organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3327-o3328

(5S,11aS)-5-Hydro­per­­oxy-1,5,11,11a-tetra­hydro­[1]benzothieno[3,2-f]indol­izin-3(2H)-one

aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and bInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: viktor.vrabel@stuba.sk

(Received 11 September 2012; accepted 2 November 2012; online 10 November 2012)

The absolute configuration of the title compound, C14H13NO3S, was assigned from the synthesis and confirmed by the structure determination. The central six-membered ring of the indolizine moiety adopts an envelope conformation, with the greatest deviation from the mean plane of the ring being 0.661 (2) Å for the bridgehead C atom. The benzothiene ring attached to the indolizine ring system is planar to within 0.008 (2) Å. In the crystal, mol­ecules form chains parallel to the b axis via O—H⋯O hydrogen bonds.

Related literature

For background to indolizines and their biological activity, see: Malonne et al. (1998[Malonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241-243.]); Medda et al. (2003[Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123-128.]); Sonnet et al. (2000[Sonnet, P., Dallemagne, P., Guillom, J., Engueard, C., Stiebing, S., Tangue, J., Bureau, B., Rault, S., Auvray, P., Moslemi, S., Sourdaine, P. & Seralini, G. E. (2000). Bioorg. Med. Chem. 8, 945-955.]); Campagna et al. (1990[Campagna, F., Carotti, A., Casini, G. & Macripo, M. (1990). Heterocycles, 31, 97-107.]); Pearson & Guo (2001[Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267-8271.]). For their synthesis, see: Šafář et al. (2009a[Šafář, P., Žúžiová, J., Marchalín, Š., Tóthová, E., Prónayová, N., Švorc, Ľ., Vrábel, V. & Daich, A. (2009a). Tetrahedron Asymmetry, 20, 626-634.],b[Šafář, P., Žúžiová, J., Bobošíková, M., Marchalín, Š., Prónayová, N., Comesse, S. & Daich, A. (2009b). Tetrahedron Asymmetry, 20, 2137-2144.]). For compounds with similar properties, see: Švorc et al. (2008[Švorc, Ľ., Vrábel, V., Kožíšek, J., Marchalín, Š. & Šafář, P. (2008). Acta Cryst. E64, o1164-o1165.], 2009[Švorc, Ľ., Vrábel, V., Kožíšek, J., Marchalín, Š. & Šafář, P. (2009). Acta Cryst. E65, o695-o696.]). For IR spectroscopy on similar compounds, see: Šafář et al. (2009a[Šafář, P., Žúžiová, J., Marchalín, Š., Tóthová, E., Prónayová, N., Švorc, Ľ., Vrábel, V. & Daich, A. (2009a). Tetrahedron Asymmetry, 20, 626-634.]). For conformational analysis, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO3S

  • Mr = 275.31

  • Monoclinic, P 21

  • a = 7.8040 (5) Å

  • b = 7.9800 (4) Å

  • c = 10.2903 (5) Å

  • β = 99.458 (5)°

  • V = 632.13 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur (Ruby, Gemi) diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.947, Tmax = 0.974

  • 21595 measured reflections

  • 2555 independent reflections

  • 2162 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.00

  • 2555 reflections

  • 176 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1185 Friedel pairs

  • Flack parameter: −0.05 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.84 (1) 1.86 (1) 2.6962 (19) 173 (2)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND, (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Heterocycles are involved in a wide range of biologically important chemical reactions in living organisms, and therefore they form one of the most important and well investigated classes of organic compounds. One group of heterocycles, indolizines, has received much scientific attention during the recent years. Indolizine derivatives have been found to possess a variety of biological activities such as antiinflammatory (Malonne et al., 1998), antiviral (Medda et al., 2003), aromatase inhibitory (Sonnet et al., 2000), analgestic (Campagna et al., 1990) and antitumor (Pearson & Guo, 2001) activities. As part of our recent efforts to synthesize novel polycyclic indolizine derivative, we report here the synthesis and molecular and crystal structure of the title compound, (I) (Fig. 1). The absolute configuration has been established without ambiguity from the anomalous dispersion of the S atom (Flack, 1983) and assigned consistent with the starting material. The expected stereochemistry of both atoms C5 and C15 was confirmed as S, see Fig. 1. The central N-heterocyclic ring is not planar and adopts a envelope conformation (Nardelli, 1983). A calculation of least-squares planes shows that this ring is puckered in such a manner that the five atoms C6, C7, C14, C15 and N1 are planar to within 0.075 (3) Å, while atom C5 is displaced from this plane with out-of-plane displacement of 0.661 (2) Å. The pyrrolidine ring is distorted towards a flat-envelope conformation, with atom C4 on the flap. Atom C4 is 0.402 (2) Å from the mean plane defined by atoms C5, N1, C2 and C3. The dihedral angle between the plane of the central N-heterocyclic ring and the plane of the pyrrolidine ring is 44.6 (1)°. Atom N1 is sp2-hybridized, as evidenced by the sum of the valence angles around it (358.1°). These data are consistent with conjugation of the lone-pair electrons on N1 with the adjacent carbonyl, similar to what is observed for amides. Intermolecular O—H···O hydrogen bonds link the molecules into infinite chains, which run parallel to the b axis (Fig. 2) and help to stabilize the crystal structure of the compound. The bond lengths of the carbonyl group C2=O1 is 1.233 (2) Å somewhat longer than typical carbonyl bonds. This may be due to the fact that atom O1 participates in intermolecular hydrogen bond.

Related literature top

For background to indolizines and their biological activity, see: Malonne et al. (1998); Medda et al. (2003); Sonnet et al. (2000); Campagna et al. (1990); Pearson & Guo (2001). For their synthesis, see: Šafář et al. (2009a,b). For compounds with similar properties, see: Švorc et al. (2008, 2009). For IR spectroscopy on similar compounds, see: Šafář et al. (2009a). For conformational analysis, see: Nardelli (1983).

Experimental top

To a solution of (11aS)-1,5,11,11a-tetrahydro[1]benzothieno[3,2-f] indolizin-3(2H)-one (0.041 mmol) in THF (2 ml) was added 3 drops of H2O2 at 0°C and the mixture was allowed to react at room temperature for 72 h. The colorless crystals were filtered off, and washing with dry n-hexane (1 ml) gave pure indolizinhydroperoxid.

Refinement top

All H atoms bonded to C were positioned with idealized geometry using a riding model with C–H = 0.93, 0.97 and 0.98 Å for aromatic, methylene and methine H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The H3 atom on O3 was located in a difference map and finally refined isotropically with O—H distance fixed at 0.84 Å. The absolute configuration has been determined. The number of Friedel pairs is 1185.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND, (Brandenburg, 2001), PLATON (Spek, 2009) and WinGX (Farrugia, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level (Brandenburg, 2001).
[Figure 2] Fig. 2. Packing view of the title compound. Molecular links are generated by O–H···O hydrogen bonds along the b axis which are shown by green dashed lines (Brandenburg, 2001).
(5S,11aS)-5-Hydroperoxy-1,5,11,11a- tetrahydro[1]benzothieno[3,2-f]indolizin-3(2H)-one top
Crystal data top
C14H13NO3SF(000) = 288
Mr = 275.31Dx = 1.446 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 10799 reflections
a = 7.8040 (5) Åθ = 3.2–29.6°
b = 7.9800 (4) ŵ = 0.26 mm1
c = 10.2903 (5) ÅT = 295 K
β = 99.458 (5)°Block, colourless
V = 632.13 (6) Å30.25 × 0.20 × 0.15 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemi)
diffractometer
2555 independent reflections
Radiation source: fine-focus sealed tube2162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.4340 pixels mm-1θmax = 26.4°, θmin = 4.4°
ω scansh = 99
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
k = 99
Tmin = 0.947, Tmax = 0.974l = 1212
21595 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0441P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2555 reflectionsΔρmax = 0.13 e Å3
176 parametersΔρmin = 0.14 e Å3
2 restraintsAbsolute structure: Flack (1983), 1185 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (6)
Crystal data top
C14H13NO3SV = 632.13 (6) Å3
Mr = 275.31Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.8040 (5) ŵ = 0.26 mm1
b = 7.9800 (4) ÅT = 295 K
c = 10.2903 (5) Å0.25 × 0.20 × 0.15 mm
β = 99.458 (5)°
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemi)
diffractometer
2555 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
2162 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.974Rint = 0.028
21595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068Δρmax = 0.13 e Å3
S = 1.00Δρmin = 0.14 e Å3
2555 reflectionsAbsolute structure: Flack (1983), 1185 Friedel pairs
176 parametersAbsolute structure parameter: 0.05 (6)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.1152 (2)0.0934 (2)0.10939 (14)0.0487 (4)
C30.2994 (2)0.1556 (3)0.07868 (18)0.0625 (5)
H3B0.37140.10140.13470.075*
H3A0.34830.13400.01270.075*
C40.2872 (2)0.3432 (3)0.1057 (2)0.0662 (5)
H4B0.38520.38170.14470.079*
H4A0.28380.40540.02520.079*
C50.1161 (2)0.3639 (3)0.20284 (16)0.0527 (4)
H50.05630.46660.18340.063*
C60.1345 (2)0.3584 (3)0.34751 (18)0.0584 (4)
H6B0.17500.46610.37410.070*
H6A0.21900.27390.36130.070*
C70.0371 (2)0.31816 (19)0.42819 (16)0.0490 (4)
C80.2927 (2)0.2798 (2)0.60665 (15)0.0497 (4)
C90.4223 (3)0.2701 (3)0.71705 (16)0.0633 (5)
H90.40120.30560.79900.076*
C100.5810 (3)0.2073 (3)0.70255 (19)0.0707 (6)
H100.66910.20280.77520.085*
C110.6131 (3)0.1499 (3)0.58133 (19)0.0634 (5)
H110.72180.10640.57430.076*
C120.4862 (2)0.1569 (2)0.47181 (16)0.0511 (4)
H120.50840.11740.39120.061*
C130.3233 (2)0.22356 (19)0.48218 (15)0.0428 (4)
C140.17251 (19)0.24634 (19)0.38248 (14)0.0412 (4)
C150.15873 (19)0.1929 (2)0.24080 (14)0.0413 (4)
H150.19270.07510.23630.050*
N10.01704 (17)0.21547 (16)0.17396 (12)0.0447 (3)
O10.06189 (17)0.04709 (17)0.08604 (12)0.0627 (3)
O20.27750 (15)0.29669 (15)0.18624 (11)0.0513 (3)
O30.28192 (17)0.23328 (18)0.05339 (11)0.0597 (3)
H30.207 (2)0.299 (3)0.013 (2)0.098 (9)*
S10.08315 (6)0.35880 (6)0.59656 (4)0.06228 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0512 (10)0.0610 (11)0.0332 (7)0.0060 (9)0.0043 (7)0.0038 (8)
C30.0518 (11)0.0782 (14)0.0546 (10)0.0038 (10)0.0001 (8)0.0057 (9)
C40.0501 (10)0.0692 (13)0.0765 (12)0.0052 (11)0.0018 (9)0.0209 (11)
C50.0440 (9)0.0452 (9)0.0699 (10)0.0038 (9)0.0121 (8)0.0093 (9)
C60.0508 (9)0.0560 (9)0.0702 (10)0.0095 (10)0.0151 (8)0.0066 (10)
C70.0520 (10)0.0446 (10)0.0529 (9)0.0003 (8)0.0156 (8)0.0048 (7)
C80.0679 (11)0.0400 (8)0.0435 (9)0.0012 (8)0.0161 (8)0.0007 (7)
C90.0933 (15)0.0563 (11)0.0402 (9)0.0050 (11)0.0102 (9)0.0006 (8)
C100.0872 (16)0.0703 (14)0.0492 (10)0.0112 (12)0.0050 (10)0.0097 (9)
C110.0673 (12)0.0648 (12)0.0560 (10)0.0171 (10)0.0042 (9)0.0099 (9)
C120.0589 (11)0.0514 (10)0.0439 (9)0.0086 (9)0.0111 (8)0.0041 (7)
C130.0549 (9)0.0338 (8)0.0411 (7)0.0015 (7)0.0120 (7)0.0016 (6)
C140.0467 (9)0.0354 (8)0.0433 (8)0.0009 (7)0.0125 (7)0.0009 (6)
C150.0405 (8)0.0433 (9)0.0408 (8)0.0002 (7)0.0084 (6)0.0009 (6)
N10.0429 (7)0.0457 (7)0.0458 (7)0.0001 (6)0.0082 (6)0.0021 (6)
O10.0674 (9)0.0619 (8)0.0554 (7)0.0007 (7)0.0000 (6)0.0159 (6)
O20.0498 (6)0.0609 (7)0.0445 (6)0.0061 (5)0.0121 (5)0.0000 (5)
O30.0607 (8)0.0756 (9)0.0452 (7)0.0118 (7)0.0163 (6)0.0007 (6)
S10.0745 (3)0.0630 (3)0.0537 (2)0.0086 (3)0.0234 (2)0.0118 (2)
Geometric parameters (Å, º) top
C2—O11.233 (2)C8—C131.414 (2)
C2—N11.345 (2)C8—S11.7400 (19)
C2—C31.505 (3)C9—C101.366 (3)
C3—C41.523 (3)C9—H90.9300
C3—H3B0.9700C10—C111.390 (3)
C3—H3A0.9700C10—H100.9300
C4—C51.539 (3)C11—C121.374 (3)
C4—H4B0.9700C11—H110.9300
C4—H4A0.9700C12—C131.398 (2)
C5—N11.471 (2)C12—H120.9300
C5—C61.519 (2)C13—C141.440 (2)
C5—H50.9800C14—C151.506 (2)
C6—C71.490 (2)C15—O21.4252 (19)
C6—H6B0.9700C15—N11.441 (2)
C6—H6A0.9700C15—H150.9800
C7—C141.353 (2)O2—O31.4634 (16)
C7—S11.7411 (17)O3—H30.841 (2)
C8—C91.393 (3)
O1—C2—N1124.86 (17)C13—C8—S1110.95 (13)
O1—C2—C3126.89 (16)C10—C9—C8118.72 (16)
N1—C2—C3108.17 (16)C10—C9—H9120.6
C2—C3—C4104.88 (16)C8—C9—H9120.6
C2—C3—H3B110.8C9—C10—C11121.29 (18)
C4—C3—H3B110.8C9—C10—H10119.4
C2—C3—H3A110.8C11—C10—H10119.4
C4—C3—H3A110.8C12—C11—C10120.70 (18)
H3B—C3—H3A108.8C12—C11—H11119.7
C3—C4—C5104.22 (16)C10—C11—H11119.7
C3—C4—H4B110.9C11—C12—C13119.67 (15)
C5—C4—H4B110.9C11—C12—H12120.2
C3—C4—H4A110.9C13—C12—H12120.2
C5—C4—H4A110.9C12—C13—C8118.72 (15)
H4B—C4—H4A108.9C12—C13—C14129.82 (14)
N1—C5—C6108.21 (14)C8—C13—C14111.46 (14)
N1—C5—C4102.19 (16)C7—C14—C13113.53 (14)
C6—C5—C4114.92 (14)C7—C14—C15121.41 (14)
N1—C5—H5110.4C13—C14—C15125.04 (13)
C6—C5—H5110.4O2—C15—N1111.66 (12)
C4—C5—H5110.4O2—C15—C14105.62 (12)
C7—C6—C5109.33 (13)N1—C15—C14109.74 (12)
C7—C6—H6B109.8O2—C15—H15109.9
C5—C6—H6B109.8N1—C15—H15109.9
C7—C6—H6A109.8C14—C15—H15109.9
C5—C6—H6A109.8C2—N1—C15124.42 (15)
H6B—C6—H6A108.3C2—N1—C5114.03 (14)
C14—C7—C6125.42 (15)C15—N1—C5119.65 (13)
C14—C7—S1112.32 (13)C15—O2—O3106.49 (11)
C6—C7—S1122.26 (12)O2—O3—H397.2 (18)
C9—C8—C13120.88 (17)C8—S1—C791.72 (7)
C9—C8—S1128.16 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.84 (1)1.86 (1)2.6962 (19)173 (2)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H13NO3S
Mr275.31
Crystal system, space groupMonoclinic, P21
Temperature (K)295
a, b, c (Å)7.8040 (5), 7.9800 (4), 10.2903 (5)
β (°) 99.458 (5)
V3)632.13 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur (Ruby, Gemi)
diffractometer
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.947, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
21595, 2555, 2162
Rint0.028
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.00
No. of reflections2555
No. of parameters176
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.14
Absolute structureFlack (1983), 1185 Friedel pairs
Absolute structure parameter0.05 (6)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND, (Brandenburg, 2001), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841 (2)1.859 (4)2.6962 (19)173 (2)
Symmetry code: (i) x, y+1/2, z.
 

Acknowledgements

The authors thank the Grant Agency of Slovak Republic, Grant Nos. 1/0429/11, 1/0679/11 and the Slovak Research and Development Agency under contract Nos. APVV-0797–11 and APVV-0204–10 for financial support for this research program.

References

First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCampagna, F., Carotti, A., Casini, G. & Macripo, M. (1990). Heterocycles, 31, 97–107.  CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMalonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241–243.  CAS Google Scholar
First citationMedda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267–8271.  Web of Science CrossRef CAS Google Scholar
First citationŠafář, P., Žúžiová, J., Bobošíková, M., Marchalín, Š., Prónayová, N., Comesse, S. & Daich, A. (2009b). Tetrahedron Asymmetry, 20, 2137–2144.  Google Scholar
First citationŠafář, P., Žúžiová, J., Marchalín, Š., Tóthová, E., Prónayová, N., Švorc, Ľ., Vrábel, V. & Daich, A. (2009a). Tetrahedron Asymmetry, 20, 626–634.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonnet, P., Dallemagne, P., Guillom, J., Engueard, C., Stiebing, S., Tangue, J., Bureau, B., Rault, S., Auvray, P., Moslemi, S., Sourdaine, P. & Seralini, G. E. (2000). Bioorg. Med. Chem. 8, 945–955.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŠvorc, Ľ., Vrábel, V., Kožíšek, J., Marchalín, Š. & Šafář, P. (2008). Acta Cryst. E64, o1164–o1165.  Web of Science CrossRef IUCr Journals Google Scholar
First citationŠvorc, Ľ., Vrábel, V., Kožíšek, J., Marchalín, Š. & Šafář, P. (2009). Acta Cryst. E65, o695–o696.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3327-o3328
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds