0024 (18)
C150.040 (2)0.026 (2)0.032 (2)0.0031 (19)0.0043 (18)0.0004 (17)
C160.065 (3)0.037 (2)0.041 (3)0.005 (2)0.012 (2)0.014 (2)
C170.088 (4)0.064 (3)0.033 (3)0.016 (3)0.001 (2)0.008 (2)
O50.0264 (13)0.0333 (14)0.0226 (14)0.0003 (11)0.0027 (10)0.0021 (11)
O60.0344 (14)0.0284 (14)0.0259 (14)0.0044 (11)0.0061 (10)0.0040 (11)
O80.0417 (16)0.0343 (15)0.0355 (16)0.0025 (13)0.0021 (12)0.0097 (12)
N20.0393 (19)0.0333 (18)0.0290 (19)0.0151 (15)0.0020 (14)0.0027 (15)
O70.0579 (18)0.0566 (19)0.056 (2)0.0336 (16)0.0018 (14)0.0151 (15)
C180.029 (2)0.0190 (19)0.022 (2)0.0051 (16)0.0019 (15)0.0034 (15)
C190.027 (2)0.0247 (19)0.025 (2)0.0003 (16)0.0047 (15)0.0028 (16)
C200.037 (2)0.027 (2)0.023 (2)0.0020 (17)0.0100 (16)0.0037 (16)
C210.035 (2)0.030 (2)0.026 (2)0.0056 (18)0.0002 (16)0.0062 (17)
C220.027 (2)0.027 (2)0.034 (2)0.0011 (16)0.0000 (16)0.0015 (17)
C230.031 (2)0.0177 (18)0.025 (2)0.0017 (16)0.0052 (15)0.0056 (15)
C240.0215 (19)0.0222 (18)0.0219 (19)0.0054 (15)0.0032 (15)0.0008 (15)
C250.033 (2)0.0215 (19)0.0206 (19)0.0036 (16)0.0019 (15)0.0045 (15)
C260.026 (2)0.0194 (18)0.027 (2)0.0048 (15)0.0021 (15)0.0029 (15)
C270.031 (2)0.0164 (18)0.0206 (19)0.0041 (15)0.0032 (15)0.0014 (14)
C280.028 (2)0.0211 (19)0.026 (2)0.0004 (16)0.0031 (15)0.0048 (15)
C290.0223 (19)0.0155 (18)0.034 (2)0.0015 (15)0.0011 (15)0.0030 (15)
C300.033 (2)0.035 (2)0.025 (2)0.0031 (17)0.0075 (16)0.0015 (17)
C310.035 (2)0.046 (2)0.029 (2)0.0075 (19)0.0038 (17)0.0005 (18)
C320.035 (2)0.039 (2)0.028 (2)0.005 (2)0.0076 (18)0.0056 (18)
C330.061 (3)0.043 (3)0.040 (3)0.003 (2)0.013 (2)0.018 (2)
C340.066 (3)0.056 (3)0.044 (3)0.014 (2)0.005 (2)0.011 (2)
Geometric parameters (Å, º) top
O1—C71.390 (3)O5—C181.396 (3)
O1—C11.392 (3)O5—C241.397 (3)
O2—C101.373 (3)O6—C271.377 (3)
O2—C131.428 (3)O6—C301.432 (3)
O4—C151.352 (4)O8—C321.344 (4)
O4—C161.449 (4)O8—C331.450 (4)
N1—C151.331 (4)N2—C321.328 (4)
N1—C141.440 (4)N2—C311.450 (4)
N1—H1N10.8600N2—H2N20.8600
O3—C151.206 (4)O7—C321.218 (4)
C1—C61.368 (4)C18—C231.372 (4)
C1—C21.377 (4)C18—C191.376 (4)
C2—C31.380 (4)C19—C201.373 (4)
C2—H20.9300C19—H190.9300
C3—C41.386 (4)C20—C211.380 (4)
C3—H30.9300C20—H200.9300
C4—C51.387 (4)C21—C221.378 (4)
C4—H40.9300C21—H210.9300
C5—C61.389 (4)C22—C231.393 (4)
C5—H50.9300C22—H220.9300
C6—H60.9300C23—H230.9300
C7—C81.370 (4)C24—C251.374 (4)
C7—C121.388 (4)C24—C291.384 (4)
C8—C91.400 (4)C25—C261.392 (4)
C8—H80.9300C25—H250.9300
C9—C101.386 (4)C26—C271.387 (4)
C9—H90.9300C26—H260.9300
C10—C111.386 (4)C27—C281.391 (4)
C11—C121.381 (4)C28—C291.381 (4)
C11—H110.9300C28—H280.9300
C12—H120.9300C29—H290.9300
C13—C141.504 (4)C30—C311.503 (4)
C13—H13A0.9700C30—H30A0.9700
C13—H13B0.9700C30—H30B0.9700
C14—H14A0.9700C31—H31A0.9700
C14—H14B0.9700C31—H31B0.9700
C16—C171.497 (5)C33—C341.508 (5)
C16—H16A0.9700C33—H33A0.9700
C16—H16B0.9700C33—H33B0.9700
C17—H17A0.9600C34—H34A0.9600
C17—H17B0.9600C34—H34B0.9600
C17—H17C0.9600C34—H34C0.9600
C7—O1—C1120.0 (2)C18—O5—C24120.2 (2)
C10—O2—C13117.9 (2)C27—O6—C30119.1 (2)
C15—O4—C16116.0 (3)C32—O8—C33115.3 (3)
C15—N1—C14120.6 (3)C32—N2—C31121.0 (3)
C15—N1—H1N1119.7C32—N2—H2N2119.5
C14—N1—H1N1119.7C31—N2—H2N2119.5
C6—C1—C2121.6 (3)C23—C18—C19121.5 (3)
C6—C1—O1124.1 (3)C23—C18—O5123.6 (3)
C2—C1—O1114.1 (3)C19—C18—O5114.8 (3)
C1—C2—C3119.5 (3)C20—C19—C18119.4 (3)
C1—C2—H2120.2C20—C19—H19120.3
C3—C2—H2120.2C18—C19—H19120.3
C2—C3—C4119.8 (3)C19—C20—C21120.5 (3)
C2—C3—H3120.1C19—C20—H20119.8
C4—C3—H3120.1C21—C20—H20119.8
C3—C4—C5120.0 (3)C22—C21—C20119.6 (3)
C3—C4—H4120.0C22—C21—H21120.2
C5—C4—H4120.0C20—C21—H21120.2
C4—C5—C6120.0 (3)C21—C22—C23120.4 (3)
C4—C5—H5120.0C21—C22—H22119.8
C6—C5—H5120.0C23—C22—H22119.8
C1—C6—C5119.0 (3)C18—C23—C22118.6 (3)
C1—C6—H6120.5C18—C23—H23120.7
C5—C6—H6120.5C22—C23—H23120.7
C8—C7—C12119.6 (3)C25—C24—C29120.7 (3)
C8—C7—O1123.9 (3)C25—C24—O5123.0 (3)
C12—C7—O1116.2 (3)C29—C24—O5116.0 (3)
C7—C8—C9120.5 (3)C24—C25—C26119.7 (3)
C7—C8—H8119.7C24—C25—H25120.1
C9—C8—H8119.7C26—C25—H25120.1
C10—C9—C8119.5 (3)C27—C26—C25120.0 (3)
C10—C9—H9120.2C27—C26—H26120.0
C8—C9—H9120.2C25—C26—H26120.0
O2—C10—C11115.7 (3)O6—C27—C26125.9 (3)
O2—C10—C9124.5 (3)O6—C27—C28114.5 (3)
C11—C10—C9119.8 (3)C26—C27—C28119.6 (3)
C12—C11—C10120.1 (3)C29—C28—C27120.2 (3)
C12—C11—H11119.9C29—C28—H28119.9
C10—C11—H11119.9C27—C28—H28119.9
C11—C12—C7120.4 (3)C28—C29—C24119.8 (3)
C11—C12—H12119.8C28—C29—H29120.1
C7—C12—H12119.8C24—C29—H29120.1
O2—C13—C14107.1 (3)O6—C30—C31107.3 (3)
O2—C13—H13A110.3O6—C30—H30A110.3
C14—C13—H13A110.3C31—C30—H30A110.3
O2—C13—H13B110.3O6—C30—H30B110.3
C14—C13—H13B110.3C31—C30—H30B110.3
H13A—C13—H13B108.6H30A—C30—H30B108.5
N1—C14—C13113.0 (3)N2—C31—C30112.0 (3)
N1—C14—H14A109.0N2—C31—H31A109.2
C13—C14—H14A109.0C30—C31—H31A109.2
N1—C14—H14B109.0N2—C31—H31B109.2
C13—C14—H14B109.0C30—C31—H31B109.2
H14A—C14—H14B107.8H31A—C31—H31B107.9
O3—C15—N1125.2 (4)O7—C32—N2125.0 (4)
O3—C15—O4123.6 (3)O7—C32—O8122.8 (4)
N1—C15—O4111.1 (3)N2—C32—O8112.2 (3)
O4—C16—C17106.3 (3)O8—C33—C34107.3 (3)
O4—C16—H16A110.5O8—C33—H33A110.2
C17—C16—H16A110.5C34—C33—H33A110.2
O4—C16—H16B110.5O8—C33—H33B110.2
C17—C16—H16B110.5C34—C33—H33B110.2
H16A—C16—H16B108.7H33A—C33—H33B108.5
C16—C17—H17A109.5C33—C34—H34A109.5
C16—C17—H17B109.5C33—C34—H34B109.5
H17A—C17—H17B109.5H34A—C34—H34B109.5
C16—C17—H17C109.5C33—C34—H34C109.5
H17A—C17—H17C109.5H34A—C34—H34C109.5
H17B—C17—H17C109.5H34B—C34—H34C109.5
C7—O1—C1—C630.9 (4)C24—O5—C18—C2329.0 (4)
C7—O1—C1—C2154.4 (3)C24—O5—C18—C19155.6 (3)
C6—C1—C2—C30.1 (5)C23—C18—C19—C201.0 (5)
O1—C1—C2—C3174.9 (3)O5—C18—C19—C20176.5 (3)
C1—C2—C3—C40.3 (5)C18—C19—C20—C211.2 (5)
C2—C3—C4—C50.1 (5)C19—C20—C21—C221.3 (5)
C3—C4—C5—C60.4 (5)C20—C21—C22—C231.3 (5)
C2—C1—C6—C50.6 (5)C19—C18—C23—C220.9 (4)
O1—C1—C6—C5174.9 (3)O5—C18—C23—C22176.0 (3)
C4—C5—C6—C10.7 (5)C21—C22—C23—C181.0 (5)
C1—O1—C7—C842.6 (4)C18—O5—C24—C2545.6 (4)
C1—O1—C7—C12143.3 (3)C18—O5—C24—C29141.2 (3)
C12—C7—C8—C90.6 (5)C29—C24—C25—C261.8 (5)
O1—C7—C8—C9174.5 (3)O5—C24—C25—C26174.7 (3)
C7—C8—C9—C100.4 (5)C24—C25—C26—C270.6 (5)
C13—O2—C10—C11173.2 (3)C30—O6—C27—C267.7 (4)
C13—O2—C10—C95.6 (4)C30—O6—C27—C28175.5 (3)
C8—C9—C10—O2178.8 (3)C25—C26—C27—O6175.7 (3)
C8—C9—C10—C110.0 (4)C25—C26—C27—C280.9 (5)
O2—C10—C11—C12178.8 (3)O6—C27—C28—C29175.8 (3)
C9—C10—C11—C120.0 (5)C26—C27—C28—C291.2 (4)
C10—C11—C12—C70.2 (5)C27—C28—C29—C240.0 (5)
C8—C7—C12—C110.6 (5)C25—C24—C29—C281.5 (5)
O1—C7—C12—C11174.9 (3)O5—C24—C29—C28174.9 (3)
C10—O2—C13—C14165.2 (3)C27—O6—C30—C31160.0 (3)
C15—N1—C14—C1385.2 (4)C32—N2—C31—C30151.2 (3)
O2—C13—C14—N164.6 (4)O6—C30—C31—N257.3 (4)
C14—N1—C15—O33.0 (5)C31—N2—C32—O74.1 (5)
C14—N1—C15—O4178.8 (3)C31—N2—C32—O8176.0 (3)
C16—O4—C15—O30.2 (5)C33—O8—C32—O70.0 (5)
C16—O4—C15—N1178.1 (3)C33—O8—C32—N2179.9 (3)
C15—O4—C16—C17175.8 (3)C32—O8—C33—C34173.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1–C6, C7–C12, C18–C23 and C24–C29 rings,respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O7i0.861.962.815 (4)178
N2—H2N2···O30.861.942.795 (4)173
C2—H2···Cg3ii0.932.853.562 (3)134
C5—H5···Cg3iii0.932.853.562 (3)134
C9—H9···Cg40.932.863.622 (3)139
C12—H12···Cg4i0.932.843.590 (3)138
C19—H19···Cg10.932.923.657 (3)137
C22—H22···Cg1iv0.932.843.583 (3)137
C26—H26···Cg2v0.932.873.579 (3)134
C29—H29···Cg2vi0.932.803.527 (3)135
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z; (iii) x, y1, z; (iv) x+1, y+1, z; (v) x+1, y, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H19NO4
Mr301.33
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)5.9035 (3), 7.5712 (4), 35.373 (2)
α, β, γ (°)85.618 (5), 86.213 (5), 89.046 (4)
V3)1572.88 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur, Sapphire3 CCD-detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.894, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25379, 5745, 2937
Rint0.074
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.126, 0.97
No. of reflections5745
No. of parameters399
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SORTX (McArdle, 1995).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1–C6, C7–C12, C18–C23 and C24–C29 rings,respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O7i0.861.962.815 (4)178
N2—H2N2···O30.861.942.795 (4)173
C2—H2···Cg3ii0.932.853.562 (3)134
C5—H5···Cg3iii0.932.853.562 (3)134
C9—H9···Cg40.932.863.622 (3)139
C12—H12···Cg4i0.932.843.590 (3)138
C19—H19···Cg10.932.923.657 (3)137
C22—H22···Cg1iv0.932.843.583 (3)137
C26—H26···Cg2v0.932.873.579 (3)134
C29—H29···Cg2vi0.932.803.527 (3)135
Symmetry codes: (i) x1, y1, z; (ii) x1, y, z; (iii) x, y1, z; (iv) x+1, y+1, z; (v) x+1, y, z; (vi) x, y+1, z.
 

Acknowledgements

The authors thank Science Foundation Ireland (SFI) for funding for the Solid State Pharmaceuticals Cluster (SSPC).

References

First citationAmmon, H. L., Bhattacharjee, S. K., Ravi, P. S. & Potlock, S. J. (1983). Acta Cryst. C39, 304–306.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClayden, N. J., Williams, D. & O'Mahoney, C. A. (1990). J. Chem. Soc. Perkin Trans. 2, pp. 729–733.  CrossRef Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o185–o187.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoncu, E. & Parlak, O. (2012). Fol. Histochem. Cytobiol. Pol. Acad. Sci. Pol. Histochem. Cytochem. Soc. 50, 52–57.  CAS Google Scholar
First citationKavallieratos, N. G., Athanassiou, C. G., Vayias, B. J. & Tomanovic, Z. (2012). J. Food Prot. 75, 942–950.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLifson, S., Hagler, A. T. & Dauber, P. (1979). J. Am. Chem. Soc. 101, 5111–5121.  CrossRef CAS Web of Science Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPaya, P., Oliva, J., Zafrilla, P., Camara, M. A. & Barba, A. (2009). Ecotoxicology, 18, 1137–1142.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSullivan, J. J. (2010). Reviews of Environmental Contamination and Toxicology, Vol 202, edited by D. M. Whitacre, pp. 155–184. New York: Springer.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds