metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-3-carb­­oxy-2-hy­dr­oxy­propane-1,2-di­carboxyl­ato)bis­(di­aquazinc)–1,2-bis­­(pyridin-4-yl)ethene–water (1/1/2)

aDepartment of Fine Chemistry, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea, bDepartment of Forest and Environment Resources, Kyungpook National University, Sangju 742-711, Republic of Korea, and cDepartment of Chemistry and Nano Science, Ewha Women's University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@seoultech.ac.kr, ymeekim@ehwa.ac.kr

(Received 6 September 2012; accepted 19 September 2012; online 26 September 2012)

The asymmetric unit of the title compound, [Zn2(C6H6O7)2(H2O)4]·C12H10N2·2H2O, comprises half of a centrosymmetric complex dimer, half of a 1,2-bis­(pyridin-4-yl)ethene mol­ecule, which lies across an inversion centre, and one lattice water mol­ecule. Carboxyl­ate groups of two dianionic citrate ligands bridge two ZnII ions to give the cyclic dimer, with each ZnII ion coordinated by four O atoms from the chelating citrate ligand (one hy­droxy and three carboxyl­ate, with one bridging) and two water O atoms, forming a distorted octa­hedral environment [Zn—O = 2.040 (3)–2.244 (3) Å]. In the crystal, O—H⋯O and O—H⋯N hydrogen bonds involving hy­droxy groups and both coordinating and lattice water mol­ecules link the dimers to give a three-dimensional framework structure.

Related literature

For inter­actions of metal ions with biologically active mol­ecules, see: Daniele et al. (2008[Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093-1107.]); Parkin (2004[Parkin, G. (2004). Chem. Rev. 104, 699-767.]); Tshuva & Lippard (2004[Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987-1012.]); Stoumpos et al. (2009[Stoumpos, C. C., Gass, I. A., Milios, C. J., Lalioti, N., Terzis, A., Aromi, G., Teat, S. J., Brechin, E. K. & Perlepes, S. P. (2009). Dalton Trans. pp. 307-317.]). For a manganese citrate complex, see: Hwang et al. (2012[Hwang, I. H., Kim, P.-G., Kim, C. & Kim, Y. (2012). Acta Cryst. E68, m1116-m1117.]). For related complexes, see: Shin et al. (2009[Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658-m659.]); Yu et al. (2009[Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045-m1046.]); Kim et al. (2011[Kim, J. H., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m3-m4.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C6H6O7)2(H2O)4]·C12H10N2·2H2O

  • Mr = 801.31

  • Triclinic, [P \overline 1]

  • a = 9.4360 (19) Å

  • b = 9.4540 (19) Å

  • c = 10.098 (2) Å

  • α = 66.87 (3)°

  • β = 70.19 (3)°

  • γ = 75.91 (3)°

  • V = 773.0 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 170 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.638, Tmax = 0.853

  • 4216 measured reflections

  • 2924 independent reflections

  • 2382 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.140

  • S = 1.09

  • 2924 reflections

  • 239 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −1.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O6 0.93 (1) 1.80 (2) 2.626 (4) 146 (4)
O5—H5⋯N11i 0.84 1.81 2.633 (5) 168
O8—H8B⋯O5i 0.86 (1) 1.88 (1) 2.733 (5) 173 (5)
O8—H8A⋯O7ii 0.86 (1) 2.04 (2) 2.866 (4) 161 (5)
O9—H9B⋯O1Wii 0.86 (1) 1.87 (1) 2.725 (5) 179 (5)
O9—H9A⋯O3iii 0.86 (1) 2.57 (4) 3.145 (5) 125 (4)
O9—H9A⋯O2iii 0.86 (1) 2.01 (1) 2.860 (5) 168 (5)
O1W—H1WA⋯O3 0.96 (1) 1.88 (1) 2.838 (5) 172 (5)
O1W—H1WB⋯O7iv 0.96 (1) 2.04 (3) 2.880 (5) 145 (4)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y+1, z; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL .

Supporting information


Comment top

Citric acid has often been used as a model ligand to examine the interaction between transition metal ions with biologically active molecules (Daniele et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004; Stoumpos et al., 2009). Recently, our group has also reported a novel compound from the reaction of manganese(II) nitrate as a building block and citric acid as a ligand (Hwang et al., 2012). In order to study the effects of secondary metal ions on the interaction between transition metal ions and citric acid (Shin et al., 2009; Yu et al., 2009; Kim et al., 2011), we have employed zinc as a metal ion source. We report here the structure of [Zn2(H2O)4(C6H8O7)2].C12H10N2.2H2O.

In the structure of the title compound (Fig. 1) the asymmetric unit contains half of a centrosymmetric complex dimer, half of a 1,2-bis(pyridin-4-yl)ethene molecule which lies across an inversion centre and one water molecule. Carboxylate groups of two dianionic citrate ligands bridge two ZnII ions giving the cyclic dimer, with each ZnO6centre coordinated by four O atoms from the ligand (one hydroxyl and three carboxyl) and two water O atoms, forming a distorted octahedral environment [Zn—O, 2.040 (3)–2.244 (3) Å]. In the crystal, O—H—O and O—H···N hydrogen bonds involving hydroxyl groups and both coordinated and solvent water molecules (Table 1) link the dimers giving a three-dimensional framework structure. The crystal structure is further stabilized by weak intermolecular ππ interactions involving the 1,2-bis(pyridin-4-yl)ethene molecule [centroid = C11–C15/N11; ring centroid separation = 3.97 (7) Å; symmetry code: -x, -y + 1, -z + 2].

Related literature top

For interactions of metal ions with biologically active molecules, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004); Stoumpos et al. (2009). For a manganese citrate complex, see: Hwang et al. (2012). For related complexes, see: Shin et al. (2009); Yu et al. (2009); Kim et al. (2011).

Experimental top

Citric acid (19.4 mg, 0.1 mmol) and Zn(NO3)2.6H2O (30.4 mg, 0.1 mmol) were dissolved in 4 ml of H2O and carefully layered by 4 ml of an acetonitrile solution of 1,2-bis(4-pyridyl)ethylene (37.6 mg, 0.2 mmol). Suitable crystals of the title compound were obtained in a month.

Refinement top

H atoms bonded to carbon were placed in calculated positions with C—H = 0.95 Å (aromatic C) and 0.99 Å (methylene C) and were included in the refinement in a riding-motion approximation with Uiso(H) = 1.2Ueq(C). The H atom bonded to the carboxylate O was placed in a calculated position with O—H = 0.84 Å and was also included in the refinement in the riding-motion approximation with Uiso(H) = 1.5Ueq(O). The position of hydroxyl H atom was refined with O—H = 0.93 Å and Uiso(H) = 1.5Ueq(O). The positions of O—H atoms of the coordinated water ligands were refined with O—H = 0.86 Å and Uiso(H) = 1.2Ueq(N). The positions of O—H atoms of the free water molecule were refined with O—H = 0.96 Å and Uiso(H) =1.2Ueq(O).

Structure description top

Citric acid has often been used as a model ligand to examine the interaction between transition metal ions with biologically active molecules (Daniele et al., 2008; Parkin, 2004; Tshuva & Lippard, 2004; Stoumpos et al., 2009). Recently, our group has also reported a novel compound from the reaction of manganese(II) nitrate as a building block and citric acid as a ligand (Hwang et al., 2012). In order to study the effects of secondary metal ions on the interaction between transition metal ions and citric acid (Shin et al., 2009; Yu et al., 2009; Kim et al., 2011), we have employed zinc as a metal ion source. We report here the structure of [Zn2(H2O)4(C6H8O7)2].C12H10N2.2H2O.

In the structure of the title compound (Fig. 1) the asymmetric unit contains half of a centrosymmetric complex dimer, half of a 1,2-bis(pyridin-4-yl)ethene molecule which lies across an inversion centre and one water molecule. Carboxylate groups of two dianionic citrate ligands bridge two ZnII ions giving the cyclic dimer, with each ZnO6centre coordinated by four O atoms from the ligand (one hydroxyl and three carboxyl) and two water O atoms, forming a distorted octahedral environment [Zn—O, 2.040 (3)–2.244 (3) Å]. In the crystal, O—H—O and O—H···N hydrogen bonds involving hydroxyl groups and both coordinated and solvent water molecules (Table 1) link the dimers giving a three-dimensional framework structure. The crystal structure is further stabilized by weak intermolecular ππ interactions involving the 1,2-bis(pyridin-4-yl)ethene molecule [centroid = C11–C15/N11; ring centroid separation = 3.97 (7) Å; symmetry code: -x, -y + 1, -z + 2].

For interactions of metal ions with biologically active molecules, see: Daniele et al. (2008); Parkin (2004); Tshuva & Lippard (2004); Stoumpos et al. (2009). For a manganese citrate complex, see: Hwang et al. (2012). For related complexes, see: Shin et al. (2009); Yu et al. (2009); Kim et al. (2011).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. The labelled atoms are related with unlabelled atoms by symmetry code: -x + 1, -y + 1, -z + 1 for the diaquabis(citrato)dizinc fragment and -x, -y, -z + 2 for the 1,2-bis(pyridin-4-yl)ethene molecule.
Bis(µ-3-carboxy-2-hydroxypropane-1,2-dicarboxylato)bis(diaquazinc)– 1,2-bis(pyridin-4-yl)ethene–water (1/1/2) top
Crystal data top
[Zn2(C6H6O7)2(H2O)4]·C12H10N2·2H2OZ = 1
Mr = 801.31F(000) = 412
Triclinic, P1Dx = 1.721 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4360 (19) ÅCell parameters from 11909 reflections
b = 9.4540 (19) Åθ = 2.7–27.6°
c = 10.098 (2) ŵ = 1.64 mm1
α = 66.87 (3)°T = 170 K
β = 70.19 (3)°Block, colourless
γ = 75.91 (3)°0.30 × 0.10 × 0.10 mm
V = 773.0 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
2924 independent reflections
Radiation source: fine-focus sealed tube2382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 116
Tmin = 0.638, Tmax = 0.853k = 1111
4216 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0822P)2]
where P = (Fo2 + 2Fc2)/3
2924 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.77 e Å3
7 restraintsΔρmin = 1.36 e Å3
Crystal data top
[Zn2(C6H6O7)2(H2O)4]·C12H10N2·2H2Oγ = 75.91 (3)°
Mr = 801.31V = 773.0 (3) Å3
Triclinic, P1Z = 1
a = 9.4360 (19) ÅMo Kα radiation
b = 9.4540 (19) ŵ = 1.64 mm1
c = 10.098 (2) ÅT = 170 K
α = 66.87 (3)°0.30 × 0.10 × 0.10 mm
β = 70.19 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2924 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2382 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.853Rint = 0.034
4216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0517 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.77 e Å3
2924 reflectionsΔρmin = 1.36 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.68767 (6)0.59099 (5)0.60957 (5)0.02122 (19)
O10.5132 (3)0.4257 (3)0.7203 (3)0.0209 (6)
H1O0.466 (4)0.431 (5)0.651 (4)0.031*
O20.8003 (4)0.3981 (3)0.5435 (3)0.0260 (7)
O30.8228 (4)0.1376 (3)0.6320 (4)0.0341 (8)
O40.7490 (4)0.4656 (3)0.8125 (3)0.0282 (7)
O50.6894 (4)0.3353 (3)1.0577 (3)0.0310 (7)
H50.74020.39811.05580.046*
O60.4181 (4)0.3256 (3)0.5605 (3)0.0262 (7)
O70.4259 (5)0.0698 (3)0.6153 (4)0.0427 (9)
O80.5622 (4)0.7538 (3)0.7112 (3)0.0287 (7)
H8A0.542 (6)0.8518 (11)0.668 (5)0.034*
H8B0.480 (3)0.733 (5)0.782 (4)0.034*
O90.8800 (4)0.7008 (3)0.5133 (4)0.0333 (7)
H9A0.9753 (13)0.675 (6)0.507 (6)0.040*
H9B0.866 (6)0.8005 (4)0.482 (5)0.040*
C10.5996 (5)0.2711 (4)0.7563 (4)0.0192 (8)
C20.7522 (5)0.2671 (4)0.6340 (4)0.0222 (9)
C30.6235 (5)0.2336 (4)0.9105 (4)0.0249 (9)
H3A0.52420.21870.98670.030*
H3B0.69060.13400.93380.030*
C40.6919 (5)0.3555 (4)0.9255 (4)0.0238 (9)
C50.5058 (5)0.1490 (4)0.7724 (4)0.0235 (9)
H5A0.56940.04690.79110.028*
H5B0.41760.14170.86170.028*
C60.4474 (5)0.1808 (4)0.6386 (4)0.0228 (9)
N110.1862 (4)0.4370 (4)0.9552 (4)0.0282 (8)
C110.1610 (6)0.3080 (5)1.0802 (5)0.0300 (10)
H110.18260.30291.16740.036*
C120.1051 (5)0.1855 (5)1.0827 (5)0.0290 (10)
H120.08750.09671.17050.035*
C130.0741 (5)0.1939 (5)0.9522 (5)0.0271 (9)
C140.0990 (5)0.3284 (5)0.8255 (5)0.0280 (10)
H140.07710.33720.73720.034*
C150.1555 (5)0.4480 (5)0.8300 (5)0.0285 (10)
H150.17290.53880.74410.034*
C160.0212 (5)0.0643 (5)0.9421 (4)0.0297 (10)
H160.01680.07270.84670.036*
O1W0.8324 (4)0.0166 (4)0.4122 (4)0.0430 (9)
H1WA0.819 (6)0.057 (6)0.490 (4)0.052*
H1WB0.736 (3)0.034 (6)0.391 (6)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0271 (3)0.0171 (3)0.0208 (3)0.00588 (19)0.0053 (2)0.00706 (19)
O10.0261 (16)0.0154 (12)0.0223 (14)0.0028 (12)0.0067 (13)0.0072 (11)
O20.0314 (17)0.0210 (14)0.0240 (14)0.0041 (13)0.0066 (13)0.0064 (12)
O30.0333 (19)0.0196 (14)0.0436 (18)0.0001 (13)0.0025 (15)0.0135 (13)
O40.0400 (19)0.0243 (15)0.0248 (15)0.0135 (14)0.0144 (14)0.0028 (12)
O50.047 (2)0.0309 (15)0.0236 (14)0.0232 (15)0.0075 (15)0.0089 (13)
O60.0399 (19)0.0193 (13)0.0234 (14)0.0032 (13)0.0146 (14)0.0066 (11)
O70.076 (3)0.0190 (15)0.0502 (19)0.0098 (16)0.037 (2)0.0102 (14)
O80.040 (2)0.0188 (14)0.0242 (15)0.0045 (14)0.0040 (14)0.0081 (12)
O90.0251 (17)0.0230 (15)0.0490 (19)0.0057 (14)0.0071 (16)0.0103 (14)
C10.025 (2)0.0144 (17)0.0204 (19)0.0048 (16)0.0068 (17)0.0062 (15)
C20.025 (2)0.0218 (19)0.023 (2)0.0038 (18)0.0084 (18)0.0098 (16)
C30.032 (3)0.0210 (19)0.022 (2)0.0100 (18)0.0042 (19)0.0062 (16)
C40.024 (2)0.024 (2)0.025 (2)0.0020 (18)0.0075 (18)0.0095 (17)
C50.028 (2)0.0186 (18)0.024 (2)0.0050 (17)0.0079 (18)0.0052 (16)
C60.027 (2)0.0221 (19)0.0231 (19)0.0049 (17)0.0074 (18)0.0098 (16)
N110.031 (2)0.0290 (18)0.0293 (18)0.0035 (17)0.0072 (17)0.0162 (16)
C110.039 (3)0.029 (2)0.028 (2)0.006 (2)0.009 (2)0.0143 (18)
C120.036 (3)0.025 (2)0.029 (2)0.0079 (19)0.010 (2)0.0094 (18)
C130.026 (2)0.026 (2)0.031 (2)0.0023 (19)0.0034 (19)0.0156 (18)
C140.031 (3)0.031 (2)0.028 (2)0.0002 (19)0.011 (2)0.0169 (18)
C150.028 (3)0.030 (2)0.028 (2)0.0052 (19)0.0042 (19)0.0118 (18)
C160.037 (3)0.029 (2)0.027 (2)0.000 (2)0.009 (2)0.0172 (18)
O1W0.042 (2)0.0371 (18)0.057 (2)0.0027 (17)0.0159 (19)0.0224 (17)
Geometric parameters (Å, º) top
Zn1—O92.060 (3)C1—C21.551 (6)
Zn1—O6i2.069 (3)C3—C41.527 (5)
Zn1—O82.086 (3)C3—H3A0.9900
Zn1—O22.105 (3)C3—H3B0.9900
Zn1—O42.122 (3)C5—C61.525 (5)
Zn1—O12.244 (3)C5—H5A0.9900
O1—C11.461 (4)C5—H5B0.9900
O1—H1O0.930 (2)N11—C151.351 (5)
O2—C21.296 (5)N11—C111.366 (5)
O3—C21.248 (5)C11—C121.374 (6)
O4—C41.264 (5)C11—H110.9500
O5—C41.265 (5)C12—C131.412 (6)
O5—H50.8400C12—H120.9500
O6—C61.299 (5)C13—C141.404 (6)
O6—Zn1i2.069 (3)C13—C161.481 (6)
O7—C61.236 (5)C14—C151.384 (6)
O8—H8A0.860 (2)C14—H140.9500
O8—H8B0.860 (2)C15—H150.9500
O9—H9A0.860 (2)C16—C16ii1.345 (8)
O9—H9B0.860 (2)C16—H160.9500
C1—C31.539 (5)O1W—H1WA0.960 (2)
C1—C51.547 (5)O1W—H1WB0.960 (2)
O9—Zn1—O6i102.94 (13)C4—C3—H3A108.4
O9—Zn1—O894.22 (13)C1—C3—H3A108.4
O6i—Zn1—O894.62 (12)C4—C3—H3B108.4
O9—Zn1—O292.48 (13)C1—C3—H3B108.4
O6i—Zn1—O290.97 (11)H3A—C3—H3B107.4
O8—Zn1—O2170.11 (11)O4—C4—O5123.4 (4)
O9—Zn1—O492.53 (13)O4—C4—C3121.6 (3)
O6i—Zn1—O4164.39 (12)O5—C4—C3114.9 (3)
O8—Zn1—O486.23 (12)C6—C5—C1115.6 (3)
O2—Zn1—O486.21 (11)C6—C5—H5A108.4
O9—Zn1—O1167.91 (11)C1—C5—H5A108.4
O6i—Zn1—O183.38 (11)C6—C5—H5B108.4
O8—Zn1—O195.54 (12)C1—C5—H5B108.4
O2—Zn1—O176.98 (11)H5A—C5—H5B107.5
O4—Zn1—O181.02 (11)O7—C6—O6124.9 (4)
C1—O1—Zn1105.3 (2)O7—C6—C5118.7 (3)
C1—O1—H1O106 (3)O6—C6—C5116.3 (3)
Zn1—O1—H1O109 (3)C15—N11—C11120.6 (4)
C2—O2—Zn1114.9 (2)N11—C11—C12121.5 (4)
C4—O4—Zn1130.7 (3)N11—C11—H11119.3
C4—O5—H5109.5C12—C11—H11119.3
C6—O6—Zn1i126.1 (3)C11—C12—C13118.8 (4)
Zn1—O8—H8A127 (3)C11—C12—H12120.6
Zn1—O8—H8B121 (3)C13—C12—H12120.6
H8A—O8—H8B101 (5)C14—C13—C12118.9 (4)
Zn1—O9—H9A137 (3)C14—C13—C16118.6 (4)
Zn1—O9—H9B117 (4)C12—C13—C16122.5 (4)
H9A—O9—H9B106 (5)C15—C14—C13119.6 (4)
O1—C1—C3106.3 (3)C15—C14—H14120.2
O1—C1—C5110.4 (3)C13—C14—H14120.2
C3—C1—C5107.3 (3)N11—C15—C14120.7 (4)
O1—C1—C2110.7 (3)N11—C15—H15119.7
C3—C1—C2112.1 (3)C14—C15—H15119.7
C5—C1—C2110.0 (3)C16ii—C16—C13124.9 (5)
O3—C2—O2124.3 (4)C16ii—C16—H16117.5
O3—C2—C1117.7 (3)C13—C16—H16117.5
O2—C2—C1118.0 (3)H1WA—O1W—H1WB108 (5)
C4—C3—C1115.6 (3)
O9—Zn1—O1—C12.9 (6)O1—C1—C3—C452.5 (5)
O6i—Zn1—O1—C1125.2 (2)C5—C1—C3—C4170.6 (3)
O8—Zn1—O1—C1140.8 (2)C2—C1—C3—C468.5 (4)
O2—Zn1—O1—C132.6 (2)Zn1—O4—C4—O5147.6 (3)
O4—Zn1—O1—C155.5 (2)Zn1—O4—C4—C333.9 (6)
O9—Zn1—O2—C2148.1 (3)C1—C3—C4—O411.8 (6)
O6i—Zn1—O2—C2108.9 (3)C1—C3—C4—O5169.6 (4)
O4—Zn1—O2—C255.8 (3)O1—C1—C5—C655.0 (5)
O1—Zn1—O2—C225.9 (3)C3—C1—C5—C6170.4 (4)
O9—Zn1—O4—C4170.7 (4)C2—C1—C5—C667.4 (4)
O6i—Zn1—O4—C41.6 (7)Zn1i—O6—C6—O75.5 (7)
O8—Zn1—O4—C495.3 (4)Zn1i—O6—C6—C5171.6 (3)
O2—Zn1—O4—C478.3 (4)C1—C5—C6—O7152.2 (4)
O1—Zn1—O4—C40.9 (3)C1—C5—C6—O630.6 (5)
Zn1—O1—C1—C386.9 (3)C15—N11—C11—C120.5 (7)
Zn1—O1—C1—C5157.0 (2)N11—C11—C12—C130.4 (7)
Zn1—O1—C1—C235.0 (3)C11—C12—C13—C141.2 (7)
Zn1—O2—C2—O3164.3 (3)C11—C12—C13—C16176.8 (4)
Zn1—O2—C2—C113.4 (4)C12—C13—C14—C151.2 (7)
O1—C1—C2—O3165.1 (3)C16—C13—C14—C15176.9 (4)
C3—C1—C2—O376.4 (4)C11—N11—C15—C140.5 (7)
C5—C1—C2—O342.9 (5)C13—C14—C15—N110.4 (7)
O1—C1—C2—O217.0 (5)C14—C13—C16—C16ii173.2 (6)
C3—C1—C2—O2101.5 (4)C12—C13—C16—C16ii8.8 (9)
C5—C1—C2—O2139.2 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O60.93 (1)1.80 (2)2.626 (4)146 (4)
O5—H5···N11iii0.841.812.633 (5)168
O8—H8B···O5iii0.86 (1)1.88 (1)2.733 (5)173 (5)
O8—H8A···O7i0.86 (1)2.58 (4)3.031 (4)114 (4)
O8—H8A···O7iv0.86 (1)2.04 (2)2.866 (4)161 (5)
O9—H9B···O1Wiv0.86 (1)1.87 (1)2.725 (5)179 (5)
O9—H9A···O3v0.86 (1)2.57 (4)3.145 (5)125 (4)
O9—H9A···O2v0.86 (1)2.01 (1)2.860 (5)168 (5)
O1W—H1WA···O30.96 (1)1.88 (1)2.838 (5)172 (5)
O1W—H1WB···O7vi0.96 (1)2.04 (3)2.880 (5)145 (4)
C14—H14···O9i0.952.583.474 (5)158
C12—H12···O3vii0.952.523.390 (5)152
C11—H11···O4iii0.952.523.132 (5)122
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x, y+1, z; (v) x+2, y+1, z+1; (vi) x+1, y, z+1; (vii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Zn2(C6H6O7)2(H2O)4]·C12H10N2·2H2O
Mr801.31
Crystal system, space groupTriclinic, P1
Temperature (K)170
a, b, c (Å)9.4360 (19), 9.4540 (19), 10.098 (2)
α, β, γ (°)66.87 (3), 70.19 (3), 75.91 (3)
V3)773.0 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.638, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
4216, 2924, 2382
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.140, 1.09
No. of reflections2924
No. of parameters239
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 1.36

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O60.930 (2)1.80 (2)2.626 (4)146 (4)
O5—H5···N11i0.841.812.633 (5)168
O8—H8B···O5i0.860 (2)1.877 (8)2.733 (5)173 (5)
O8—H8A···O7ii0.860 (2)2.040 (17)2.866 (4)161 (5)
O9—H9B···O1Wii0.860 (2)1.865 (5)2.725 (5)179 (5)
O9—H9A···O3iii0.860 (2)2.57 (4)3.145 (5)125 (4)
O9—H9A···O2iii0.860 (2)2.013 (12)2.860 (5)168 (5)
O1W—H1WA···O30.960 (2)1.884 (10)2.838 (5)172 (5)
O1W—H1WB···O7iv0.960 (2)2.04 (3)2.880 (5)145 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z; (iii) x+2, y+1, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

Financial support from Forest Science and Technology Projects (grant No. S121012L080111) and the Converging Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. 2012001725) is gratefully acknowledged.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev. 252, 1093–1107.  Web of Science CrossRef CAS Google Scholar
First citationHwang, I. H., Kim, P.-G., Kim, C. & Kim, Y. (2012). Acta Cryst. E68, m1116–m1117.  CSD CrossRef IUCr Journals Google Scholar
First citationKim, J. H., Kim, C. & Kim, Y. (2011). Acta Cryst. E67, m3–m4.  Web of Science CrossRef IUCr Journals Google Scholar
First citationParkin, G. (2004). Chem. Rev. 104, 699–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoumpos, C. C., Gass, I. A., Milios, C. J., Lalioti, N., Terzis, A., Aromi, G., Teat, S. J., Brechin, E. K. & Perlepes, S. P. (2009). Dalton Trans. pp. 307–317.  Web of Science CSD CrossRef Google Scholar
First citationTshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m1045–m1046.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds