organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3293-o3294

17-Hy­dr­oxy-1,8-di­methyl-17-aza­penta­cyclo­[6.6.5.02,7.09,14.015,19]nona­deca-2,4,6,9(14),10,12-hexa­ene-16,18-dione

aFaculty of Chemistry, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland, and bDepartment of Medical Chemistry, The Medical University, 02-007 Warsaw, Poland
*Correspondence e-mail: barbara.miroslaw@poczta.umcs.lublin.pl

(Received 27 July 2012; accepted 31 October 2012; online 7 November 2012)

In the title compound, C20H17NO3 (alternative name: N-hy­droxy-9,10-dimethyl-9,10-ethano­anthracene-11,12-dicarboximide), the rigid ethano­anthracene-dicarboximide moiety has a roof-shaped geometry, the inter­planar angle between the two terminal phenyl rings being 124.9 (6)°. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds, forming chains along [010]. C—H⋯O and C—H⋯π inter­actions link adjacent chains, leading to the formation of a three-dimensional structure.

Related literature

For the synthesis of the title compound, see: Kossakowski & Jarocka (2000[Kossakowski, J. & Jarocka, M. (2000). Acta Pol. Pharm. 57, 60-62.]). For the biological activity of related compounds, see: Bova et al. (2009[Bova, S., Saponara, S., Rampa, A., Gobbi, S., Cima, L., Fusi, F., Sgaragli, G., Cavalli, M., de los Rios, C., Striessnig, J. & Bisi, A. (2009). J. Med. Chem. 52, 1259-1262.]). For related structures, see: Atherton & Jones (2002[Atherton, J. C. C. & Jones, S. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2166-2173.]); Smet et al. (2000[Smet, M., Corens, D., Van Meervelt, L. & Dehaen, W. (2000). Molecules, 5, 179-188.]); Su et al. (2011[Su, Y.-S., Liu, J.-W., Jiang, Y. & Chen, C.-F. (2011). Chem. Eur. J. 17, 2435-2441.]), Guo et al. (2010[Guo, J.-B., Xiang, J.-F. & Chen, C.-F. (2010). Eur. J. Org. Chem. pp. 5056-5062.]); Adams et al. (2006[Adams, H., Bawa, R. A. & Jones, S. (2006). Org. Biomol. Chem. 4, 4206-4213.]); He & Ng (2007[He, L. & Ng, S. W. (2007). Acta Cryst. E63, o602-o603.]); Weber et al. (1991[Weber, E., Finge, S. & Csöregh, I. (1991). J. Org. Chem. 56, 7281-7288.], 1994[Weber, E., Reutel, C., Foces-Foces, C. & Llamas-Saiz, A. L. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 1455-1461.]); Yang & Swager (1998[Yang, J.-S. & Swager, T. M. (1998). J. Am. Chem. Soc. 120, 11864-11873.]). The rigid ethano­anthracenedicarboximide moiety of the title compound shows the typical roof-shaped geometry (Weber et al., 1991[Weber, E., Finge, S. & Csöregh, I. (1991). J. Org. Chem. 56, 7281-7288.]; Csöregh et al., 2003[Csöregh, I., Finge, S. & Weber, E. (2003). Struct. Chem. 14, 241-246.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17NO3

  • Mr = 319.36

  • Monoclinic, P 21 /n

  • a = 13.904 (1) Å

  • b = 8.104 (1) Å

  • c = 13.946 (1) Å

  • β = 97.39 (1)°

  • V = 1558.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur (Sapphire2) diffractometer

  • 5321 measured reflections

  • 2827 independent reflections

  • 2467 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.04

  • 2827 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C6–C11 ring. Cg2 refers to the mid-point of the C15—C16 bond.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.96 (2) 1.69 (2) 2.630 (1) 167 (2)
C8—H8⋯O1ii 0.95 2.54 3.408 (2) 152
C15—H15⋯O3iii 0.95 2.46 3.273 (2) 143
C17—H17⋯O2iv 0.95 2.54 3.457 (2) 163
C4—H4⋯Cg1v 1.00 2.66 3.518 (3) 144
C10—H10⋯Cg2vi 0.95 2.77 3.668 (3) 158
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) x, y+1, z; (v) -x, -y+1, -z+1; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF.

Supporting information


Comment top

Roof-shaped aromatic hydrocarbon derivatives have been used for inclusion of neutral compounds (Weber et al., 1991; 1994) and as porous polymer films and sensors for dinitrotoluene with possible application as a land mine detectors (Yang & Swager, 1998). The N-substitution is the most common way of modification of these molecules (Weber et al., 1994; Smet et al., 2000). Some experiments were also conducted on the substitution in the aryl moiety (Atherton & Jones, 2002; Adams et al., 2006; He & Ng, 2007). The search of the CSD (CSD v5.33 and updates; Allen, 2002) revealed 67 crystal structures of compounds with the rigid pentacyclic 9,10-ethanoanthracenedicarboximide skeleton. However, none of these derivatives has N-hydroxy substituent and only two molecules are symmetrically substituted at bridgehead C atoms (here C5, C12; see Fig. 1). In these crystals the polycyclic skeletons are combined with voluminous macrocyclic fragments. (Su et al., 2011; Guo et al., 2010). The rigid ethanoanthracenedicarboximide moiety of the title compound (Fig. 1) shows the typical roof-shaped geometry (Weber et al., 1991; Csöregh et al., 2003); the interplanar angle between the two terminal phenyl rings is 124.9 °. The hydroxyl O atom interacts through the O3–H···O1 hydrogen bond (Fig. 2). Molecules form chains along the 21 screw axis. Between adjacent chains many C–H···O and C–H···π interactions are observed (Figs. 2–4, Table 1).

Related literature top

For the synthesis of the title compound, see: Kossakowski & Jarocka (2000). For the biological activity of related compounds, see: Bova et al. (2009). For related structures, see: Atherton & Jones (2002); Smet et al. (2000); Su et al. (2011), Guo et al. (2010); Adams et al. (2006); He & Ng (2007); Weber et al. (1991, 1994); Yang & Swager (1998). The rigid ethanoanthracenedicarboximide moiety of the title compound shows the typical roof-shaped geometry (Weber et al., 1991; Csöregh et al., 2003). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound, UPAC name: 17-hydroxy-1,8-dimethyl-17-azapentacyclo[6.6.5.02,7.09,14.015,19]nonadeca-2,4,6,9(14),10,12-hexaene-16,18-dione, was synthesized in the search of compounds with potential anxiolytic activity, as described previously (Kossakowski & Jarocka, 2000).

Refinement top

All C-bonded H atoms were positioned geometrically and allowed to ride on the attached atom with the C—H bond lengths of 0.95 Å for aromatic atoms, 1.00 Å for methine and 0.98 Å for methyl groups. Uiso(H) values were fixed to 1.2Ueq(C) and 1.5Ueq(Cmethyl). The hydroxyl H atom was located in the difference electron density map and refined isotropically.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF.

Figures top
[Figure 1] Fig. 1. Ortep view of the title compound with atom numbering scheme. Ellipsoids for non-hydrogen atoms were drawn at the 50 % probability level.
[Figure 2] Fig. 2. Linear association of molecules in crystal of 1 through the O–H···O hydrogen bonds and C–H···π interactions between adjacent chains. The Cg2 refers to the center of gravity between atoms C15/C16. Symmetry codes: (i) –x+1/2, y–1/2, –z+3/2; (vi) –x+1/2, y–1/2, –z+1/2.
[Figure 3] Fig. 3. C–H···O and C–H···π interactions in crystal of 1 with short C15···C15iii intermolecular contact (3.386 (2) Å). The Cg2 is the centroid of the C15/C16 bond. Symmetry codes: (iii) –x+1, –y+1, –z+1; (vi) –x+1/2, y–1/2, –z+1/2.
[Figure 4] Fig. 4. C–H···O hydrogen bonds and C–H···π interactions in crystal of 1. The Cg1 refers to the centroid of the C6–C11 ring. Symmetry codes: (iv) x, y+1, z; (v) –x, –y+1, –z+1.
17-Hydroxy-1,8-dimethyl-17- azapentacyclo[6.6.5.02,7.09,14.015,19]nonadeca-2,4,6,9(14),10,12- hexaene-16,18-dione top
Crystal data top
C20H17NO3F(000) = 672
Mr = 319.36Dx = 1.361 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3666 reflections
a = 13.904 (1) Åθ = 2.9–29.8°
b = 8.104 (1) ŵ = 0.09 mm1
c = 13.946 (1) ÅT = 100 K
β = 97.39 (1)°Prism, colourless
V = 1558.4 (3) Å30.40 × 0.40 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur (Sapphire2)
diffractometer
2467 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.023
Graphite monochromatorθmax = 25.2°, θmin = 2.9°
Detector resolution: 8.4221 pixels mm-1h = 1616
ω scansk = 96
5321 measured reflectionsl = 916
2827 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.4721P]
where P = (Fo2 + 2Fc2)/3
2827 reflections(Δ/σ)max = 0.009
223 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H17NO3V = 1558.4 (3) Å3
Mr = 319.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.904 (1) ŵ = 0.09 mm1
b = 8.104 (1) ÅT = 100 K
c = 13.946 (1) Å0.40 × 0.40 × 0.30 mm
β = 97.39 (1)°
Data collection top
Oxford Diffraction Xcalibur (Sapphire2)
diffractometer
2467 reflections with I > 2σ(I)
5321 measured reflectionsRint = 0.023
2827 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
2827 reflectionsΔρmin = 0.20 e Å3
223 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.28230 (8)0.37858 (13)0.63969 (8)0.0154 (3)
O10.23524 (7)0.61166 (12)0.71225 (6)0.0201 (2)
O20.30265 (7)0.15262 (11)0.54480 (7)0.0217 (2)
O30.36001 (7)0.34569 (12)0.70937 (7)0.0194 (2)
H3A0.3338 (15)0.258 (3)0.7443 (15)0.049 (6)*
C10.22513 (9)0.51497 (16)0.64443 (9)0.0148 (3)
C20.25875 (10)0.27735 (16)0.55890 (9)0.0161 (3)
C30.17056 (9)0.35563 (16)0.49956 (9)0.0151 (3)
H30.11290.28180.49990.018*
C40.15350 (9)0.51968 (15)0.55294 (9)0.0147 (3)
H40.08590.52170.57020.018*
C50.16945 (10)0.67321 (16)0.48659 (9)0.0157 (3)
C60.09511 (9)0.64834 (16)0.39688 (9)0.0161 (3)
C70.02301 (10)0.76017 (17)0.36135 (10)0.0199 (3)
H70.01720.86230.39360.024*
C80.04079 (10)0.72243 (19)0.27836 (11)0.0242 (3)
H80.08940.79940.25380.029*
C90.03310 (10)0.5725 (2)0.23190 (10)0.0252 (3)
H90.07710.54640.17610.030*
C100.03931 (10)0.45948 (19)0.26700 (10)0.0216 (3)
H100.04420.35680.23510.026*
C110.10405 (9)0.49792 (17)0.34867 (9)0.0172 (3)
C120.18898 (10)0.38987 (16)0.39219 (9)0.0167 (3)
C130.27923 (10)0.49978 (16)0.40301 (9)0.0159 (3)
C140.36774 (10)0.45997 (18)0.37202 (10)0.0206 (3)
H140.37460.36010.33790.025*
C150.44605 (10)0.56721 (19)0.39128 (10)0.0253 (3)
H150.50650.54000.37040.030*
C160.43639 (10)0.71368 (19)0.44081 (10)0.0239 (3)
H160.49030.78610.45340.029*
C170.34813 (10)0.75541 (17)0.47223 (10)0.0195 (3)
H170.34170.85590.50590.023*
C180.26956 (10)0.64801 (16)0.45364 (9)0.0159 (3)
C190.15742 (11)0.83661 (16)0.53834 (10)0.0207 (3)
H19A0.09390.83910.56180.031*
H19B0.16190.92820.49320.031*
H19C0.20870.84740.59320.031*
C200.19871 (11)0.22982 (17)0.33594 (10)0.0230 (3)
H20A0.21020.25620.26980.034*
H20B0.13890.16540.33420.034*
H20C0.25330.16540.36780.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0145 (6)0.0179 (6)0.0133 (5)0.0008 (4)0.0005 (4)0.0025 (4)
O10.0195 (5)0.0236 (5)0.0173 (5)0.0011 (4)0.0024 (4)0.0065 (4)
O20.0259 (6)0.0150 (5)0.0245 (5)0.0039 (4)0.0045 (4)0.0008 (4)
O30.0143 (5)0.0250 (5)0.0176 (5)0.0010 (4)0.0024 (4)0.0058 (4)
C10.0129 (6)0.0164 (7)0.0159 (7)0.0034 (5)0.0058 (5)0.0010 (5)
C20.0182 (7)0.0144 (7)0.0167 (7)0.0036 (5)0.0062 (5)0.0021 (5)
C30.0149 (6)0.0152 (7)0.0154 (7)0.0028 (5)0.0032 (5)0.0006 (5)
C40.0130 (6)0.0160 (6)0.0155 (7)0.0015 (5)0.0031 (5)0.0010 (5)
C50.0154 (7)0.0153 (7)0.0166 (7)0.0006 (5)0.0026 (5)0.0010 (5)
C60.0141 (7)0.0190 (7)0.0158 (7)0.0024 (5)0.0049 (5)0.0024 (5)
C70.0173 (7)0.0193 (7)0.0242 (8)0.0006 (5)0.0067 (6)0.0055 (6)
C80.0158 (7)0.0310 (8)0.0261 (8)0.0008 (6)0.0034 (6)0.0126 (6)
C90.0193 (7)0.0376 (9)0.0177 (7)0.0065 (6)0.0011 (6)0.0059 (6)
C100.0202 (7)0.0280 (8)0.0168 (7)0.0038 (6)0.0026 (5)0.0007 (6)
C110.0167 (7)0.0207 (7)0.0149 (7)0.0026 (5)0.0048 (5)0.0019 (5)
C120.0187 (7)0.0187 (7)0.0130 (6)0.0008 (5)0.0028 (5)0.0005 (5)
C130.0172 (7)0.0194 (7)0.0110 (6)0.0013 (5)0.0015 (5)0.0048 (5)
C140.0218 (7)0.0233 (7)0.0179 (7)0.0056 (6)0.0072 (6)0.0054 (6)
C150.0170 (7)0.0350 (9)0.0251 (8)0.0061 (6)0.0079 (6)0.0138 (7)
C160.0159 (7)0.0310 (8)0.0242 (8)0.0048 (6)0.0005 (6)0.0118 (6)
C170.0198 (7)0.0206 (7)0.0175 (7)0.0030 (6)0.0003 (5)0.0055 (6)
C180.0158 (7)0.0189 (7)0.0127 (6)0.0011 (5)0.0012 (5)0.0051 (5)
C190.0229 (7)0.0174 (7)0.0223 (7)0.0001 (6)0.0046 (6)0.0011 (6)
C200.0292 (8)0.0219 (7)0.0181 (7)0.0003 (6)0.0039 (6)0.0034 (6)
Geometric parameters (Å, º) top
N1—C11.3679 (17)C9—H90.9500
N1—O31.3831 (14)C10—C111.3933 (19)
N1—C21.3981 (17)C10—H100.9500
O1—C11.2223 (16)C11—C121.5314 (19)
O2—C21.2099 (16)C12—C131.5304 (19)
O3—H3A0.96 (2)C12—C201.5308 (19)
C1—C41.5149 (18)C13—C141.3936 (19)
C2—C31.5264 (18)C13—C181.4085 (18)
C3—C41.5567 (17)C14—C151.392 (2)
C3—C121.5758 (18)C14—H140.9500
C3—H31.0000C15—C161.388 (2)
C4—C51.5831 (18)C15—H150.9500
C4—H41.0000C16—C171.397 (2)
C5—C191.5275 (18)C16—H160.9500
C5—C61.5303 (18)C17—C181.3948 (19)
C5—C181.5345 (18)C17—H170.9500
C6—C71.3944 (19)C19—H19A0.9800
C6—C111.4053 (19)C19—H19B0.9800
C7—C81.399 (2)C19—H19C0.9800
C7—H70.9500C20—H20A0.9800
C8—C91.387 (2)C20—H20B0.9800
C8—H80.9500C20—H20C0.9800
C9—C101.402 (2)
C1—N1—O3121.87 (10)C11—C10—H10120.0
C1—N1—C2115.83 (11)C9—C10—H10120.0
O3—N1—C2122.27 (11)C10—C11—C6119.83 (12)
N1—O3—H3A100.7 (12)C10—C11—C12125.48 (12)
O1—C1—N1123.07 (12)C6—C11—C12114.68 (11)
O1—C1—C4129.30 (12)C13—C12—C20114.73 (11)
N1—C1—C4107.62 (11)C13—C12—C11106.67 (11)
O2—C2—N1123.39 (12)C20—C12—C11113.32 (11)
O2—C2—C3130.24 (12)C13—C12—C3103.89 (10)
N1—C2—C3106.36 (11)C20—C12—C3111.94 (11)
C2—C3—C4104.88 (10)C11—C12—C3105.43 (10)
C2—C3—C12111.78 (11)C14—C13—C18119.86 (13)
C4—C3—C12110.94 (10)C14—C13—C12125.47 (12)
C2—C3—H3109.7C18—C13—C12114.58 (11)
C4—C3—H3109.7C15—C14—C13119.71 (13)
C12—C3—H3109.7C15—C14—H14120.1
C1—C4—C3104.90 (10)C13—C14—H14120.1
C1—C4—C5112.69 (10)C16—C15—C14120.43 (13)
C3—C4—C5110.51 (10)C16—C15—H15119.8
C1—C4—H4109.5C14—C15—H15119.8
C3—C4—H4109.5C15—C16—C17120.54 (13)
C5—C4—H4109.5C15—C16—H16119.7
C19—C5—C6113.39 (11)C17—C16—H16119.7
C19—C5—C18114.55 (11)C18—C17—C16119.30 (13)
C6—C5—C18106.32 (10)C18—C17—H17120.3
C19—C5—C4111.91 (10)C16—C17—H17120.3
C6—C5—C4104.10 (10)C17—C18—C13120.16 (12)
C18—C5—C4105.72 (10)C17—C18—C5125.47 (12)
C7—C6—C11119.84 (12)C13—C18—C5114.35 (11)
C7—C6—C5125.74 (12)C5—C19—H19A109.5
C11—C6—C5114.42 (11)C5—C19—H19B109.5
C6—C7—C8120.17 (13)H19A—C19—H19B109.5
C6—C7—H7119.9C5—C19—H19C109.5
C8—C7—H7119.9H19A—C19—H19C109.5
C9—C8—C7119.95 (13)H19B—C19—H19C109.5
C9—C8—H8120.0C12—C20—H20A109.5
C7—C8—H8120.0C12—C20—H20B109.5
C8—C9—C10120.27 (13)H20A—C20—H20B109.5
C8—C9—H9119.9C12—C20—H20C109.5
C10—C9—H9119.9H20A—C20—H20C109.5
C11—C10—C9119.92 (14)H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6–C11 ring. Cg2 refers to the mid-point of the C15—C16 bond.
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.96 (2)1.69 (2)2.630 (1)167 (2)
C8—H8···O1ii0.952.543.408 (2)152
C15—H15···O3iii0.952.463.273 (2)143
C17—H17···O2iv0.952.543.457 (2)163
C4—H4···Cg1v1.002.663.518 (3)144
C10—H10···Cg2vi0.952.773.668 (3)158
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x1/2, y+3/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y+1, z+1; (vi) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H17NO3
Mr319.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.904 (1), 8.104 (1), 13.946 (1)
β (°) 97.39 (1)
V3)1558.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur (Sapphire2)
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5321, 2827, 2467
Rint0.023
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.04
No. of reflections2827
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF.

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6–C11 ring. Cg2 refers to the mid-point of the C15—C16 bond.
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.96 (2)1.69 (2)2.630 (1)167 (2)
C8—H8···O1ii0.952.543.408 (2)152
C15—H15···O3iii0.952.463.273 (2)143
C17—H17···O2iv0.952.543.457 (2)163
C4—H4···Cg1v1.002.663.518 (3)144
C10—H10···Cg2vi0.952.773.668 (3)158
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x1/2, y+3/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y+1, z+1; (vi) x+1/2, y1/2, z+1/2.
 

References

First citationAdams, H., Bawa, R. A. & Jones, S. (2006). Org. Biomol. Chem. 4, 4206–4213.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAtherton, J. C. C. & Jones, S. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2166–2173.  Google Scholar
First citationBova, S., Saponara, S., Rampa, A., Gobbi, S., Cima, L., Fusi, F., Sgaragli, G., Cavalli, M., de los Rios, C., Striessnig, J. & Bisi, A. (2009). J. Med. Chem. 52, 1259–1262.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCsöregh, I., Finge, S. & Weber, E. (2003). Struct. Chem. 14, 241–246.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGuo, J.-B., Xiang, J.-F. & Chen, C.-F. (2010). Eur. J. Org. Chem. pp. 5056–5062.  Web of Science CSD CrossRef Google Scholar
First citationHe, L. & Ng, S. W. (2007). Acta Cryst. E63, o602–o603.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKossakowski, J. & Jarocka, M. (2000). Acta Pol. Pharm. 57, 60–62.  PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmet, M., Corens, D., Van Meervelt, L. & Dehaen, W. (2000). Molecules, 5, 179–188.  Web of Science CrossRef CAS Google Scholar
First citationSu, Y.-S., Liu, J.-W., Jiang, Y. & Chen, C.-F. (2011). Chem. Eur. J. 17, 2435–2441.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWeber, E., Finge, S. & Csöregh, I. (1991). J. Org. Chem. 56, 7281–7288.  CSD CrossRef CAS Web of Science Google Scholar
First citationWeber, E., Reutel, C., Foces-Foces, C. & Llamas-Saiz, A. L. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 1455–1461.  CrossRef Google Scholar
First citationYang, J.-S. & Swager, T. M. (1998). J. Am. Chem. Soc. 120, 11864–11873.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3293-o3294
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds