organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (E)-2-[(3-chloro-4-cyano­phenyl)­imino]-4-(4-chloro­phen­yl)-6-methyl-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aDepartment of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa, and bCenter for Nano Science and Technology @ Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milan, Italy
*Correspondence e-mail: katharigattav@dut.ac.za, nksusa@gmail.com

(Received 5 September 2012; accepted 16 September 2012; online 22 September 2012)

In the title compound, C20H16Cl2N4O2, the dihedral angles between the planes of the chloro­phenyl, chloro­cyano­phenyl­imine and ester groups and the plane of the six-membered tetra­hydro­pyrimidine ring are 86.9 (2), 72.6 (2) and 7.9 (2)°, respectively. The Cl atom substituent on the cyano­phenyl ring is disordered over two rotationally related sites [occupancy factors 0.887 (2):0.113 (2)], while the mol­ecular conformation is stabilized by the presence of an intra­molecular aromatic C—H⋯π inter­action. Both N—H groups participate in separate inter­molecular hydrogen-bonding associations with centrosymmetric cyclic motifs [graph sets R22(8) and R22(12)], resulting in ribbons parallel to [010]. Further weak C—H⋯O hydrogen bonds link these ribbons into a two-dimensional mol­ecular assembly.

Related literature

For crystal structures of the dihydro­pyrimidines, see: Nayak et al. (2010[Nayak, S. K., Venugopala, K. N., Chopra, D., Vasu & Guru Row, T. N. (2010). CrystEngComm, 12, 1205-1216.]); Nayak, Venugopala, Govender et al. (2011[Nayak, S. K., Venugopala, K. N., Govender, T., Kruger, H. G., Maguire, G. E. M. & Row, T. N. G. (2011). Acta Cryst. E67, o3069-o3070.]); Nayak, Venugopala, Chopra & Guru Row (2011[Nayak, S. K., Venugopala, K. N., Chopra, D. & Guru Row, T. N. (2011). CrystEngComm, 13, 591-605.]). For background on the applications of dihydro­pyrimidines, see: Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16Cl2N4O2

  • Mr = 415.27

  • Monoclinic, P 2/c

  • a = 11.905 (8) Å

  • b = 13.729 (9) Å

  • c = 12.782 (8) Å

  • β = 108.366 (14)°

  • V = 1983 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 173 K

  • 0.23 × 0.12 × 0.03 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.924, Tmax = 0.990

  • 9454 measured reflections

  • 3497 independent reflections

  • 2324 reflections with I > 2σ(I)

  • Rint = 0.029

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.130

  • S = 1.01

  • 3497 reflections

  • 259 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the mid-point of the C3=C4 bond.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4Ai 0.88 2.21 2.981 (4) 147
N2—H2⋯N3ii 0.88 2.09 2.966 (4) 172
C15A—H15A⋯O1iii 0.95 2.39 3.322 (4) 169
C12—H12⋯Cg1 0.95 2.85 3.290 (2) 109
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+2, -y+1, -z; (iii) [-x+2, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The multifunctionalized dihydropyrimidones (DHPMs) are prime target molecules for their therapeutic and pharmacological properties (Kappe, 2000). Due to the vast range of applications of this class of compounds we have been investigating conformational and packing features of tetrahydropyrimidine derivatives of this title compound (Nayak et al., 2010; Nayak, Venugopala, Govender et al., 2011; Nayak, Venugopala, Chopra & Guru Row (2011). In a continuation of our work on synthesis of heterocyclic compounds for biological properties, herein we report the single-crystal structure of the title compound, C20H16Cl2N4O2.

In this molecule (Fig. 1), the dihedral angles between the planes of the 4-chlorophenyl, 3-chloro-4-cyanophenylimino and ester groups (O2/C2/O1/C1) and the plane of the six-membered tetrahydropyrimidine ring are 86.9 (2)°, 72.6 (2)° and 7.9 (2)° respectively. The conformation of the molecule is stabilized by an intra-molecular C—H···π interaction (Table 1) wherein the aryl hydrogen H12 is oriented towards the π electrons of the C3C4 bond. The meta-related chlorine substituent on the cyanophenyl ring is disordered over two rotationally-related sites [occupancy factors 0.887 (2) (A): 0.113 (2) B]. Both N—H groups participate in separate intermolecular hydrogen-bonding associations giving centrosymmetric cyclic motifs [graph sets R22(8) and R22(12) (Bernstein et al., 1995)], resulting in ribbons parallel to [010] (Fig. 2a). Further weak C—H···O hydrogen bonds (Fig. 2b) link these ribbons into a two-dimensional molecular assembly. Present also is a short intermolecular Cl···Cl interaction [Cl1···Cl2Biv; 2.884 (7) Å (symmetry code -x + 1, y, -z - 1/2)].

Related literature top

For crystal structures of the dihydropyrimidines, see: Nayak et al. (2010); Nayak, Venugopala, Govender et al. (2011); Nayak, Venugopala, Chopra & Guru Row (2011). For background on the applications of dihydropyrimidines, see: Kappe (2000). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

A mixture of methyl-2-chloro-4-(p-chlorophenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate (1 mmol), 4-amino-2-chlorobenzonitrile (1 mmol) and methanamine (1 mmol) in 2-propanol (5 ml) was refluxed for 10 h. The reaction completion was monitored by TLC. The reaction medium was cooled to room temperature, the product was filtered, washed with cold 2-propanol and dried to obtain the crude product. The product was purified by recrystallization using ethanol in 69% yield as a yellow solid (m.p. 431 (2) K). Crystals suitable for single-crystal X-ray study were obtained from methanol solvent using slow evaporation at room temperature.

Refinement top

The 3-chloro-4-cyanophenylimino group was treated as disordered over two possible rotation-related sites (A and B), having refined site occupancy factors of 0.887 (2) and 0.113 (2), respectively. All H atoms were positioned geometrically with N—H = 0.88 Å, C—H = 0.95–1.00 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C/N) except for the methyl group where Uiso(H) = 1.5Ueq(C).

Structure description top

The multifunctionalized dihydropyrimidones (DHPMs) are prime target molecules for their therapeutic and pharmacological properties (Kappe, 2000). Due to the vast range of applications of this class of compounds we have been investigating conformational and packing features of tetrahydropyrimidine derivatives of this title compound (Nayak et al., 2010; Nayak, Venugopala, Govender et al., 2011; Nayak, Venugopala, Chopra & Guru Row (2011). In a continuation of our work on synthesis of heterocyclic compounds for biological properties, herein we report the single-crystal structure of the title compound, C20H16Cl2N4O2.

In this molecule (Fig. 1), the dihedral angles between the planes of the 4-chlorophenyl, 3-chloro-4-cyanophenylimino and ester groups (O2/C2/O1/C1) and the plane of the six-membered tetrahydropyrimidine ring are 86.9 (2)°, 72.6 (2)° and 7.9 (2)° respectively. The conformation of the molecule is stabilized by an intra-molecular C—H···π interaction (Table 1) wherein the aryl hydrogen H12 is oriented towards the π electrons of the C3C4 bond. The meta-related chlorine substituent on the cyanophenyl ring is disordered over two rotationally-related sites [occupancy factors 0.887 (2) (A): 0.113 (2) B]. Both N—H groups participate in separate intermolecular hydrogen-bonding associations giving centrosymmetric cyclic motifs [graph sets R22(8) and R22(12) (Bernstein et al., 1995)], resulting in ribbons parallel to [010] (Fig. 2a). Further weak C—H···O hydrogen bonds (Fig. 2b) link these ribbons into a two-dimensional molecular assembly. Present also is a short intermolecular Cl···Cl interaction [Cl1···Cl2Biv; 2.884 (7) Å (symmetry code -x + 1, y, -z - 1/2)].

For crystal structures of the dihydropyrimidines, see: Nayak et al. (2010); Nayak, Venugopala, Govender et al. (2011); Nayak, Venugopala, Chopra & Guru Row (2011). For background on the applications of dihydropyrimidines, see: Kappe (2000). For graph-set analysis, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom numbering scheme and displacement ellipsoids for non-H atoms drawn at the 50% probability level. The intramolecular C—H···π interaction is shown as dashed lines. The disordered chlorine positions are differentiated as A and B.
[Figure 2] Fig. 2. (a) Intermolecular N—H···N hydrogen-bonding associations form an infinite ribbon structure. (b) Further C—H···O hydrogen bonds link the ribbons giving a two-dimensional network structure.
Methyl (E)-2-[(3-chloro-4-cyanophenyl)imino]-4-(4-chlorophenyl)- 6-methyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate top
Crystal data top
C20H16Cl2N4O2F(000) = 856
Mr = 415.27Dx = 1.391 Mg m3
Monoclinic, P2/cMelting point: 431(2) K
Hall symbol: -P 2ycMo Kα radiation, λ = 0.71073 Å
a = 11.905 (8) ÅCell parameters from 650 reflections
b = 13.729 (9) Åθ = 1.5–25.0°
c = 12.782 (8) ŵ = 0.35 mm1
β = 108.366 (14)°T = 173 K
V = 1983 (2) Å3Plate, yellow
Z = 40.23 × 0.12 × 0.03 mm
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3497 independent reflections
Radiation source: fine-focus sealed tube2324 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
0.5° φ scans and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1413
Tmin = 0.924, Tmax = 0.990k = 1616
9454 measured reflectionsl = 715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.7735P]
where P = (Fo2 + 2Fc2)/3
3497 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C20H16Cl2N4O2V = 1983 (2) Å3
Mr = 415.27Z = 4
Monoclinic, P2/cMo Kα radiation
a = 11.905 (8) ŵ = 0.35 mm1
b = 13.729 (9) ÅT = 173 K
c = 12.782 (8) Å0.23 × 0.12 × 0.03 mm
β = 108.366 (14)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
3497 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2324 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.990Rint = 0.029
9454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.01Δρmax = 0.41 e Å3
3497 reflectionsΔρmin = 0.37 e Å3
259 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl2A1.27478 (8)0.07230 (7)0.07772 (9)0.0732 (3)0.8872 (16)
C14A1.0144 (2)0.26844 (18)0.0167 (2)0.0429 (7)0.8872 (16)
C15A1.1235 (3)0.2245 (2)0.0335 (2)0.0511 (7)0.8872 (16)
H15A1.18370.25900.08740.061*0.8872 (16)
C16A1.1443 (2)0.1307 (2)0.0047 (2)0.0490 (7)0.8872 (16)
C17A1.0592 (2)0.07963 (17)0.0761 (2)0.0387 (6)0.8872 (16)
C18A0.9496 (2)0.12388 (18)0.1256 (2)0.0424 (6)0.8872 (16)
H18A0.89000.08980.18060.051*0.8872 (16)
C19A0.9270 (2)0.21625 (19)0.0957 (2)0.0435 (6)0.8872 (16)
H19A0.85140.24480.12910.052*0.8872 (16)
C20A1.0824 (3)0.0174 (2)0.1067 (2)0.0449 (7)0.8872 (16)
N4A1.0998 (2)0.09457 (18)0.1320 (2)0.0584 (7)0.8872 (16)
Cl2B0.8417 (6)0.0473 (6)0.1826 (7)0.0732 (3)0.1128 (16)
C14B1.0144 (2)0.26844 (18)0.0167 (2)0.0429 (7)0.1128 (16)
C15B1.1235 (3)0.2245 (2)0.0335 (2)0.0511 (7)0.1128 (16)
H15B1.18370.25900.08740.061*0.1128 (16)
C16B1.1443 (2)0.1307 (2)0.0047 (2)0.0490 (7)0.1128 (16)
H16B1.21820.10070.04100.059*0.1128 (16)
C17B1.0592 (2)0.07963 (17)0.0761 (2)0.0387 (6)0.1128 (16)
C18B0.9496 (2)0.12388 (18)0.1256 (2)0.0424 (6)0.1128 (16)
C19B0.9270 (2)0.21625 (19)0.0957 (2)0.0435 (6)0.1128 (16)
H19B0.85140.24480.12910.052*0.1128 (16)
C20B1.0824 (3)0.0174 (2)0.1067 (2)0.0449 (7)0.1128 (16)
N4B1.0998 (2)0.09457 (18)0.1320 (2)0.0584 (7)0.1128 (16)
Cl10.35886 (9)0.15552 (9)0.18125 (10)0.1015 (4)
O10.67082 (15)0.36934 (13)0.30483 (14)0.0440 (5)
O20.6947 (2)0.53124 (14)0.30330 (18)0.0635 (6)
N10.88569 (18)0.31127 (15)0.12045 (18)0.0418 (5)
H10.92090.25410.12880.050*
N20.89937 (19)0.47517 (14)0.08817 (18)0.0445 (6)
H20.92390.52260.05440.053*
N30.9962 (2)0.36677 (15)0.0096 (2)0.0480 (6)
C10.6064 (3)0.3833 (2)0.3825 (2)0.0545 (8)
H1A0.66030.40780.45230.082*
H1B0.57250.32110.39520.082*
H1C0.54260.43050.35250.082*
C20.7139 (2)0.4517 (2)0.2724 (2)0.0429 (6)
C30.7800 (2)0.42850 (18)0.1967 (2)0.0393 (6)
C40.8352 (2)0.49915 (19)0.1574 (2)0.0405 (6)
C50.8350 (3)0.60622 (18)0.1828 (2)0.0478 (7)
H5A0.75380.63110.15570.072*
H5B0.88430.64110.14660.072*
H5C0.86670.61610.26270.072*
C60.7861 (2)0.32283 (18)0.1639 (2)0.0398 (6)
H60.80270.28210.23200.048*
C70.6733 (2)0.28406 (18)0.0795 (2)0.0403 (6)
C80.6315 (3)0.1926 (2)0.0943 (3)0.0552 (8)
H80.66910.15700.15970.066*
C90.5350 (3)0.1527 (2)0.0139 (3)0.0697 (10)
H90.50760.08940.02340.084*
C100.4795 (3)0.2057 (3)0.0795 (3)0.0625 (9)
C110.5174 (3)0.2981 (2)0.0955 (3)0.0589 (8)
H110.47780.33450.15980.071*
C120.6147 (3)0.3362 (2)0.0151 (2)0.0496 (7)
H120.64200.39940.02500.060*
C130.9271 (2)0.38082 (17)0.0692 (2)0.0400 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl2A0.0432 (5)0.0708 (6)0.0957 (7)0.0139 (4)0.0076 (5)0.0130 (5)
C14A0.0484 (16)0.0313 (14)0.0634 (18)0.0036 (13)0.0384 (15)0.0031 (13)
C15A0.0442 (16)0.0458 (16)0.0676 (19)0.0057 (14)0.0237 (15)0.0131 (14)
C16A0.0393 (15)0.0455 (16)0.0652 (18)0.0060 (13)0.0207 (14)0.0046 (14)
C17A0.0473 (16)0.0295 (13)0.0491 (15)0.0024 (12)0.0290 (13)0.0010 (12)
C18A0.0447 (16)0.0343 (14)0.0514 (16)0.0026 (12)0.0197 (13)0.0027 (12)
C19A0.0426 (15)0.0337 (14)0.0596 (17)0.0016 (13)0.0238 (14)0.0004 (13)
C20A0.0529 (17)0.0394 (16)0.0462 (16)0.0063 (13)0.0214 (13)0.0014 (13)
N4A0.0752 (18)0.0419 (15)0.0620 (16)0.0152 (13)0.0273 (14)0.0020 (12)
Cl2B0.0432 (5)0.0708 (6)0.0957 (7)0.0139 (4)0.0076 (5)0.0130 (5)
C14B0.0484 (16)0.0313 (14)0.0634 (18)0.0036 (13)0.0384 (15)0.0031 (13)
C15B0.0442 (16)0.0458 (16)0.0676 (19)0.0057 (14)0.0237 (15)0.0131 (14)
C16B0.0393 (15)0.0455 (16)0.0652 (18)0.0060 (13)0.0207 (14)0.0046 (14)
C17B0.0473 (16)0.0295 (13)0.0491 (15)0.0024 (12)0.0290 (13)0.0010 (12)
C18B0.0447 (16)0.0343 (14)0.0514 (16)0.0026 (12)0.0197 (13)0.0027 (12)
C19B0.0426 (15)0.0337 (14)0.0596 (17)0.0016 (13)0.0238 (14)0.0004 (13)
C20B0.0529 (17)0.0394 (16)0.0462 (16)0.0063 (13)0.0214 (13)0.0014 (13)
N4B0.0752 (18)0.0419 (15)0.0620 (16)0.0152 (13)0.0273 (14)0.0020 (12)
Cl10.0658 (6)0.1042 (8)0.1193 (8)0.0215 (6)0.0072 (6)0.0381 (7)
O10.0411 (10)0.0440 (11)0.0553 (11)0.0003 (9)0.0270 (9)0.0015 (9)
O20.0846 (16)0.0439 (12)0.0850 (15)0.0025 (11)0.0598 (14)0.0096 (11)
N10.0393 (12)0.0288 (11)0.0661 (14)0.0043 (9)0.0293 (11)0.0007 (10)
N20.0528 (14)0.0280 (11)0.0687 (15)0.0037 (10)0.0420 (13)0.0065 (10)
N30.0545 (14)0.0296 (11)0.0752 (16)0.0041 (11)0.0423 (13)0.0089 (11)
C10.0521 (17)0.064 (2)0.0577 (18)0.0015 (15)0.0325 (15)0.0001 (15)
C20.0380 (14)0.0409 (15)0.0544 (16)0.0038 (12)0.0213 (13)0.0015 (13)
C30.0371 (14)0.0342 (14)0.0518 (16)0.0005 (12)0.0214 (12)0.0028 (12)
C40.0381 (14)0.0353 (14)0.0538 (16)0.0002 (12)0.0225 (13)0.0072 (12)
C50.0488 (16)0.0350 (14)0.0701 (19)0.0037 (13)0.0339 (15)0.0100 (13)
C60.0392 (14)0.0331 (13)0.0563 (16)0.0023 (11)0.0283 (13)0.0018 (12)
C70.0374 (14)0.0331 (14)0.0599 (17)0.0009 (12)0.0287 (13)0.0054 (13)
C80.0443 (16)0.0344 (15)0.089 (2)0.0015 (13)0.0237 (16)0.0053 (15)
C90.0474 (18)0.0366 (17)0.123 (3)0.0069 (15)0.024 (2)0.0123 (19)
C100.0458 (18)0.061 (2)0.081 (2)0.0060 (17)0.0200 (17)0.0222 (19)
C110.0559 (19)0.071 (2)0.0545 (18)0.0044 (17)0.0248 (16)0.0050 (16)
C120.0520 (17)0.0454 (16)0.0595 (18)0.0070 (14)0.0290 (15)0.0006 (14)
C130.0384 (14)0.0288 (13)0.0592 (16)0.0039 (11)0.0246 (13)0.0074 (12)
Geometric parameters (Å, º) top
Cl2A—C16A1.736 (3)N3—C131.300 (3)
C14A—C15A1.392 (4)C1—H1A0.9800
C14A—C19A1.398 (4)C1—H1B0.9800
C14A—N31.424 (3)C1—H1C0.9800
C15A—C16A1.382 (4)C2—C31.461 (3)
C15A—H15A0.9500C3—C41.355 (3)
C16A—C17A1.388 (4)C3—C61.518 (4)
C17A—C18A1.397 (4)C4—C51.506 (4)
C17A—C20A1.439 (4)C5—H5A0.9800
C18A—C19A1.375 (4)C5—H5B0.9800
C18A—H18A0.9500C5—H5C0.9800
C19A—H19A0.9500C6—C71.530 (4)
C20A—N4A1.146 (3)C6—H61.0000
Cl1—C101.747 (3)C7—C81.385 (4)
O1—C21.359 (3)C7—C121.389 (4)
O1—C11.446 (3)C8—C91.389 (4)
O2—C21.207 (3)C8—H80.9500
N1—C131.337 (3)C9—C101.376 (5)
N1—C61.468 (3)C9—H90.9500
N1—H10.8800C10—C111.383 (5)
N2—C131.377 (3)C11—C121.386 (4)
N2—C41.378 (3)C11—H110.9500
N2—H20.8800C12—H120.9500
C15A—C14A—C19A119.0 (2)C2—C3—C6118.3 (2)
C15A—C14A—N3119.4 (3)C3—C4—N2120.0 (2)
C19A—C14A—N3121.5 (3)C3—C4—C5125.8 (2)
C16A—C15A—C14A120.0 (3)N2—C4—C5114.3 (2)
C16A—C15A—H15A120.0C4—C5—H5A109.5
C14A—C15A—H15A120.0C4—C5—H5B109.5
C15A—C16A—C17A121.3 (3)H5A—C5—H5B109.5
C15A—C16A—Cl2A119.5 (2)C4—C5—H5C109.5
C17A—C16A—Cl2A119.1 (2)H5A—C5—H5C109.5
C16A—C17A—C18A118.4 (2)H5B—C5—H5C109.5
C16A—C17A—C20A120.9 (3)N1—C6—C3108.84 (19)
C18A—C17A—C20A120.7 (2)N1—C6—C7109.2 (2)
C19A—C18A—C17A120.8 (3)C3—C6—C7114.8 (2)
C19A—C18A—H18A119.6N1—C6—H6107.9
C17A—C18A—H18A119.6C3—C6—H6107.9
C18A—C19A—C14A120.5 (3)C7—C6—H6107.9
C18A—C19A—H19A119.8C8—C7—C12118.8 (3)
C14A—C19A—H19A119.8C8—C7—C6119.5 (3)
N4A—C20A—C17A179.3 (4)C12—C7—C6121.6 (2)
C2—O1—C1115.6 (2)C7—C8—C9120.3 (3)
C13—N1—C6125.1 (2)C7—C8—H8119.8
C13—N1—H1117.5C9—C8—H8119.8
C6—N1—H1117.5C10—C9—C8119.5 (3)
C13—N2—C4123.3 (2)C10—C9—H9120.3
C13—N2—H2118.3C8—C9—H9120.3
C4—N2—H2118.3C9—C10—C11121.6 (3)
C13—N3—C14A116.7 (2)C9—C10—Cl1119.7 (3)
O1—C1—H1A109.5C11—C10—Cl1118.8 (3)
O1—C1—H1B109.5C10—C11—C12118.1 (3)
H1A—C1—H1B109.5C10—C11—H11120.9
O1—C1—H1C109.5C12—C11—H11120.9
H1A—C1—H1C109.5C11—C12—C7121.6 (3)
H1B—C1—H1C109.5C11—C12—H12119.2
O2—C2—O1121.6 (2)C7—C12—H12119.2
O2—C2—C3127.6 (2)N3—C13—N1125.5 (2)
O1—C2—C3110.7 (2)N3—C13—N2118.3 (2)
C4—C3—C2121.0 (2)N1—C13—N2116.1 (2)
C4—C3—C6120.7 (2)
C19A—C14A—C15A—C16A0.1 (4)C13—N1—C6—C329.3 (3)
N3—C14A—C15A—C16A176.8 (2)C13—N1—C6—C796.7 (3)
C14A—C15A—C16A—C17A1.9 (4)C4—C3—C6—N118.4 (3)
C14A—C15A—C16A—Cl2A173.4 (2)C2—C3—C6—N1161.1 (2)
C15A—C16A—C17A—C18A2.3 (4)C4—C3—C6—C7104.4 (3)
Cl2A—C16A—C17A—C18A173.05 (19)C2—C3—C6—C776.1 (3)
C15A—C16A—C17A—C20A179.0 (2)N1—C6—C7—C8101.1 (3)
Cl2A—C16A—C17A—C20A5.7 (4)C3—C6—C7—C8136.3 (2)
C16A—C17A—C18A—C19A0.6 (4)N1—C6—C7—C1275.4 (3)
C20A—C17A—C18A—C19A179.4 (2)C3—C6—C7—C1247.1 (3)
C17A—C18A—C19A—C14A1.3 (4)C12—C7—C8—C92.1 (4)
C15A—C14A—C19A—C18A1.7 (4)C6—C7—C8—C9174.6 (2)
N3—C14A—C19A—C18A175.2 (2)C7—C8—C9—C101.5 (5)
C15A—C14A—N3—C13108.4 (3)C8—C9—C10—C110.0 (5)
C19A—C14A—N3—C1374.8 (3)C8—C9—C10—Cl1179.5 (2)
C1—O1—C2—O23.0 (4)C9—C10—C11—C120.8 (5)
C1—O1—C2—C3178.4 (2)Cl1—C10—C11—C12178.7 (2)
O2—C2—C3—C44.3 (5)C10—C11—C12—C70.2 (4)
O1—C2—C3—C4177.2 (2)C8—C7—C12—C111.2 (4)
O2—C2—C3—C6176.2 (3)C6—C7—C12—C11175.3 (2)
O1—C2—C3—C62.3 (3)C14A—N3—C13—N110.1 (4)
C2—C3—C4—N2178.5 (2)C14A—N3—C13—N2174.5 (2)
C6—C3—C4—N21.0 (4)C6—N1—C13—N3163.9 (3)
C2—C3—C4—C51.0 (4)C6—N1—C13—N220.6 (4)
C6—C3—C4—C5179.5 (3)C4—N2—C13—N3174.4 (3)
C13—N2—C4—C310.6 (4)C4—N2—C13—N11.4 (4)
C13—N2—C4—C5168.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the midpoint of the C3C4 bond. [Please check added text]
D—H···AD—HH···AD···AD—H···A
N1—H1···N4Ai0.882.212.981 (4)147
N2—H2···N3ii0.882.092.966 (4)172
C15A—H15A···O1iii0.952.393.322 (4)169
C12—H12···Cg10.952.853.290 (2)109
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z; (iii) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H16Cl2N4O2
Mr415.27
Crystal system, space groupMonoclinic, P2/c
Temperature (K)173
a, b, c (Å)11.905 (8), 13.729 (9), 12.782 (8)
β (°) 108.366 (14)
V3)1983 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.23 × 0.12 × 0.03
Data collection
DiffractometerBruker Kappa DUO APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.924, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
9454, 3497, 2324
Rint0.029
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.130, 1.01
No. of reflections3497
No. of parameters259
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.37

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
Cg1 is the midpoint of the C3C4 bond. [Please check added text]
D—H···AD—HH···AD···AD—H···A
N1—H1···N4Ai0.882.212.981 (4)147
N2—H2···N3ii0.882.092.966 (4)172
C15A—H15A···O1iii0.952.393.322 (4)169
C12—H12···Cg10.952.853.290 (2)109
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z; (iii) x+2, y, z+1/2.
 

Acknowledgements

The authors thank Durban University of Technology for facilities. KNV thanks NRF South Africa for a DST/NRF Innovation Postdoctoral Fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNayak, S. K., Venugopala, K. N., Chopra, D. & Guru Row, T. N. (2011). CrystEngComm, 13, 591–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationNayak, S. K., Venugopala, K. N., Chopra, D., Vasu & Guru Row, T. N. (2010). CrystEngComm, 12, 1205–1216.  Google Scholar
First citationNayak, S. K., Venugopala, K. N., Govender, T., Kruger, H. G., Maguire, G. E. M. & Row, T. N. G. (2011). Acta Cryst. E67, o3069–o3070.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds