metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-{[bis­­(di­methyl­amino)­methyl­­idene]amino-κN}benzene­sulfonato-κN)copper(II)

aUniversität Paderborn, Fakultät für Naturwissenschaften, Department Chemie, Warburger Strasse 100, 33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@upb.de

(Received 31 October 2012; accepted 9 November 2012; online 14 November 2012)

The mol­ecular structure of the title compound, [Cu(C11H16N3O3S)2], shows the CuII atom with a distorted square-planar coordination geometry from the N2O2 donor set of the two chelating 2-{[bis­(dimethyl­amino)­methyl­idene]amino}­benzene­sulfonate ligands. The CuII atom lies 0.065 (1) Å above the N2O2 plane and the Cu—O [2 × 1.945 (2) Å] and Cu—N bond lengths [1.968 (3) and 1.962 (3) Å] lie in expected ranges. The two aromatic ring planes make a dihedral angle of 85.48 (1)°.

Related literature

For bifunctional peralkyl­ated guanidine ligands, see: Bienemann et al. (2011[Bienemann, O., Hoffmann, A. & Herres-Pawlis, S. (2011). Rev. Inorg. Chem. 31, 83-108.]); Börner et al. (2009[Börner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362-2376.]); Herres-Pawlis et al. (2005[Herres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879-4890.], 2009[Herres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154-1169.]); Neuba et al. (2008[Neuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008). Z. Anorg. Allg. Chem. 634, 2511-2517.], 2010[Neuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641-2649.]); Pohl et al. (2000[Pohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473-3479.]); Raab et al. (2003[Raab, V., Harms, K., Sundermeyer, J., Kovacevic, B. & Maksic, Z. B. (2003). J. Org. Chem. 68, 8790-8797.]); Wittmann et al. (2001[Wittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937-1948.]). For guanidine–sulfur hybrids to mimic the structural and physical as well as functional characteristics of the CuII atom in cytochrome c oxidase and N2O reductase, see: Neuba et al. (2011[Neuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. 123, 4596-4600.], 2012[Neuba, A., Haase, R. U., Meyer-Klaucke, W., Flörke, U. & Henkel, G. (2012). Angew. Chem. 124, 1746-1750.]). For related structures with Cu(N2O2) motifs, see: Robinson et al. (2004[Robinson, R. I., Stephens, J. C., Worden, S. M., Blake, A. J., Wilson, C. & Woodward, S. (2004). Eur. J. Org. Chem. pp. 4596-4605.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C11H16N3O3S)2]

  • Mr = 604.20

  • Orthorhombic, P n a 21

  • a = 19.940 (3) Å

  • b = 12.2947 (14) Å

  • c = 10.9508 (14) Å

  • V = 2684.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 120 K

  • 0.29 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.757, Tmax = 0.822

  • 22901 measured reflections

  • 6315 independent reflections

  • 4939 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.093

  • S = 1.02

  • 6315 reflections

  • 342 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2953 Friedel pairs

  • Flack parameter: 0.021 (12)

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Related literature top

For bifunctional peralkylated guanidine ligands, see: Bienemann et al. (2011); Börner et al. (2009); Herres-Pawlis et al. (2005, 2009); Neuba et al. (2008, 2010); Pohl et al. (2000); Raab et al. (2003); Wittmann et al. (2001). For guanidine–sulfur hybrids to mimic the structural and physical as well as functional characteristics of the Cu center in cytochrome c oxidase and N2O reductase, see: Neuba et al. (2011, 2012). For related structures with Cu(N2O2) core, see: Robinson et al. (2004).

Experimental top

In a first step the mixed-valent copper thiolate complex [Cu6(NGuaS)6](PF6)2 [NGuaS = 2-(1,1,3,3-tetramethylguanidino)benzenethiolate, C11H16N3S] was synthesized (Neuba et al., 2011): reaction of 1,1,3,3-tetramethyl-2-(2-(tritylthio)phenyl)guanidine (510 mg, 1.1 mmol) with [Cu(MeCN)4]PF6 (186.2 mg, 0.5 mmol) dissolved in 5 ml of ABS. MeCN led to a deep blue/green solution. The reaction mixture was stirred for a period of 30 min. at room temperature followed by heating under reflux for 30 min. After cooling the solution was filtered. Second step: slow diffusion of air at -20°C to the filtrate leads after several weeks to dark red crystals of [Cu(C11H16N3O3S)2] suitable for X-ray diffraction. We suppose a copper mediated oxidation of the o-tetramethylguanidinobenzenethiolate ligand to the corresponding benzenesulfonate.

Refinement top

H atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). All CH3 hydrogen atoms were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Anistropic displacement parameters are shown at the 50% probability level.
Bis(2-{[bis(dimethylamino)methylidene]amino-κN}benzenesulfonato-κN)copper(II) top
Crystal data top
[Cu(C11H16N3O3S)2]F(000) = 1260
Mr = 604.20Dx = 1.495 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1013 reflections
a = 19.940 (3) Åθ = 2.5–23.8°
b = 12.2947 (14) ŵ = 1.02 mm1
c = 10.9508 (14) ÅT = 120 K
V = 2684.7 (6) Å3Block, red
Z = 40.29 × 0.23 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
6315 independent reflections
Radiation source: sealed tube4939 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 27.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2625
Tmin = 0.757, Tmax = 0.822k = 1614
22901 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0383P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
6315 reflectionsΔρmax = 0.63 e Å3
342 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack (1983), 2953 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.021 (12)
Crystal data top
[Cu(C11H16N3O3S)2]V = 2684.7 (6) Å3
Mr = 604.20Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 19.940 (3) ŵ = 1.02 mm1
b = 12.2947 (14) ÅT = 120 K
c = 10.9508 (14) Å0.29 × 0.23 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
6315 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4939 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 0.822Rint = 0.063
22901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.63 e Å3
S = 1.02Δρmin = 0.29 e Å3
6315 reflectionsAbsolute structure: Flack (1983), 2953 Friedel pairs
342 parametersAbsolute structure parameter: 0.021 (12)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.375129 (18)0.12574 (3)0.29666 (4)0.01655 (10)
S10.25801 (4)0.02454 (7)0.41807 (8)0.01986 (19)
S20.49473 (4)0.22745 (7)0.40833 (8)0.01868 (18)
O10.28279 (12)0.12436 (19)0.3539 (2)0.0220 (6)
O20.18969 (13)0.0382 (2)0.4554 (3)0.0313 (7)
O30.30433 (13)0.0077 (2)0.5122 (2)0.0267 (6)
O40.46904 (11)0.12775 (18)0.3447 (2)0.0211 (6)
O50.45077 (14)0.2585 (2)0.5066 (2)0.0254 (6)
O60.56389 (12)0.2136 (2)0.4400 (3)0.0321 (7)
N10.37774 (14)0.0306 (2)0.2583 (2)0.0173 (6)
N20.44573 (14)0.1771 (2)0.3195 (3)0.0219 (7)
N30.48764 (15)0.0454 (2)0.1876 (3)0.0235 (7)
N40.37182 (14)0.2806 (2)0.2535 (3)0.0165 (6)
N50.26055 (14)0.2943 (3)0.1932 (3)0.0226 (7)
N60.30479 (14)0.4264 (2)0.3212 (3)0.0230 (7)
C10.43704 (18)0.0852 (3)0.2543 (3)0.0195 (8)
C20.40296 (18)0.2039 (3)0.4219 (4)0.0270 (8)
H2A0.38280.13730.45450.040*
H2B0.42970.23920.48580.040*
H2C0.36740.25350.39490.040*
C30.4881 (2)0.2670 (3)0.2783 (4)0.0370 (10)
H3A0.50610.25040.19720.055*
H3B0.46130.33380.27420.055*
H3C0.52520.27720.33590.055*
C40.55762 (19)0.0533 (3)0.2252 (4)0.0357 (11)
H4A0.56070.09620.30040.054*
H4B0.57550.01980.23970.054*
H4C0.58370.08880.16060.054*
C50.4752 (2)0.0283 (3)0.0868 (4)0.0321 (10)
H5A0.42880.01990.05890.048*
H5B0.50590.01150.01950.048*
H5C0.48240.10340.11380.048*
C60.31920 (17)0.0947 (3)0.2379 (3)0.0196 (8)
C70.3188 (2)0.1734 (3)0.1472 (4)0.0278 (9)
H7A0.35860.18860.10280.033*
C80.2598 (2)0.2305 (3)0.1211 (4)0.0330 (10)
H8A0.25970.28370.05820.040*
C90.2016 (2)0.2100 (3)0.1860 (4)0.0335 (10)
H9A0.16180.24930.16760.040*
C100.20118 (18)0.1333 (3)0.2766 (4)0.0265 (9)
H10A0.16130.11950.32140.032*
C110.25995 (15)0.0753 (3)0.3028 (4)0.0198 (7)
C120.31265 (18)0.3351 (3)0.2543 (3)0.0204 (8)
C130.19238 (19)0.3016 (4)0.2378 (5)0.0399 (12)
H13A0.19250.33230.32040.060*
H13B0.17240.22880.23970.060*
H13C0.16610.34860.18350.060*
C140.2704 (2)0.2234 (4)0.0906 (4)0.0324 (10)
H14A0.31510.23590.05580.049*
H14B0.23620.23830.02860.049*
H14C0.26680.14750.11740.049*
C150.34810 (19)0.4524 (3)0.4234 (4)0.0292 (9)
H15A0.36930.38580.45360.044*
H15B0.32150.48540.48890.044*
H15C0.38280.50370.39680.044*
C160.2584 (2)0.5139 (3)0.2842 (4)0.0388 (11)
H16A0.23980.49730.20350.058*
H16B0.28270.58310.28090.058*
H16C0.22180.51930.34380.058*
C170.42974 (17)0.3458 (3)0.2312 (3)0.0166 (7)
C180.42834 (19)0.4263 (3)0.1423 (3)0.0231 (8)
H18A0.38810.43910.09810.028*
C190.4846 (2)0.4882 (3)0.1173 (4)0.0279 (10)
H19A0.48300.54180.05490.033*
C200.5430 (2)0.4726 (3)0.1823 (4)0.0300 (9)
H20A0.58100.51690.16640.036*
C210.54617 (16)0.3927 (3)0.2703 (3)0.0223 (9)
H21A0.58660.38110.31420.027*
C220.49011 (15)0.3290 (2)0.2949 (4)0.0178 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01765 (18)0.01225 (17)0.0197 (2)0.00136 (15)0.0002 (2)0.0011 (2)
S10.0212 (4)0.0173 (4)0.0211 (5)0.0007 (3)0.0063 (4)0.0007 (4)
S20.0192 (4)0.0167 (4)0.0201 (4)0.0001 (3)0.0057 (4)0.0007 (4)
O10.0205 (13)0.0171 (13)0.0285 (14)0.0015 (10)0.0076 (11)0.0011 (11)
O20.0256 (14)0.0276 (15)0.0408 (18)0.0018 (12)0.0135 (12)0.0006 (13)
O30.0312 (15)0.0294 (15)0.0196 (15)0.0041 (11)0.0017 (12)0.0027 (11)
O40.0197 (12)0.0135 (12)0.0302 (15)0.0007 (10)0.0074 (10)0.0005 (10)
O50.0356 (16)0.0233 (14)0.0172 (14)0.0032 (12)0.0013 (12)0.0026 (11)
O60.0263 (14)0.0326 (15)0.0375 (18)0.0030 (12)0.0152 (13)0.0035 (14)
N10.0208 (15)0.0131 (14)0.0179 (16)0.0041 (12)0.0043 (11)0.0022 (11)
N20.0244 (15)0.0207 (16)0.0207 (18)0.0054 (12)0.0022 (13)0.0001 (13)
N30.0235 (16)0.0179 (16)0.0291 (18)0.0016 (13)0.0101 (14)0.0048 (14)
N40.0173 (14)0.0135 (14)0.0186 (15)0.0018 (13)0.0016 (11)0.0028 (11)
N50.0164 (15)0.0264 (18)0.0248 (18)0.0016 (13)0.0050 (13)0.0017 (14)
N60.0247 (15)0.0230 (16)0.0212 (19)0.0083 (13)0.0048 (13)0.0012 (13)
C10.0224 (18)0.0156 (17)0.0204 (19)0.0027 (15)0.0026 (14)0.0069 (14)
C20.0304 (19)0.025 (2)0.026 (2)0.0015 (16)0.0050 (18)0.0047 (18)
C30.050 (3)0.027 (2)0.034 (3)0.0107 (18)0.015 (2)0.002 (2)
C40.023 (2)0.032 (2)0.052 (3)0.0043 (18)0.0107 (19)0.009 (2)
C50.045 (3)0.023 (2)0.029 (2)0.004 (2)0.0171 (19)0.0026 (19)
C60.0225 (18)0.0146 (17)0.0217 (19)0.0022 (14)0.0016 (15)0.0006 (15)
C70.031 (2)0.025 (2)0.028 (2)0.0015 (17)0.0000 (17)0.0042 (17)
C80.045 (3)0.0205 (19)0.033 (2)0.004 (2)0.008 (2)0.0078 (19)
C90.034 (2)0.023 (2)0.044 (3)0.0131 (18)0.010 (2)0.001 (2)
C100.0195 (17)0.0264 (19)0.034 (3)0.0017 (15)0.0020 (16)0.0059 (18)
C110.0229 (16)0.0155 (15)0.0210 (18)0.0027 (13)0.0007 (18)0.0012 (17)
C120.0229 (19)0.0182 (18)0.0200 (19)0.0030 (15)0.0038 (14)0.0055 (14)
C130.019 (2)0.042 (3)0.058 (3)0.004 (2)0.0020 (19)0.010 (2)
C140.030 (2)0.031 (2)0.036 (3)0.005 (2)0.0153 (18)0.004 (2)
C150.041 (2)0.0206 (19)0.026 (2)0.0099 (16)0.0083 (19)0.0069 (18)
C160.054 (3)0.030 (2)0.032 (2)0.0243 (19)0.010 (2)0.004 (2)
C170.0178 (17)0.0164 (17)0.0156 (18)0.0010 (14)0.0017 (14)0.0009 (14)
C180.0263 (19)0.0196 (19)0.023 (2)0.0016 (16)0.0028 (16)0.0005 (15)
C190.040 (2)0.0171 (19)0.027 (2)0.0073 (17)0.0046 (18)0.0057 (16)
C200.030 (2)0.028 (2)0.032 (2)0.0157 (18)0.0079 (18)0.0024 (18)
C210.0128 (15)0.0208 (18)0.033 (3)0.0030 (14)0.0020 (14)0.0012 (16)
C220.0192 (15)0.0154 (15)0.0190 (16)0.0009 (12)0.0014 (17)0.0023 (17)
Geometric parameters (Å, º) top
Cu1—O41.945 (2)C4—H4C0.9800
Cu1—O11.945 (2)C5—H5A0.9800
Cu1—N41.962 (3)C5—H5B0.9800
Cu1—N11.968 (3)C5—H5C0.9800
S1—O21.432 (3)C6—C71.386 (5)
S1—O31.440 (3)C6—C111.400 (5)
S1—O11.498 (2)C7—C81.399 (6)
S1—C111.761 (4)C7—H7A0.9500
S2—O61.432 (3)C8—C91.385 (6)
S2—O51.439 (3)C8—H8A0.9500
S2—O41.500 (2)C9—C101.369 (6)
S2—C221.764 (4)C9—H9A0.9500
N1—C11.361 (4)C10—C111.402 (5)
N1—C61.426 (4)C10—H10A0.9500
N2—C11.348 (4)C13—H13A0.9800
N2—C21.447 (5)C13—H13B0.9800
N2—C31.463 (4)C13—H13C0.9800
N3—C11.338 (4)C14—H14A0.9800
N3—C51.450 (5)C14—H14B0.9800
N3—C41.458 (5)C14—H14C0.9800
N4—C121.357 (4)C15—H15A0.9800
N4—C171.427 (4)C15—H15B0.9800
N5—C121.333 (5)C15—H15C0.9800
N5—C141.436 (5)C16—H16A0.9800
N5—C131.447 (5)C16—H16B0.9800
N6—C121.350 (4)C16—H16C0.9800
N6—C151.449 (5)C17—C181.389 (5)
N6—C161.475 (4)C17—C221.407 (5)
C2—H2A0.9800C18—C191.383 (5)
C2—H2B0.9800C18—H18A0.9500
C2—H2C0.9800C19—C201.377 (6)
C3—H3A0.9800C19—H19A0.9500
C3—H3B0.9800C20—C211.378 (5)
C3—H3C0.9800C20—H20A0.9500
C4—H4A0.9800C21—C221.391 (4)
C4—H4B0.9800C21—H21A0.9500
O4—Cu1—O1145.52 (11)H5B—C5—H5C109.5
O4—Cu1—N494.88 (10)C7—C6—C11118.6 (3)
O1—Cu1—N493.10 (11)C7—C6—N1120.2 (3)
O4—Cu1—N192.56 (11)C11—C6—N1121.1 (3)
O1—Cu1—N194.89 (11)C6—C7—C8120.1 (4)
N4—Cu1—N1153.75 (11)C6—C7—H7A120.0
O2—S1—O3115.99 (17)C8—C7—H7A120.0
O2—S1—O1110.59 (15)C9—C8—C7120.6 (4)
O3—S1—O1110.46 (15)C9—C8—H8A119.7
O2—S1—C11107.89 (16)C7—C8—H8A119.7
O3—S1—C11107.88 (16)C10—C9—C8120.1 (4)
O1—S1—C11103.18 (15)C10—C9—H9A119.9
O6—S2—O5115.89 (17)C8—C9—H9A119.9
O6—S2—O4110.14 (15)C9—C10—C11119.6 (4)
O5—S2—O4110.87 (15)C9—C10—H10A120.2
O6—S2—C22107.76 (15)C11—C10—H10A120.2
O5—S2—C22107.88 (15)C6—C11—C10121.0 (3)
O4—S2—C22103.47 (15)C6—C11—S1120.1 (3)
S1—O1—Cu1118.07 (14)C10—C11—S1118.9 (3)
S2—O4—Cu1117.69 (14)N5—C12—N6119.6 (3)
C1—N1—C6115.7 (3)N5—C12—N4119.3 (3)
C1—N1—Cu1120.8 (2)N6—C12—N4121.0 (3)
C6—N1—Cu1123.5 (2)N5—C13—H13A109.5
C1—N2—C2121.7 (3)N5—C13—H13B109.5
C1—N2—C3123.0 (3)H13A—C13—H13B109.5
C2—N2—C3114.0 (3)N5—C13—H13C109.5
C1—N3—C5121.0 (3)H13A—C13—H13C109.5
C1—N3—C4122.9 (3)H13B—C13—H13C109.5
C5—N3—C4114.9 (3)N5—C14—H14A109.5
C12—N4—C17115.3 (3)N5—C14—H14B109.5
C12—N4—Cu1120.5 (2)H14A—C14—H14B109.5
C17—N4—Cu1124.0 (2)N5—C14—H14C109.5
C12—N5—C14120.9 (3)H14A—C14—H14C109.5
C12—N5—C13122.6 (4)H14B—C14—H14C109.5
C14—N5—C13115.5 (3)N6—C15—H15A109.5
C12—N6—C15122.2 (3)N6—C15—H15B109.5
C12—N6—C16122.0 (3)H15A—C15—H15B109.5
C15—N6—C16115.1 (3)N6—C15—H15C109.5
N3—C1—N2119.9 (3)H15A—C15—H15C109.5
N3—C1—N1119.5 (3)H15B—C15—H15C109.5
N2—C1—N1120.5 (3)N6—C16—H16A109.5
N2—C2—H2A109.5N6—C16—H16B109.5
N2—C2—H2B109.5H16A—C16—H16B109.5
H2A—C2—H2B109.5N6—C16—H16C109.5
N2—C2—H2C109.5H16A—C16—H16C109.5
H2A—C2—H2C109.5H16B—C16—H16C109.5
H2B—C2—H2C109.5C18—C17—C22118.0 (3)
N2—C3—H3A109.5C18—C17—N4120.3 (3)
N2—C3—H3B109.5C22—C17—N4121.7 (3)
H3A—C3—H3B109.5C19—C18—C17121.0 (4)
N2—C3—H3C109.5C19—C18—H18A119.5
H3A—C3—H3C109.5C17—C18—H18A119.5
H3B—C3—H3C109.5C20—C19—C18120.4 (4)
N3—C4—H4A109.5C20—C19—H19A119.8
N3—C4—H4B109.5C18—C19—H19A119.8
H4A—C4—H4B109.5C19—C20—C21120.0 (3)
N3—C4—H4C109.5C19—C20—H20A120.0
H4A—C4—H4C109.5C21—C20—H20A120.0
H4B—C4—H4C109.5C20—C21—C22120.0 (3)
N3—C5—H5A109.5C20—C21—H21A120.0
N3—C5—H5B109.5C22—C21—H21A120.0
H5A—C5—H5B109.5C21—C22—C17120.6 (3)
N3—C5—H5C109.5C21—C22—S2119.5 (3)
H5A—C5—H5C109.5C17—C22—S2119.9 (2)
O2—S1—O1—Cu1179.11 (16)C7—C6—C11—C100.5 (6)
O3—S1—O1—Cu149.3 (2)N1—C6—C11—C10175.5 (3)
C11—S1—O1—Cu165.74 (18)C7—C6—C11—S1179.6 (3)
O4—Cu1—O1—S168.1 (3)N1—C6—C11—S13.5 (5)
N4—Cu1—O1—S1171.33 (17)C9—C10—C11—C60.1 (6)
N1—Cu1—O1—S133.69 (18)C9—C10—C11—S1179.0 (3)
O6—S2—O4—Cu1178.28 (16)O2—S1—C11—C6171.3 (3)
O5—S2—O4—Cu148.7 (2)O3—S1—C11—C662.6 (3)
C22—S2—O4—Cu166.76 (18)O1—S1—C11—C654.3 (3)
O1—Cu1—O4—S266.2 (2)O2—S1—C11—C107.7 (4)
N4—Cu1—O4—S236.56 (18)O3—S1—C11—C10118.3 (3)
N1—Cu1—O4—S2168.63 (17)O1—S1—C11—C10124.8 (3)
O4—Cu1—N1—C110.2 (3)C14—N5—C12—N6158.1 (3)
O1—Cu1—N1—C1156.5 (3)C13—N5—C12—N633.5 (5)
N4—Cu1—N1—C196.2 (4)C14—N5—C12—N425.5 (5)
O4—Cu1—N1—C6167.3 (3)C13—N5—C12—N4142.9 (4)
O1—Cu1—N1—C621.0 (3)C15—N6—C12—N5155.9 (3)
N4—Cu1—N1—C686.3 (4)C16—N6—C12—N533.5 (5)
O4—Cu1—N4—C12156.2 (3)C15—N6—C12—N420.5 (5)
O1—Cu1—N4—C129.8 (3)C16—N6—C12—N4150.2 (4)
N1—Cu1—N4—C1297.8 (3)C17—N4—C12—N5133.9 (3)
O4—Cu1—N4—C1717.6 (3)Cu1—N4—C12—N551.8 (4)
O1—Cu1—N4—C17164.0 (3)C17—N4—C12—N649.8 (4)
N1—Cu1—N4—C1788.3 (4)Cu1—N4—C12—N6124.6 (3)
C5—N3—C1—N2158.8 (3)C12—N4—C17—C1841.9 (4)
C4—N3—C1—N234.6 (5)Cu1—N4—C17—C18144.0 (3)
C5—N3—C1—N123.0 (5)C12—N4—C17—C22140.0 (3)
C4—N3—C1—N1143.6 (3)Cu1—N4—C17—C2234.1 (4)
C2—N2—C1—N3159.1 (3)C22—C17—C18—C190.1 (5)
C3—N2—C1—N334.5 (5)N4—C17—C18—C19178.2 (3)
C2—N2—C1—N119.1 (5)C17—C18—C19—C201.4 (6)
C3—N2—C1—N1147.3 (4)C18—C19—C20—C212.0 (6)
C6—N1—C1—N3131.5 (3)C19—C20—C21—C221.0 (6)
Cu1—N1—C1—N350.8 (4)C20—C21—C22—C170.5 (5)
C6—N1—C1—N250.3 (4)C20—C21—C22—S2179.7 (3)
Cu1—N1—C1—N2127.4 (3)C18—C17—C22—C211.0 (5)
C1—N1—C6—C741.8 (5)N4—C17—C22—C21179.1 (3)
Cu1—N1—C6—C7140.6 (3)C18—C17—C22—S2179.8 (3)
C1—N1—C6—C11142.3 (3)N4—C17—C22—S21.7 (5)
Cu1—N1—C6—C1135.4 (4)O6—S2—C22—C2112.1 (3)
C11—C6—C7—C80.9 (6)O5—S2—C22—C21113.7 (3)
N1—C6—C7—C8175.1 (4)O4—S2—C22—C21128.8 (3)
C6—C7—C8—C90.7 (6)O6—S2—C22—C17168.7 (3)
C7—C8—C9—C100.1 (7)O5—S2—C22—C1765.5 (3)
C8—C9—C10—C110.3 (6)O4—S2—C22—C1752.1 (3)

Experimental details

Crystal data
Chemical formula[Cu(C11H16N3O3S)2]
Mr604.20
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)120
a, b, c (Å)19.940 (3), 12.2947 (14), 10.9508 (14)
V3)2684.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.29 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.757, 0.822
No. of measured, independent and
observed [I > 2σ(I)] reflections
22901, 6315, 4939
Rint0.063
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.093, 1.02
No. of reflections6315
No. of parameters342
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.29
Absolute structureFlack (1983), 2953 Friedel pairs
Absolute structure parameter0.021 (12)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008) and local programs.

 

Acknowledgements

We thank the German Research Council (DFG) and the Federal Ministry of Education and Research (BMBF) for continuous support of our work.

References

First citationBienemann, O., Hoffmann, A. & Herres-Pawlis, S. (2011). Rev. Inorg. Chem. 31, 83–108.  Web of Science CrossRef CAS Google Scholar
First citationBörner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362–2376.  Web of Science PubMed Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHerres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879–4890.  Web of Science CSD CrossRef Google Scholar
First citationHerres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154–1169.  Web of Science PubMed CAS Google Scholar
First citationNeuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. 123, 4596–4600.  CrossRef Google Scholar
First citationNeuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008). Z. Anorg. Allg. Chem. 634, 2511–2517.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeuba, A., Haase, R. U., Meyer-Klaucke, W., Flörke, U. & Henkel, G. (2012). Angew. Chem. 124, 1746–1750.  CrossRef Google Scholar
First citationNeuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641–2649.  Web of Science CSD CrossRef CAS Google Scholar
First citationPohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473–3479.  Web of Science CrossRef Google Scholar
First citationRaab, V., Harms, K., Sundermeyer, J., Kovacevic, B. & Maksic, Z. B. (2003). J. Org. Chem. 68, 8790–8797.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRobinson, R. I., Stephens, J. C., Worden, S. M., Blake, A. J., Wilson, C. & Woodward, S. (2004). Eur. J. Org. Chem. pp. 4596–4605.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937–1948.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds