metal-organic compounds
trans-Bis[1,2-bis(diphenylphosphanyl)ethane]chlorido(ethynyl)ruthenium(II)
aDepartamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida Republica 275, Santiago, Chile, bInstituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso, Chile, and cDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: al.trujillo@uandresbello.edu
The molecular structure of the title compound, trans-[Cu(C2H)Cl(C26H24P2)2], consists of an RuII cation, located on an inversion centre, in an octahedral environment defined by two chelating one acetylide and one chloride ligand. The –C≡CH and the chlorine ligands are disordered over two equivalent positions (0.5 occupancy each). The coordination geometry is distorted octahedral, with the –C≡CH fragment and the Cl ligand in trans positions. The four P atoms occupy the equatorial plane of the octahedron and the chloride and acetylide ligands the axial positions.
Related literature
For details of electronic communication, see: Hu et al. (2005) and for molecular electronics, see: Gauthier et al. (2008). For the chemistry of the trans-RuCl(C≡CH)(dppe)2, [dppe = 1,2-bis(diphenylphosphanyl)ethane] complex, see: Fox et al. (2009). For related structures, see: Faulkner et al. (1994); Zhu et al. (1999); Younus et al. (1999).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009).; software used to prepare material for publication: OLEX2.
Supporting information
10.1107/S1600536812044558/bg2483sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812044558/bg2483Isup2.hkl
A Schlenk tube under argon was loaded with [Ru(dppe)2Cl]+ (0.400 g, 0.369 mmol), ethynyltrimethylsilane (100 ml, 0.71 mmol), and 20 ml CH2Cl2 was added. The resulting mixture was stirred over night. After evaporation of the solvent, the residue was extracted with CH2Cl2 and chromatographied through a 2x4 cm Al2O3 column using CH2Cl2 as eluant. The solution was evaporated and the remaining solid was washed with n-pentane and dried in vacuo, to afford (1) as an yellow powder (0.262 g, 68,5%). Crystals were obtained by vapor diffusion of dichloromethane and hexane solution of (1).
The hydrogen atoms positions were calculated after each cycle of
with SHELXL (Sheldrick, 2008) using a riding model for each structure, with C—H distances in the range 0.95 to 0.98 Å. Uiso(H) values were set equal to 1.2Ueq. The ruthenium atom lies over an inversion center; in consequence, the dppe ligand occupy the equatorial position while chlorine and acetylide ligands are found on both axial positions. Both ligands were refined with 0.5 occupancies each one. On the other hand, phenyl ring (C3–C8) from dppe ligand is disordered in two positions with refined occupancies of 0.725 (17) and 0.275 (17). The anisotropic displacement parameters were constrained using the EADP instruction.In recent years, the design of carbon-rich organometallics compounds has been an interesting research topic, because in this type of structures the connection between the metal center with functional groups is achieved, and consequently the electronic communication is allowed through the C≡C unit (Hu et al., 2005). Therefore, much attention has had the chemistry of the trans-RuCl(C≡CH)(dppe)2, [dppe= 1,2-Bis(diphenylphosphanyl)ethane] complex (Fox et al., 2009). The Cl(dppe)2Ru—C≡C– endgroups behave as strongly electron-releasing groups which compares favorably to organic electron-releasing substituents such as methoxy or amino substituents. Moreover, in contrast to the organic substituents, these mononuclear organometallic acetylide complexes exhibit usually a very electron-rich chemistry and constitute a remarkable potential use in the molecular electronics field, since the of the metal can be easily modulated (Gauthier et al., 2008). In addition, these types of fragments have been shown to be interesting when they are attached to various unsaturated bridges. Depending on the nature of the bridge and the type of design obtained, they can exhibit different magnetic, optical or electronic properties (Faulkner et al., 1994; Zhu et al., 1999). Despite its important and widely use in the organometallic chemistry for the syntheses of vinylidene ruthenium complexes, for his rich electronic properties, the molecular structure of complex (1) has not been previously reported.
The main compound (1) crystallizes in the monoclinic ≡CH and the chlorine ligands are disordered over two equivalent positions (0.5 occupancy each one). The coordination geometry is a distorted octahedron with the –C≡CH fragment and the Cl ligand in trans position.
P21/n. The structure lies over a special position located in an inversion centre. the –CThe structure of (1) shows four phosphorus atoms occupying the equatorial plane of the octahedron and the chloride and acetylide ligands occupying the axial position in trans configuration. The Cl—Ru, Ru—C(1), and C(1)—C(2) data for this complex fall within the range of those previously reported for related octahedral trans-bis(bidentate phosphine) ruthenium alkynyl complexes (Younus et al., 1999).
Finally, both inter- and intramolecular hydrogen bonds or any other kind interaction are not observed in the crystalline packing of title compound.
For details of electronic communication, see: Hu et al. (2005) and for molecular electronics, see: Gauthier et al. (2008). For the chemistry of the trans-RuCl(C≡CH)(dppe)2, [dppe= 1,2-bis(diphenylphosphanyl)ethane] complex, see Fox et al. (2009). For related structures, see: Faulkner et al. (1994); Zhu et al. (1999); Younus et al. (1999).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009).; software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu(C2H)Cl(C26H24P2)2] | F(000) = 988 |
Mr = 958.33 | Dx = 1.420 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.7107 Å |
a = 10.92406 (18) Å | Cell parameters from 13838 reflections |
b = 16.0826 (2) Å | θ = 2.5–30.8° |
c = 13.2228 (2) Å | µ = 0.59 mm−1 |
β = 105.2553 (17)° | T = 120 K |
V = 2241.22 (6) Å3 | Polyhedron, yellow |
Z = 2 | 0.41 × 0.35 × 0.20 mm |
Agilent Xcalibur (Sapphire3, Gemini ultra) diffractometer | 6470 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 5653 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 16.1511 pixels mm-1 | θmax = 30.8°, θmin = 2.5° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −22→23 |
Tmin = 0.912, Tmax = 1.000 | l = −18→18 |
32289 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0263P)2 + 1.1519P] where P = (Fo2 + 2Fc2)/3 |
6470 reflections | (Δ/σ)max < 0.001 |
293 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
[Cu(C2H)Cl(C26H24P2)2] | V = 2241.22 (6) Å3 |
Mr = 958.33 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.92406 (18) Å | µ = 0.59 mm−1 |
b = 16.0826 (2) Å | T = 120 K |
c = 13.2228 (2) Å | 0.41 × 0.35 × 0.20 mm |
β = 105.2553 (17)° |
Agilent Xcalibur (Sapphire3, Gemini ultra) diffractometer | 6470 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 5653 reflections with I > 2σ(I) |
Tmin = 0.912, Tmax = 1.000 | Rint = 0.040 |
32289 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.49 e Å−3 |
6470 reflections | Δρmin = −0.48 e Å−3 |
293 parameters |
Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. (Agilent Technologies, 2011) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ru1 | 0.0000 | 0.0000 | 0.0000 | 0.01370 (5) | |
Cl1 | 0.23554 (13) | 0.03894 (6) | 0.07756 (9) | 0.0164 (2) | 0.50 |
P1 | −0.00132 (4) | 0.01938 (2) | 0.17791 (3) | 0.01557 (8) | |
P2 | −0.03740 (4) | 0.14451 (2) | −0.00604 (3) | 0.01542 (8) | |
C1 | −0.1785 (5) | −0.0277 (2) | −0.0475 (3) | 0.0159 (7) | 0.50 |
C2 | −0.2870 (5) | −0.0472 (3) | −0.0780 (4) | 0.0182 (10) | 0.50 |
H2 | −0.3736 | −0.0629 | −0.1024 | 0.022* | 0.50 |
C3 | −0.1320 (5) | −0.0010 (3) | 0.2384 (4) | 0.0177 (7) | 0.725 (17) |
C4 | −0.2548 (5) | −0.0110 (3) | 0.1755 (4) | 0.0240 (9) | 0.725 (17) |
H4 | −0.2709 | −0.0086 | 0.1013 | 0.029* | 0.725 (17) |
C5 | −0.3543 (5) | −0.0244 (3) | 0.2209 (6) | 0.0328 (12) | 0.725 (17) |
H5 | −0.4382 | −0.0312 | 0.1779 | 0.039* | 0.725 (17) |
C6 | −0.3308 (6) | −0.0280 (3) | 0.3294 (6) | 0.0332 (12) | 0.725 (17) |
H6 | −0.3988 | −0.0372 | 0.3605 | 0.040* | 0.725 (17) |
C7 | −0.2080 (6) | −0.0180 (3) | 0.3924 (5) | 0.0354 (11) | 0.725 (17) |
H7 | −0.1919 | −0.0204 | 0.4665 | 0.042* | 0.725 (17) |
C8 | −0.1085 (5) | −0.0046 (4) | 0.3469 (4) | 0.0276 (9) | 0.725 (17) |
H8 | −0.0246 | 0.0022 | 0.3899 | 0.033* | 0.725 (17) |
C3A | −0.1411 (13) | −0.0092 (11) | 0.2247 (11) | 0.0177 (7) | 0.275 (17) |
C4A | −0.2629 (15) | 0.0009 (12) | 0.1584 (10) | 0.0240 (9) | 0.275 (17) |
H4A | −0.2741 | 0.0161 | 0.0871 | 0.029* | 0.275 (17) |
C5A | −0.3695 (12) | −0.0117 (11) | 0.1984 (12) | 0.0328 (12) | 0.275 (17) |
H5A | −0.4522 | −0.0067 | 0.1525 | 0.039* | 0.275 (17) |
C6A | −0.3573 (14) | −0.0301 (10) | 0.2973 (13) | 0.0332 (12) | 0.275 (17) |
H6A | −0.4299 | −0.0460 | 0.3194 | 0.040* | 0.275 (17) |
C7A | −0.2455 (16) | −0.0268 (9) | 0.3665 (11) | 0.0354 (11) | 0.275 (17) |
H7A | −0.2396 | −0.0303 | 0.4394 | 0.042* | 0.275 (17) |
C8A | −0.1349 (13) | −0.0181 (11) | 0.3314 (11) | 0.0276 (9) | 0.275 (17) |
H8A | −0.0544 | −0.0181 | 0.3812 | 0.033* | 0.275 (17) |
C9 | 0.13110 (15) | −0.02627 (10) | 0.27746 (12) | 0.0187 (3) | |
C10 | 0.12128 (17) | −0.10699 (11) | 0.31425 (13) | 0.0225 (3) | |
H10 | 0.0450 | −0.1376 | 0.2886 | 0.027* | |
C11 | 0.22226 (19) | −0.14261 (12) | 0.38806 (14) | 0.0302 (4) | |
H11 | 0.2148 | −0.1974 | 0.4125 | 0.036* | |
C12 | 0.33340 (19) | −0.09861 (14) | 0.42603 (14) | 0.0339 (5) | |
H12 | 0.4022 | −0.1230 | 0.4766 | 0.041* | |
C13 | 0.34422 (18) | −0.01890 (13) | 0.39024 (15) | 0.0300 (4) | |
H13 | 0.4207 | 0.0114 | 0.4163 | 0.036* | |
C14 | 0.24357 (16) | 0.01729 (12) | 0.31609 (14) | 0.0241 (4) | |
H14 | 0.2519 | 0.0721 | 0.2918 | 0.029* | |
C15 | 0.01206 (16) | 0.13281 (10) | 0.20793 (12) | 0.0195 (3) | |
H15A | −0.0705 | 0.1533 | 0.2157 | 0.023* | |
H15B | 0.0760 | 0.1413 | 0.2757 | 0.023* | |
C16 | 0.04975 (16) | 0.18398 (10) | 0.12365 (12) | 0.0190 (3) | |
H16A | 0.1423 | 0.1793 | 0.1321 | 0.023* | |
H16B | 0.0289 | 0.2433 | 0.1304 | 0.023* | |
C17 | −0.19892 (15) | 0.18361 (10) | −0.02263 (12) | 0.0180 (3) | |
C18 | −0.22999 (17) | 0.24080 (11) | 0.04617 (14) | 0.0257 (4) | |
H18 | −0.1660 | 0.2599 | 0.1051 | 0.031* | |
C19 | −0.35332 (19) | 0.27016 (13) | 0.02957 (15) | 0.0326 (4) | |
H19 | −0.3733 | 0.3085 | 0.0776 | 0.039* | |
C20 | −0.44647 (18) | 0.24394 (13) | −0.05609 (16) | 0.0329 (4) | |
H20 | −0.5309 | 0.2637 | −0.0671 | 0.039* | |
C21 | −0.41672 (17) | 0.18843 (12) | −0.12658 (15) | 0.0289 (4) | |
H21 | −0.4806 | 0.1713 | −0.1867 | 0.035* | |
C22 | −0.29422 (16) | 0.15783 (10) | −0.10961 (13) | 0.0225 (3) | |
H22 | −0.2751 | 0.1191 | −0.1575 | 0.027* | |
C23 | 0.02017 (15) | 0.21231 (10) | −0.09510 (12) | 0.0180 (3) | |
C24 | −0.05139 (18) | 0.27775 (11) | −0.14948 (14) | 0.0251 (4) | |
H24 | −0.1326 | 0.2895 | −0.1395 | 0.030* | |
C25 | −0.0045 (2) | 0.32590 (12) | −0.21821 (16) | 0.0337 (4) | |
H25 | −0.0538 | 0.3706 | −0.2547 | 0.040* | |
C26 | 0.1133 (2) | 0.30913 (12) | −0.23390 (16) | 0.0318 (4) | |
H26 | 0.1447 | 0.3419 | −0.2814 | 0.038* | |
C27 | 0.18501 (18) | 0.24436 (11) | −0.18002 (14) | 0.0265 (4) | |
H27 | 0.2659 | 0.2326 | −0.1908 | 0.032* | |
C28 | 0.13984 (16) | 0.19629 (10) | −0.11019 (13) | 0.0214 (3) | |
H28 | 0.1904 | 0.1525 | −0.0727 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.01802 (9) | 0.00967 (8) | 0.01496 (9) | 0.00060 (6) | 0.00706 (6) | 0.00112 (6) |
Cl1 | 0.0137 (7) | 0.0166 (5) | 0.0174 (5) | −0.0028 (5) | 0.0015 (5) | 0.0003 (3) |
P1 | 0.01879 (19) | 0.01286 (18) | 0.01658 (19) | 0.00130 (14) | 0.00734 (15) | 0.00160 (14) |
P2 | 0.01964 (19) | 0.01067 (17) | 0.01706 (19) | 0.00060 (14) | 0.00677 (15) | 0.00072 (14) |
C1 | 0.022 (2) | 0.0135 (16) | 0.0144 (18) | −0.0002 (16) | 0.0080 (15) | 0.0004 (13) |
C2 | 0.010 (2) | 0.025 (2) | 0.0165 (17) | −0.0044 (19) | −0.0013 (18) | 0.0015 (13) |
C3 | 0.0248 (11) | 0.0106 (14) | 0.0214 (16) | 0.0001 (9) | 0.0124 (12) | −0.0042 (12) |
C4 | 0.0246 (12) | 0.022 (2) | 0.0288 (18) | 0.0007 (12) | 0.0125 (13) | −0.0040 (14) |
C5 | 0.0248 (16) | 0.027 (2) | 0.051 (3) | −0.0008 (13) | 0.0187 (18) | −0.0077 (18) |
C6 | 0.035 (2) | 0.0332 (12) | 0.041 (3) | 0.0019 (15) | 0.027 (3) | 0.0003 (19) |
C7 | 0.026 (3) | 0.0582 (19) | 0.026 (2) | 0.013 (2) | 0.014 (2) | 0.0114 (17) |
C8 | 0.022 (2) | 0.040 (2) | 0.0226 (17) | 0.0032 (15) | 0.0101 (16) | 0.0014 (13) |
C3A | 0.0248 (11) | 0.0106 (14) | 0.0214 (16) | 0.0001 (9) | 0.0124 (12) | −0.0042 (12) |
C4A | 0.0246 (12) | 0.022 (2) | 0.0288 (18) | 0.0007 (12) | 0.0125 (13) | −0.0040 (14) |
C5A | 0.0248 (16) | 0.027 (2) | 0.051 (3) | −0.0008 (13) | 0.0187 (18) | −0.0077 (18) |
C6A | 0.035 (2) | 0.0332 (12) | 0.041 (3) | 0.0019 (15) | 0.027 (3) | 0.0003 (19) |
C7A | 0.026 (3) | 0.0582 (19) | 0.026 (2) | 0.013 (2) | 0.014 (2) | 0.0114 (17) |
C8A | 0.022 (2) | 0.040 (2) | 0.0226 (17) | 0.0032 (15) | 0.0101 (16) | 0.0014 (13) |
C9 | 0.0226 (8) | 0.0195 (8) | 0.0156 (7) | 0.0052 (6) | 0.0074 (6) | 0.0015 (6) |
C10 | 0.0300 (9) | 0.0200 (8) | 0.0189 (8) | 0.0050 (7) | 0.0087 (7) | 0.0003 (6) |
C11 | 0.0444 (11) | 0.0243 (9) | 0.0211 (9) | 0.0152 (8) | 0.0073 (8) | 0.0041 (7) |
C12 | 0.0346 (10) | 0.0415 (12) | 0.0221 (9) | 0.0197 (9) | 0.0014 (8) | −0.0002 (8) |
C13 | 0.0219 (8) | 0.0421 (11) | 0.0254 (9) | 0.0057 (8) | 0.0050 (7) | −0.0037 (8) |
C14 | 0.0233 (8) | 0.0280 (9) | 0.0228 (8) | 0.0016 (7) | 0.0091 (7) | 0.0010 (7) |
C15 | 0.0284 (8) | 0.0133 (7) | 0.0173 (7) | 0.0024 (6) | 0.0068 (6) | −0.0014 (6) |
C16 | 0.0238 (8) | 0.0130 (7) | 0.0199 (7) | −0.0013 (6) | 0.0054 (6) | −0.0006 (6) |
C17 | 0.0217 (8) | 0.0126 (7) | 0.0214 (8) | 0.0024 (6) | 0.0086 (6) | 0.0035 (6) |
C18 | 0.0319 (9) | 0.0235 (9) | 0.0222 (8) | 0.0087 (7) | 0.0080 (7) | 0.0011 (7) |
C19 | 0.0386 (11) | 0.0331 (10) | 0.0310 (10) | 0.0178 (8) | 0.0177 (8) | 0.0057 (8) |
C20 | 0.0269 (9) | 0.0345 (11) | 0.0394 (11) | 0.0123 (8) | 0.0124 (8) | 0.0128 (9) |
C21 | 0.0246 (9) | 0.0259 (9) | 0.0333 (10) | 0.0017 (7) | 0.0023 (7) | 0.0072 (7) |
C22 | 0.0265 (8) | 0.0154 (7) | 0.0256 (8) | 0.0007 (6) | 0.0067 (7) | 0.0019 (6) |
C23 | 0.0253 (8) | 0.0118 (7) | 0.0184 (7) | −0.0018 (6) | 0.0085 (6) | −0.0002 (6) |
C24 | 0.0310 (9) | 0.0179 (8) | 0.0306 (9) | 0.0060 (7) | 0.0154 (7) | 0.0067 (7) |
C25 | 0.0456 (11) | 0.0212 (9) | 0.0405 (11) | 0.0101 (8) | 0.0222 (9) | 0.0146 (8) |
C26 | 0.0446 (11) | 0.0222 (9) | 0.0364 (10) | 0.0009 (8) | 0.0243 (9) | 0.0081 (8) |
C27 | 0.0287 (9) | 0.0250 (9) | 0.0303 (9) | −0.0010 (7) | 0.0155 (7) | 0.0016 (7) |
C28 | 0.0250 (8) | 0.0173 (8) | 0.0231 (8) | 0.0007 (6) | 0.0083 (6) | 0.0018 (6) |
Ru1—P2 | 2.3575 (4) | C18—H18 | 0.9500 |
Ru1—P2i | 2.3575 (4) | C18—C19 | 1.389 (2) |
Ru1—P1i | 2.3769 (4) | C15—H15A | 0.9900 |
Ru1—P1 | 2.3769 (4) | C15—H15B | 0.9900 |
Ru1—Cl1i | 2.5838 (14) | C10—H10 | 0.9500 |
Ru1—Cl1 | 2.5838 (14) | C10—C11 | 1.390 (2) |
Ru1—C1 | 1.936 (5) | C24—H24 | 0.9500 |
Ru1—C1i | 1.936 (5) | C24—C25 | 1.390 (2) |
P2—C23 | 1.8332 (16) | C13—H13 | 0.9500 |
P2—C17 | 1.8311 (16) | C13—C12 | 1.382 (3) |
P2—C16 | 1.8414 (16) | C11—H11 | 0.9500 |
P1—C3 | 1.840 (3) | C11—C12 | 1.381 (3) |
P1—C9 | 1.8337 (16) | C21—H21 | 0.9500 |
P1—C15 | 1.8644 (16) | C21—C22 | 1.388 (2) |
P1—C3A | 1.850 (11) | C21—C20 | 1.390 (3) |
Cl1—C1i | 0.670 (4) | C27—H27 | 0.9500 |
Cl1—C2i | 0.576 (4) | C27—C26 | 1.383 (3) |
C3—C4 | 1.3900 | C22—H22 | 0.9500 |
C3—C8 | 1.3900 | C20—H20 | 0.9500 |
C4—H4 | 0.9500 | C20—C19 | 1.375 (3) |
C4—C5 | 1.3900 | C12—H12 | 0.9500 |
C5—H5 | 0.9500 | C19—H19 | 0.9500 |
C5—C6 | 1.3900 | C25—H25 | 0.9500 |
C6—H6 | 0.9500 | C25—C26 | 1.383 (3) |
C6—C7 | 1.3900 | C26—H26 | 0.9500 |
C7—H7 | 0.9500 | C1—Cl1i | 0.670 (4) |
C7—C8 | 1.3900 | C1—C2 | 1.190 (5) |
C8—H8 | 0.9500 | C2—Cl1i | 0.576 (4) |
C23—C28 | 1.397 (2) | C2—H2 | 0.9500 |
C23—C24 | 1.393 (2) | C3A—C4A | 1.397 (12) |
C17—C18 | 1.397 (2) | C3A—C8A | 1.402 (11) |
C17—C22 | 1.396 (2) | C4A—H4A | 0.9500 |
C16—H16A | 0.9900 | C4A—C5A | 1.415 (11) |
C16—H16B | 0.9900 | C5A—H5A | 0.9500 |
C16—C15 | 1.526 (2) | C5A—C6A | 1.312 (17) |
C9—C14 | 1.390 (2) | C6A—H6A | 0.9500 |
C9—C10 | 1.400 (2) | C6A—C7A | 1.320 (15) |
C14—H14 | 0.9500 | C7A—H7A | 0.9500 |
C14—C13 | 1.393 (3) | C7A—C8A | 1.410 (13) |
C28—H28 | 0.9500 | C8A—H8A | 0.9500 |
C28—C27 | 1.391 (2) | ||
P2i—Ru1—P2 | 180.0 | C14—C9—P1 | 121.07 (13) |
P2i—Ru1—P1 | 98.156 (13) | C14—C9—C10 | 118.74 (16) |
P2—Ru1—P1i | 98.157 (13) | C10—C9—P1 | 120.17 (13) |
P2i—Ru1—P1i | 81.844 (13) | C9—C14—H14 | 119.8 |
P2—Ru1—P1 | 81.843 (13) | C9—C14—C13 | 120.38 (18) |
P2—Ru1—Cl1i | 94.58 (2) | C13—C14—H14 | 119.8 |
P2i—Ru1—Cl1i | 85.42 (2) | C23—C28—H28 | 120.0 |
P2—Ru1—Cl1 | 85.42 (2) | C27—C28—C23 | 120.07 (16) |
P2i—Ru1—Cl1 | 94.58 (2) | C27—C28—H28 | 120.0 |
P1i—Ru1—P1 | 179.999 (19) | C17—C18—H18 | 119.6 |
P1—Ru1—Cl1i | 99.20 (3) | C19—C18—C17 | 120.84 (17) |
P1i—Ru1—Cl1 | 99.20 (3) | C19—C18—H18 | 119.6 |
P1—Ru1—Cl1 | 80.80 (3) | P1—C15—H15A | 108.9 |
P1i—Ru1—Cl1i | 80.80 (3) | P1—C15—H15B | 108.9 |
Cl1—Ru1—Cl1i | 180.00 (4) | C16—C15—P1 | 113.15 (11) |
C1i—Ru1—P2i | 93.73 (11) | C16—C15—H15A | 108.9 |
C1—Ru1—P2i | 86.27 (11) | C16—C15—H15B | 108.9 |
C1i—Ru1—P2 | 86.27 (11) | H15A—C15—H15B | 107.8 |
C1—Ru1—P2 | 93.73 (11) | C9—C10—H10 | 119.8 |
C1—Ru1—P1i | 85.22 (11) | C11—C10—C9 | 120.46 (17) |
C1i—Ru1—P1 | 85.22 (11) | C11—C10—H10 | 119.8 |
C1—Ru1—P1 | 94.78 (11) | C23—C24—H24 | 119.8 |
C1i—Ru1—P1i | 94.78 (11) | C25—C24—C23 | 120.36 (16) |
C1i—Ru1—Cl1 | 4.43 (12) | C25—C24—H24 | 119.8 |
C1—Ru1—Cl1 | 175.57 (12) | C14—C13—H13 | 119.8 |
C1i—Ru1—Cl1i | 175.57 (12) | C12—C13—C14 | 120.37 (18) |
C1—Ru1—Cl1i | 4.43 (12) | C12—C13—H13 | 119.8 |
C1i—Ru1—C1 | 180.0 | C10—C11—H11 | 119.9 |
C23—P2—Ru1 | 121.50 (5) | C12—C11—C10 | 120.24 (18) |
C23—P2—C16 | 102.27 (7) | C12—C11—H11 | 119.9 |
C17—P2—Ru1 | 119.70 (5) | C22—C21—H21 | 119.8 |
C17—P2—C23 | 101.62 (7) | C22—C21—C20 | 120.35 (18) |
C17—P2—C16 | 103.83 (7) | C20—C21—H21 | 119.8 |
C16—P2—Ru1 | 105.41 (5) | C28—C27—H27 | 119.7 |
C3—P1—Ru1 | 127.91 (17) | C26—C27—C28 | 120.58 (17) |
C3—P1—C15 | 96.22 (18) | C26—C27—H27 | 119.7 |
C9—P1—Ru1 | 116.67 (5) | C17—C22—H22 | 119.8 |
C9—P1—C3 | 99.91 (19) | C21—C22—C17 | 120.42 (16) |
C9—P1—C15 | 103.66 (8) | C21—C22—H22 | 119.8 |
C9—P1—C3A | 103.0 (5) | C21—C20—H20 | 120.1 |
C15—P1—Ru1 | 108.57 (5) | C19—C20—C21 | 119.78 (17) |
C3A—P1—Ru1 | 121.2 (5) | C19—C20—H20 | 120.1 |
C3A—P1—C15 | 101.4 (6) | C13—C12—H12 | 120.1 |
C2i—Cl1—Ru1 | 158.0 (5) | C11—C12—C13 | 119.81 (17) |
C2i—Cl1—C1i | 145.2 (7) | C11—C12—H12 | 120.1 |
C4—C3—P1 | 119.8 (2) | C18—C19—H19 | 119.9 |
C4—C3—C8 | 120.0 | C20—C19—C18 | 120.18 (18) |
C8—C3—P1 | 120.2 (2) | C20—C19—H19 | 119.9 |
C3—C4—H4 | 120.0 | C24—C25—H25 | 119.8 |
C5—C4—C3 | 120.0 | C26—C25—C24 | 120.43 (17) |
C5—C4—H4 | 120.0 | C26—C25—H25 | 119.8 |
C4—C5—H5 | 120.0 | C27—C26—H26 | 120.2 |
C4—C5—C6 | 120.0 | C25—C26—C27 | 119.56 (17) |
C6—C5—H5 | 120.0 | C25—C26—H26 | 120.2 |
C5—C6—H6 | 120.0 | C2—C1—Ru1 | 177.7 (4) |
C7—C6—C5 | 120.0 | Cl1i—C2—H2 | 161.3 |
C7—C6—H6 | 120.0 | C1—C2—H2 | 180.0 |
C6—C7—H7 | 120.0 | C4A—C3A—P1 | 119.6 (9) |
C6—C7—C8 | 120.0 | C4A—C3A—C8A | 115.4 (8) |
C8—C7—H7 | 120.0 | C8A—C3A—P1 | 122.4 (10) |
C3—C8—H8 | 120.0 | C3A—C4A—H4A | 120.3 |
C7—C8—C3 | 120.0 | C3A—C4A—C5A | 119.3 (10) |
C7—C8—H8 | 120.0 | C5A—C4A—H4A | 120.3 |
C28—C23—P2 | 118.30 (12) | C4A—C5A—H5A | 119.1 |
C24—C23—P2 | 122.70 (13) | C6A—C5A—C4A | 121.8 (11) |
C24—C23—C28 | 118.99 (15) | C6A—C5A—H5A | 119.1 |
C18—C17—P2 | 122.66 (13) | C5A—C6A—H6A | 119.5 |
C22—C17—P2 | 118.88 (12) | C5A—C6A—C7A | 121.0 (9) |
C22—C17—C18 | 118.41 (15) | C7A—C6A—H6A | 119.5 |
P2—C16—H16A | 109.9 | C6A—C7A—H7A | 120.3 |
P2—C16—H16B | 109.9 | C6A—C7A—C8A | 119.5 (9) |
H16A—C16—H16B | 108.3 | C8A—C7A—H7A | 120.3 |
C15—C16—P2 | 108.75 (11) | C3A—C8A—C7A | 121.5 (10) |
C15—C16—H16A | 109.9 | C3A—C8A—H8A | 119.2 |
C15—C16—H16B | 109.9 | C7A—C8A—H8A | 119.2 |
Ru1—P2—C23—C28 | −38.82 (15) | C4—C5—C6—C7 | 0.0 |
Ru1—P2—C23—C24 | 139.91 (13) | C5—C6—C7—C8 | 0.0 |
Ru1—P2—C17—C18 | 125.95 (13) | C6—C7—C8—C3 | 0.0 |
Ru1—P2—C17—C22 | −56.55 (14) | C8—C3—C4—C5 | 0.0 |
Ru1—P2—C16—C15 | −51.85 (11) | C23—P2—C17—C18 | −97.05 (15) |
Ru1—P1—C3—C4 | −16.3 (4) | C23—P2—C17—C22 | 80.45 (14) |
Ru1—P1—C3—C8 | 165.22 (18) | C23—P2—C16—C15 | −179.76 (11) |
Ru1—P1—C9—C14 | 87.24 (14) | C23—C28—C27—C26 | 1.0 (3) |
Ru1—P1—C9—C10 | −91.31 (13) | C23—C24—C25—C26 | 0.4 (3) |
Ru1—P1—C15—C16 | −12.75 (13) | C17—P2—C23—C28 | −174.82 (13) |
Ru1—P1—C3A—C4A | −34.9 (14) | C17—P2—C23—C24 | 3.91 (16) |
Ru1—P1—C3A—C8A | 163.9 (8) | C17—P2—C16—C15 | 74.82 (12) |
P2—Ru1—P1—C3 | 99.6 (2) | C17—C18—C19—C20 | −0.9 (3) |
P2i—Ru1—P1—C3 | −80.4 (2) | C16—P2—C23—C28 | 78.06 (14) |
P2i—Ru1—P1—C9 | 49.05 (6) | C16—P2—C23—C24 | −103.21 (15) |
P2—Ru1—P1—C9 | −130.95 (6) | C16—P2—C17—C18 | 8.85 (16) |
P2—Ru1—P1—C15 | −14.37 (6) | C16—P2—C17—C22 | −173.64 (13) |
P2i—Ru1—P1—C15 | 165.63 (6) | C9—P1—C3—C4 | −151.8 (3) |
P2i—Ru1—P1—C3A | −77.8 (7) | C9—P1—C3—C8 | 29.7 (3) |
P2—Ru1—P1—C3A | 102.2 (7) | C9—P1—C15—C16 | 111.93 (12) |
P2i—Ru1—Cl1—C1i | 79.0 (14) | C9—P1—C3A—C4A | −167.6 (11) |
P2—Ru1—Cl1—C1i | −101.0 (14) | C9—P1—C3A—C8A | 31.2 (11) |
P2i—Ru1—Cl1—C2i | 89.1 (15) | C9—C14—C13—C12 | 0.1 (3) |
P2—Ru1—Cl1—C2i | −90.9 (15) | C9—C10—C11—C12 | 0.1 (3) |
P2—Ru1—C1—Cl1i | 101.3 (14) | C14—C9—C10—C11 | 0.1 (2) |
P2i—Ru1—C1—Cl1i | −78.7 (14) | C14—C13—C12—C11 | 0.0 (3) |
P2—C23—C28—C27 | 177.65 (13) | C28—C23—C24—C25 | 0.4 (3) |
P2—C23—C24—C25 | −178.28 (15) | C28—C27—C26—C25 | −0.2 (3) |
P2—C17—C18—C19 | 178.71 (14) | C18—C17—C22—C21 | −0.2 (2) |
P2—C17—C22—C21 | −177.77 (13) | C15—P1—C3—C4 | 103.1 (3) |
P2—C16—C15—P1 | 41.29 (14) | C15—P1—C3—C8 | −75.4 (3) |
P1i—Ru1—P2—C23 | −30.89 (6) | C15—P1—C9—C14 | −32.02 (15) |
P1—Ru1—P2—C23 | 149.11 (6) | C15—P1—C9—C10 | 149.43 (13) |
P1—Ru1—P2—C17 | −82.46 (6) | C15—P1—C3A—C4A | 85.3 (12) |
P1i—Ru1—P2—C17 | 97.54 (6) | C15—P1—C3A—C8A | −75.9 (10) |
P1i—Ru1—P2—C16 | −146.19 (6) | C10—C9—C14—C13 | −0.2 (2) |
P1—Ru1—P2—C16 | 33.81 (6) | C10—C11—C12—C13 | −0.2 (3) |
P1i—Ru1—Cl1—C1i | −3.5 (14) | C24—C23—C28—C27 | −1.1 (3) |
P1—Ru1—Cl1—C1i | 176.5 (14) | C24—C25—C26—C27 | −0.5 (3) |
P1i—Ru1—Cl1—C2i | 6.6 (15) | C21—C20—C19—C18 | −0.5 (3) |
P1—Ru1—Cl1—C2i | −173.4 (15) | C22—C17—C18—C19 | 1.2 (3) |
P1—Ru1—C1—Cl1i | −176.6 (14) | C22—C21—C20—C19 | 1.5 (3) |
P1i—Ru1—C1—Cl1i | 3.4 (14) | C20—C21—C22—C17 | −1.2 (3) |
P1—C3—C4—C5 | −178.5 (4) | C1—Ru1—P2—C23 | −116.59 (12) |
P1—C3—C8—C7 | 178.5 (4) | C1i—Ru1—P2—C23 | 63.41 (12) |
P1—C9—C14—C13 | −178.75 (13) | C1—Ru1—P2—C17 | 11.84 (12) |
P1—C9—C10—C11 | 178.64 (13) | C1i—Ru1—P2—C17 | −168.16 (12) |
P1—C3A—C4A—C5A | −172.6 (13) | C1i—Ru1—P2—C16 | −51.89 (12) |
P1—C3A—C8A—C7A | 169.8 (14) | C1—Ru1—P2—C16 | 128.11 (12) |
Cl1i—Ru1—P2—C23 | −112.23 (7) | C1—Ru1—P1—C3 | 6.5 (3) |
Cl1—Ru1—P2—C23 | 67.77 (7) | C1i—Ru1—P1—C3 | −173.5 (3) |
Cl1i—Ru1—P2—C17 | 16.20 (7) | C1—Ru1—P1—C9 | 135.96 (13) |
Cl1—Ru1—P2—C17 | −163.80 (7) | C1i—Ru1—P1—C9 | −44.04 (13) |
Cl1i—Ru1—P2—C16 | 132.47 (6) | C1—Ru1—P1—C15 | −107.46 (12) |
Cl1—Ru1—P2—C16 | −47.53 (6) | C1i—Ru1—P1—C15 | 72.54 (12) |
Cl1—Ru1—P1—C3 | −173.7 (2) | C1i—Ru1—P1—C3A | −170.9 (7) |
Cl1i—Ru1—P1—C3 | 6.3 (2) | C1—Ru1—P1—C3A | 9.1 (7) |
Cl1—Ru1—P1—C9 | −44.31 (7) | C1i—Ru1—Cl1—C2i | 10 (2) |
Cl1i—Ru1—P1—C9 | 135.69 (7) | C3A—P1—C3—C4 | −35 (6) |
Cl1—Ru1—P1—C15 | 72.28 (6) | C3A—P1—C3—C8 | 147 (6) |
Cl1i—Ru1—P1—C15 | −107.72 (6) | C3A—P1—C9—C14 | −137.4 (6) |
Cl1—Ru1—P1—C3A | −171.1 (7) | C3A—P1—C9—C10 | 44.1 (6) |
Cl1i—Ru1—P1—C3A | 8.9 (7) | C3A—P1—C15—C16 | −141.5 (5) |
C3—P1—C9—C14 | −131.0 (2) | C3A—C4A—C5A—C6A | 2.2 (13) |
C3—P1—C9—C10 | 50.5 (2) | C4A—C3A—C8A—C7A | 7.8 (14) |
C3—P1—C15—C16 | −146.3 (2) | C4A—C5A—C6A—C7A | 9.1 (17) |
C3—P1—C3A—C4A | 128 (7) | C5A—C6A—C7A—C8A | −11.4 (18) |
C3—P1—C3A—C8A | −33 (5) | C6A—C7A—C8A—C3A | 2.7 (15) |
C3—C4—C5—C6 | 0.0 | C8A—C3A—C4A—C5A | −10.1 (13) |
C4—C3—C8—C7 | 0.0 |
Symmetry code: (i) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2H)Cl(C26H24P2)2] |
Mr | 958.33 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 10.92406 (18), 16.0826 (2), 13.2228 (2) |
β (°) | 105.2553 (17) |
V (Å3) | 2241.22 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.59 |
Crystal size (mm) | 0.41 × 0.35 × 0.20 |
Data collection | |
Diffractometer | Agilent Xcalibur (Sapphire3, Gemini ultra) |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.912, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32289, 6470, 5653 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.721 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.072, 1.09 |
No. of reflections | 6470 |
No. of parameters | 293 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.48 |
Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009)., OLEX2 (Dolomanov et al., 2009).
Acknowledgements
This work was supported by FONDECYT through grant No. 3110066. MF thanks the Becaschile Programme (Chile) for support through a postdoctoral fellowship.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Faulkner, C. W., Ingham, S. L., Khan, M. S., Lewis, J., Long, N. J. & Raithby, P. R. (1994). J. Organomet. Chem. 482, 139–145. CSD CrossRef CAS Web of Science Google Scholar
Fox, M. A., Harris, J. E., Heider, S., Pérez-Gregorio, V., Zakrzewska, M. E., Farmer, J. D., Yufit, D. S., Howard, J. A. K. & Low, P. J. (2009). J. Organomet. Chem. 694, 2350–2358. Web of Science CSD CrossRef CAS Google Scholar
Gauthier, N., Olivier, C., Rigaut, S., Touchard, D., Roisnel, T., Humphrey, M. G. & Paul, F. (2008). Organometallics, 27, 1063–1072. Web of Science CSD CrossRef CAS Google Scholar
Hu, Q. Y., Lu, W. X., Tang, H. D., Sung, H. H. Y., Wen, T. B., Williams, I. D., Wong, G. K. L., Lin, Z. & Jia, G. (2005). Organometallics, 24, 3966–3973. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Younus, M., Long, N. J., Raithby, P. R., Lewis, J., Page, N. A., White, A. J. P., Williams, D. J., Colbert, M. C. B., Hodge, A. J. & Khan, M. S. (1999). J. Organomet. Chem. 578, 198–209. Web of Science CSD CrossRef CAS Google Scholar
Zhu, Y., Millet, D. B., Wolf, M. O. & Rettig, S. J. (1999). Organometallics, 18, 1930–1938. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, the design of carbon-rich organometallics compounds has been an interesting research topic, because in this type of structures the connection between the metal center with functional groups is achieved, and consequently the electronic communication is allowed through the C≡C unit (Hu et al., 2005). Therefore, much attention has had the chemistry of the trans-RuCl(C≡CH)(dppe)2, [dppe= 1,2-Bis(diphenylphosphanyl)ethane] complex (Fox et al., 2009). The Cl(dppe)2Ru—C≡C– endgroups behave as strongly electron-releasing groups which compares favorably to organic electron-releasing substituents such as methoxy or amino substituents. Moreover, in contrast to the organic substituents, these mononuclear organometallic acetylide complexes exhibit usually a very electron-rich chemistry and constitute a remarkable potential use in the molecular electronics field, since the oxidation state of the metal can be easily modulated (Gauthier et al., 2008). In addition, these types of fragments have been shown to be interesting when they are attached to various unsaturated bridges. Depending on the nature of the bridge and the type of design obtained, they can exhibit different magnetic, optical or electronic properties (Faulkner et al., 1994; Zhu et al., 1999). Despite its important and widely use in the organometallic chemistry for the syntheses of vinylidene ruthenium complexes, for his rich electronic properties, the molecular structure of complex (1) has not been previously reported.
The main compound (1) crystallizes in the monoclinic space group P21/n. The structure lies over a special position located in an inversion centre. the –C≡CH and the chlorine ligands are disordered over two equivalent positions (0.5 occupancy each one). The coordination geometry is a distorted octahedron with the –C≡CH fragment and the Cl ligand in trans position.
The structure of (1) shows four phosphorus atoms occupying the equatorial plane of the octahedron and the chloride and acetylide ligands occupying the axial position in trans configuration. The Cl—Ru, Ru—C(1), and C(1)—C(2) data for this complex fall within the range of those previously reported for related octahedral trans-bis(bidentate phosphine) ruthenium alkynyl complexes (Younus et al., 1999).
Finally, both inter- and intramolecular hydrogen bonds or any other kind interaction are not observed in the crystalline packing of title compound.