metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis[1,2-bis­­(di­phenyl­phosphan­yl)ethane]­chlorido(ethyn­yl)ruthenium(II)

aDepartamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida Republica 275, Santiago, Chile, bInstituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso, Chile, and cDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: al.trujillo@uandresbello.edu

(Received 29 September 2012; accepted 28 October 2012; online 3 November 2012)

The mol­ecular structure of the title compound, trans-[Cu(C2H)Cl(C26H24P2)2], consists of an RuII cation, located on an inversion centre, in an octa­hedral environment defined by two chelating phosphines, one acetyl­ide and one chloride ligand. The –C≡CH and the chlorine ligands are disordered over two equivalent positions (0.5 occupancy each). The coordination geometry is distorted octa­hedral, with the –C≡CH fragment and the Cl ligand in trans positions. The four P atoms occupy the equatorial plane of the octa­hedron and the chloride and acetyl­ide ligands the axial positions.

Related literature

For details of electronic communication, see: Hu et al. (2005[Hu, Q. Y., Lu, W. X., Tang, H. D., Sung, H. H. Y., Wen, T. B., Williams, I. D., Wong, G. K. L., Lin, Z. & Jia, G. (2005). Organometallics, 24, 3966-3973.]) and for mol­ecular electronics, see: Gauthier et al. (2008[Gauthier, N., Olivier, C., Rigaut, S., Touchard, D., Roisnel, T., Humphrey, M. G. & Paul, F. (2008). Organometallics, 27, 1063-1072.]). For the chemistry of the trans-RuCl(C≡CH)(dppe)2, [dppe = 1,2-bis­(diphenyl­phosphan­yl)ethane] complex, see: Fox et al. (2009[Fox, M. A., Harris, J. E., Heider, S., Pérez-Gregorio, V., Zakrzewska, M. E., Farmer, J. D., Yufit, D. S., Howard, J. A. K. & Low, P. J. (2009). J. Organomet. Chem. 694, 2350-2358.]). For related structures, see: Faulkner et al. (1994[Faulkner, C. W., Ingham, S. L., Khan, M. S., Lewis, J., Long, N. J. & Raithby, P. R. (1994). J. Organomet. Chem. 482, 139-145.]); Zhu et al. (1999[Zhu, Y., Millet, D. B., Wolf, M. O. & Rettig, S. J. (1999). Organometallics, 18, 1930-1938.]); Younus et al. (1999[Younus, M., Long, N. J., Raithby, P. R., Lewis, J., Page, N. A., White, A. J. P., Williams, D. J., Colbert, M. C. B., Hodge, A. J. & Khan, M. S. (1999). J. Organomet. Chem. 578, 198-209.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H)Cl(C26H24P2)2]

  • Mr = 958.33

  • Monoclinic, P 21 /n

  • a = 10.92406 (18) Å

  • b = 16.0826 (2) Å

  • c = 13.2228 (2) Å

  • β = 105.2553 (17)°

  • V = 2241.22 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 120 K

  • 0.41 × 0.35 × 0.20 mm

Data collection
  • Agilent Xcalibur (Sapphire3, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.912, Tmax = 1.000

  • 32289 measured reflections

  • 6470 independent reflections

  • 5653 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.072

  • S = 1.09

  • 6470 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).; software used to prepare material for publication: OLEX2.

Supporting information


Comment top

In recent years, the design of carbon-rich organometallics compounds has been an interesting research topic, because in this type of structures the connection between the metal center with functional groups is achieved, and consequently the electronic communication is allowed through the CC unit (Hu et al., 2005). Therefore, much attention has had the chemistry of the trans-RuCl(CCH)(dppe)2, [dppe= 1,2-Bis(diphenylphosphanyl)ethane] complex (Fox et al., 2009). The Cl(dppe)2Ru—CC– endgroups behave as strongly electron-releasing groups which compares favorably to organic electron-releasing substituents such as methoxy or amino substituents. Moreover, in contrast to the organic substituents, these mononuclear organometallic acetylide complexes exhibit usually a very electron-rich chemistry and constitute a remarkable potential use in the molecular electronics field, since the oxidation state of the metal can be easily modulated (Gauthier et al., 2008). In addition, these types of fragments have been shown to be interesting when they are attached to various unsaturated bridges. Depending on the nature of the bridge and the type of design obtained, they can exhibit different magnetic, optical or electronic properties (Faulkner et al., 1994; Zhu et al., 1999). Despite its important and widely use in the organometallic chemistry for the syntheses of vinylidene ruthenium complexes, for his rich electronic properties, the molecular structure of complex (1) has not been previously reported.

The main compound (1) crystallizes in the monoclinic space group P21/n. The structure lies over a special position located in an inversion centre. the –CCH and the chlorine ligands are disordered over two equivalent positions (0.5 occupancy each one). The coordination geometry is a distorted octahedron with the –CCH fragment and the Cl ligand in trans position.

The structure of (1) shows four phosphorus atoms occupying the equatorial plane of the octahedron and the chloride and acetylide ligands occupying the axial position in trans configuration. The Cl—Ru, Ru—C(1), and C(1)—C(2) data for this complex fall within the range of those previously reported for related octahedral trans-bis(bidentate phosphine) ruthenium alkynyl complexes (Younus et al., 1999).

Finally, both inter- and intramolecular hydrogen bonds or any other kind interaction are not observed in the crystalline packing of title compound.

Related literature top

For details of electronic communication, see: Hu et al. (2005) and for molecular electronics, see: Gauthier et al. (2008). For the chemistry of the trans-RuCl(CCH)(dppe)2, [dppe= 1,2-bis(diphenylphosphanyl)ethane] complex, see Fox et al. (2009). For related structures, see: Faulkner et al. (1994); Zhu et al. (1999); Younus et al. (1999).

Experimental top

A Schlenk tube under argon was loaded with [Ru(dppe)2Cl]+ (0.400 g, 0.369 mmol), ethynyltrimethylsilane (100 ml, 0.71 mmol), and 20 ml CH2Cl2 was added. The resulting mixture was stirred over night. After evaporation of the solvent, the residue was extracted with CH2Cl2 and chromatographied through a 2x4 cm Al2O3 column using CH2Cl2 as eluant. The solution was evaporated and the remaining solid was washed with n-pentane and dried in vacuo, to afford (1) as an yellow powder (0.262 g, 68,5%). Crystals were obtained by vapor diffusion of dichloromethane and hexane solution of (1).

Refinement top

The hydrogen atoms positions were calculated after each cycle of refinement with SHELXL (Sheldrick, 2008) using a riding model for each structure, with C—H distances in the range 0.95 to 0.98 Å. Uiso(H) values were set equal to 1.2Ueq. The ruthenium atom lies over an inversion center; in consequence, the dppe ligand occupy the equatorial position while chlorine and acetylide ligands are found on both axial positions. Both ligands were refined with 0.5 occupancies each one. On the other hand, phenyl ring (C3–C8) from dppe ligand is disordered in two positions with refined occupancies of 0.725 (17) and 0.275 (17). The anisotropic displacement parameters were constrained using the EADP instruction.

Structure description top

In recent years, the design of carbon-rich organometallics compounds has been an interesting research topic, because in this type of structures the connection between the metal center with functional groups is achieved, and consequently the electronic communication is allowed through the CC unit (Hu et al., 2005). Therefore, much attention has had the chemistry of the trans-RuCl(CCH)(dppe)2, [dppe= 1,2-Bis(diphenylphosphanyl)ethane] complex (Fox et al., 2009). The Cl(dppe)2Ru—CC– endgroups behave as strongly electron-releasing groups which compares favorably to organic electron-releasing substituents such as methoxy or amino substituents. Moreover, in contrast to the organic substituents, these mononuclear organometallic acetylide complexes exhibit usually a very electron-rich chemistry and constitute a remarkable potential use in the molecular electronics field, since the oxidation state of the metal can be easily modulated (Gauthier et al., 2008). In addition, these types of fragments have been shown to be interesting when they are attached to various unsaturated bridges. Depending on the nature of the bridge and the type of design obtained, they can exhibit different magnetic, optical or electronic properties (Faulkner et al., 1994; Zhu et al., 1999). Despite its important and widely use in the organometallic chemistry for the syntheses of vinylidene ruthenium complexes, for his rich electronic properties, the molecular structure of complex (1) has not been previously reported.

The main compound (1) crystallizes in the monoclinic space group P21/n. The structure lies over a special position located in an inversion centre. the –CCH and the chlorine ligands are disordered over two equivalent positions (0.5 occupancy each one). The coordination geometry is a distorted octahedron with the –CCH fragment and the Cl ligand in trans position.

The structure of (1) shows four phosphorus atoms occupying the equatorial plane of the octahedron and the chloride and acetylide ligands occupying the axial position in trans configuration. The Cl—Ru, Ru—C(1), and C(1)—C(2) data for this complex fall within the range of those previously reported for related octahedral trans-bis(bidentate phosphine) ruthenium alkynyl complexes (Younus et al., 1999).

Finally, both inter- and intramolecular hydrogen bonds or any other kind interaction are not observed in the crystalline packing of title compound.

For details of electronic communication, see: Hu et al. (2005) and for molecular electronics, see: Gauthier et al. (2008). For the chemistry of the trans-RuCl(CCH)(dppe)2, [dppe= 1,2-bis(diphenylphosphanyl)ethane] complex, see Fox et al. (2009). For related structures, see: Faulkner et al. (1994); Zhu et al. (1999); Younus et al. (1999).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009).; software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with full atom numbering scheme for indepent atoms. Displacement ellipsoids are presented at 50% probability level. Hydrogen atoms and disordered phenyl ring have been omitted in sake of clarity.
trans-Bis[1,2- bis(diphenylphosphanyl)ethane]chlorido(ethynyl)ruthenium(II) top
Crystal data top
[Cu(C2H)Cl(C26H24P2)2]F(000) = 988
Mr = 958.33Dx = 1.420 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 10.92406 (18) ÅCell parameters from 13838 reflections
b = 16.0826 (2) Åθ = 2.5–30.8°
c = 13.2228 (2) ŵ = 0.59 mm1
β = 105.2553 (17)°T = 120 K
V = 2241.22 (6) Å3Polyhedron, yellow
Z = 20.41 × 0.35 × 0.20 mm
Data collection top
Agilent Xcalibur (Sapphire3, Gemini ultra)
diffractometer
6470 independent reflections
Radiation source: Enhance (Mo) X-ray Source5653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.1511 pixels mm-1θmax = 30.8°, θmin = 2.5°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2223
Tmin = 0.912, Tmax = 1.000l = 1818
32289 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0263P)2 + 1.1519P]
where P = (Fo2 + 2Fc2)/3
6470 reflections(Δ/σ)max < 0.001
293 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu(C2H)Cl(C26H24P2)2]V = 2241.22 (6) Å3
Mr = 958.33Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.92406 (18) ŵ = 0.59 mm1
b = 16.0826 (2) ÅT = 120 K
c = 13.2228 (2) Å0.41 × 0.35 × 0.20 mm
β = 105.2553 (17)°
Data collection top
Agilent Xcalibur (Sapphire3, Gemini ultra)
diffractometer
6470 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
5653 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 1.000Rint = 0.040
32289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.09Δρmax = 0.49 e Å3
6470 reflectionsΔρmin = 0.48 e Å3
293 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. (Agilent Technologies, 2011)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.00000.00000.00000.01370 (5)
Cl10.23554 (13)0.03894 (6)0.07756 (9)0.0164 (2)0.50
P10.00132 (4)0.01938 (2)0.17791 (3)0.01557 (8)
P20.03740 (4)0.14451 (2)0.00604 (3)0.01542 (8)
C10.1785 (5)0.0277 (2)0.0475 (3)0.0159 (7)0.50
C20.2870 (5)0.0472 (3)0.0780 (4)0.0182 (10)0.50
H20.37360.06290.10240.022*0.50
C30.1320 (5)0.0010 (3)0.2384 (4)0.0177 (7)0.725 (17)
C40.2548 (5)0.0110 (3)0.1755 (4)0.0240 (9)0.725 (17)
H40.27090.00860.10130.029*0.725 (17)
C50.3543 (5)0.0244 (3)0.2209 (6)0.0328 (12)0.725 (17)
H50.43820.03120.17790.039*0.725 (17)
C60.3308 (6)0.0280 (3)0.3294 (6)0.0332 (12)0.725 (17)
H60.39880.03720.36050.040*0.725 (17)
C70.2080 (6)0.0180 (3)0.3924 (5)0.0354 (11)0.725 (17)
H70.19190.02040.46650.042*0.725 (17)
C80.1085 (5)0.0046 (4)0.3469 (4)0.0276 (9)0.725 (17)
H80.02460.00220.38990.033*0.725 (17)
C3A0.1411 (13)0.0092 (11)0.2247 (11)0.0177 (7)0.275 (17)
C4A0.2629 (15)0.0009 (12)0.1584 (10)0.0240 (9)0.275 (17)
H4A0.27410.01610.08710.029*0.275 (17)
C5A0.3695 (12)0.0117 (11)0.1984 (12)0.0328 (12)0.275 (17)
H5A0.45220.00670.15250.039*0.275 (17)
C6A0.3573 (14)0.0301 (10)0.2973 (13)0.0332 (12)0.275 (17)
H6A0.42990.04600.31940.040*0.275 (17)
C7A0.2455 (16)0.0268 (9)0.3665 (11)0.0354 (11)0.275 (17)
H7A0.23960.03030.43940.042*0.275 (17)
C8A0.1349 (13)0.0181 (11)0.3314 (11)0.0276 (9)0.275 (17)
H8A0.05440.01810.38120.033*0.275 (17)
C90.13110 (15)0.02627 (10)0.27746 (12)0.0187 (3)
C100.12128 (17)0.10699 (11)0.31425 (13)0.0225 (3)
H100.04500.13760.28860.027*
C110.22226 (19)0.14261 (12)0.38806 (14)0.0302 (4)
H110.21480.19740.41250.036*
C120.33340 (19)0.09861 (14)0.42603 (14)0.0339 (5)
H120.40220.12300.47660.041*
C130.34422 (18)0.01890 (13)0.39024 (15)0.0300 (4)
H130.42070.01140.41630.036*
C140.24357 (16)0.01729 (12)0.31609 (14)0.0241 (4)
H140.25190.07210.29180.029*
C150.01206 (16)0.13281 (10)0.20793 (12)0.0195 (3)
H15A0.07050.15330.21570.023*
H15B0.07600.14130.27570.023*
C160.04975 (16)0.18398 (10)0.12365 (12)0.0190 (3)
H16A0.14230.17930.13210.023*
H16B0.02890.24330.13040.023*
C170.19892 (15)0.18361 (10)0.02263 (12)0.0180 (3)
C180.22999 (17)0.24080 (11)0.04617 (14)0.0257 (4)
H180.16600.25990.10510.031*
C190.35332 (19)0.27016 (13)0.02957 (15)0.0326 (4)
H190.37330.30850.07760.039*
C200.44647 (18)0.24394 (13)0.05609 (16)0.0329 (4)
H200.53090.26370.06710.039*
C210.41672 (17)0.18843 (12)0.12658 (15)0.0289 (4)
H210.48060.17130.18670.035*
C220.29422 (16)0.15783 (10)0.10961 (13)0.0225 (3)
H220.27510.11910.15750.027*
C230.02017 (15)0.21231 (10)0.09510 (12)0.0180 (3)
C240.05139 (18)0.27775 (11)0.14948 (14)0.0251 (4)
H240.13260.28950.13950.030*
C250.0045 (2)0.32590 (12)0.21821 (16)0.0337 (4)
H250.05380.37060.25470.040*
C260.1133 (2)0.30913 (12)0.23390 (16)0.0318 (4)
H260.14470.34190.28140.038*
C270.18501 (18)0.24436 (11)0.18002 (14)0.0265 (4)
H270.26590.23260.19080.032*
C280.13984 (16)0.19629 (10)0.11019 (13)0.0214 (3)
H280.19040.15250.07270.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01802 (9)0.00967 (8)0.01496 (9)0.00060 (6)0.00706 (6)0.00112 (6)
Cl10.0137 (7)0.0166 (5)0.0174 (5)0.0028 (5)0.0015 (5)0.0003 (3)
P10.01879 (19)0.01286 (18)0.01658 (19)0.00130 (14)0.00734 (15)0.00160 (14)
P20.01964 (19)0.01067 (17)0.01706 (19)0.00060 (14)0.00677 (15)0.00072 (14)
C10.022 (2)0.0135 (16)0.0144 (18)0.0002 (16)0.0080 (15)0.0004 (13)
C20.010 (2)0.025 (2)0.0165 (17)0.0044 (19)0.0013 (18)0.0015 (13)
C30.0248 (11)0.0106 (14)0.0214 (16)0.0001 (9)0.0124 (12)0.0042 (12)
C40.0246 (12)0.022 (2)0.0288 (18)0.0007 (12)0.0125 (13)0.0040 (14)
C50.0248 (16)0.027 (2)0.051 (3)0.0008 (13)0.0187 (18)0.0077 (18)
C60.035 (2)0.0332 (12)0.041 (3)0.0019 (15)0.027 (3)0.0003 (19)
C70.026 (3)0.0582 (19)0.026 (2)0.013 (2)0.014 (2)0.0114 (17)
C80.022 (2)0.040 (2)0.0226 (17)0.0032 (15)0.0101 (16)0.0014 (13)
C3A0.0248 (11)0.0106 (14)0.0214 (16)0.0001 (9)0.0124 (12)0.0042 (12)
C4A0.0246 (12)0.022 (2)0.0288 (18)0.0007 (12)0.0125 (13)0.0040 (14)
C5A0.0248 (16)0.027 (2)0.051 (3)0.0008 (13)0.0187 (18)0.0077 (18)
C6A0.035 (2)0.0332 (12)0.041 (3)0.0019 (15)0.027 (3)0.0003 (19)
C7A0.026 (3)0.0582 (19)0.026 (2)0.013 (2)0.014 (2)0.0114 (17)
C8A0.022 (2)0.040 (2)0.0226 (17)0.0032 (15)0.0101 (16)0.0014 (13)
C90.0226 (8)0.0195 (8)0.0156 (7)0.0052 (6)0.0074 (6)0.0015 (6)
C100.0300 (9)0.0200 (8)0.0189 (8)0.0050 (7)0.0087 (7)0.0003 (6)
C110.0444 (11)0.0243 (9)0.0211 (9)0.0152 (8)0.0073 (8)0.0041 (7)
C120.0346 (10)0.0415 (12)0.0221 (9)0.0197 (9)0.0014 (8)0.0002 (8)
C130.0219 (8)0.0421 (11)0.0254 (9)0.0057 (8)0.0050 (7)0.0037 (8)
C140.0233 (8)0.0280 (9)0.0228 (8)0.0016 (7)0.0091 (7)0.0010 (7)
C150.0284 (8)0.0133 (7)0.0173 (7)0.0024 (6)0.0068 (6)0.0014 (6)
C160.0238 (8)0.0130 (7)0.0199 (7)0.0013 (6)0.0054 (6)0.0006 (6)
C170.0217 (8)0.0126 (7)0.0214 (8)0.0024 (6)0.0086 (6)0.0035 (6)
C180.0319 (9)0.0235 (9)0.0222 (8)0.0087 (7)0.0080 (7)0.0011 (7)
C190.0386 (11)0.0331 (10)0.0310 (10)0.0178 (8)0.0177 (8)0.0057 (8)
C200.0269 (9)0.0345 (11)0.0394 (11)0.0123 (8)0.0124 (8)0.0128 (9)
C210.0246 (9)0.0259 (9)0.0333 (10)0.0017 (7)0.0023 (7)0.0072 (7)
C220.0265 (8)0.0154 (7)0.0256 (8)0.0007 (6)0.0067 (7)0.0019 (6)
C230.0253 (8)0.0118 (7)0.0184 (7)0.0018 (6)0.0085 (6)0.0002 (6)
C240.0310 (9)0.0179 (8)0.0306 (9)0.0060 (7)0.0154 (7)0.0067 (7)
C250.0456 (11)0.0212 (9)0.0405 (11)0.0101 (8)0.0222 (9)0.0146 (8)
C260.0446 (11)0.0222 (9)0.0364 (10)0.0009 (8)0.0243 (9)0.0081 (8)
C270.0287 (9)0.0250 (9)0.0303 (9)0.0010 (7)0.0155 (7)0.0016 (7)
C280.0250 (8)0.0173 (8)0.0231 (8)0.0007 (6)0.0083 (6)0.0018 (6)
Geometric parameters (Å, º) top
Ru1—P22.3575 (4)C18—H180.9500
Ru1—P2i2.3575 (4)C18—C191.389 (2)
Ru1—P1i2.3769 (4)C15—H15A0.9900
Ru1—P12.3769 (4)C15—H15B0.9900
Ru1—Cl1i2.5838 (14)C10—H100.9500
Ru1—Cl12.5838 (14)C10—C111.390 (2)
Ru1—C11.936 (5)C24—H240.9500
Ru1—C1i1.936 (5)C24—C251.390 (2)
P2—C231.8332 (16)C13—H130.9500
P2—C171.8311 (16)C13—C121.382 (3)
P2—C161.8414 (16)C11—H110.9500
P1—C31.840 (3)C11—C121.381 (3)
P1—C91.8337 (16)C21—H210.9500
P1—C151.8644 (16)C21—C221.388 (2)
P1—C3A1.850 (11)C21—C201.390 (3)
Cl1—C1i0.670 (4)C27—H270.9500
Cl1—C2i0.576 (4)C27—C261.383 (3)
C3—C41.3900C22—H220.9500
C3—C81.3900C20—H200.9500
C4—H40.9500C20—C191.375 (3)
C4—C51.3900C12—H120.9500
C5—H50.9500C19—H190.9500
C5—C61.3900C25—H250.9500
C6—H60.9500C25—C261.383 (3)
C6—C71.3900C26—H260.9500
C7—H70.9500C1—Cl1i0.670 (4)
C7—C81.3900C1—C21.190 (5)
C8—H80.9500C2—Cl1i0.576 (4)
C23—C281.397 (2)C2—H20.9500
C23—C241.393 (2)C3A—C4A1.397 (12)
C17—C181.397 (2)C3A—C8A1.402 (11)
C17—C221.396 (2)C4A—H4A0.9500
C16—H16A0.9900C4A—C5A1.415 (11)
C16—H16B0.9900C5A—H5A0.9500
C16—C151.526 (2)C5A—C6A1.312 (17)
C9—C141.390 (2)C6A—H6A0.9500
C9—C101.400 (2)C6A—C7A1.320 (15)
C14—H140.9500C7A—H7A0.9500
C14—C131.393 (3)C7A—C8A1.410 (13)
C28—H280.9500C8A—H8A0.9500
C28—C271.391 (2)
P2i—Ru1—P2180.0C14—C9—P1121.07 (13)
P2i—Ru1—P198.156 (13)C14—C9—C10118.74 (16)
P2—Ru1—P1i98.157 (13)C10—C9—P1120.17 (13)
P2i—Ru1—P1i81.844 (13)C9—C14—H14119.8
P2—Ru1—P181.843 (13)C9—C14—C13120.38 (18)
P2—Ru1—Cl1i94.58 (2)C13—C14—H14119.8
P2i—Ru1—Cl1i85.42 (2)C23—C28—H28120.0
P2—Ru1—Cl185.42 (2)C27—C28—C23120.07 (16)
P2i—Ru1—Cl194.58 (2)C27—C28—H28120.0
P1i—Ru1—P1179.999 (19)C17—C18—H18119.6
P1—Ru1—Cl1i99.20 (3)C19—C18—C17120.84 (17)
P1i—Ru1—Cl199.20 (3)C19—C18—H18119.6
P1—Ru1—Cl180.80 (3)P1—C15—H15A108.9
P1i—Ru1—Cl1i80.80 (3)P1—C15—H15B108.9
Cl1—Ru1—Cl1i180.00 (4)C16—C15—P1113.15 (11)
C1i—Ru1—P2i93.73 (11)C16—C15—H15A108.9
C1—Ru1—P2i86.27 (11)C16—C15—H15B108.9
C1i—Ru1—P286.27 (11)H15A—C15—H15B107.8
C1—Ru1—P293.73 (11)C9—C10—H10119.8
C1—Ru1—P1i85.22 (11)C11—C10—C9120.46 (17)
C1i—Ru1—P185.22 (11)C11—C10—H10119.8
C1—Ru1—P194.78 (11)C23—C24—H24119.8
C1i—Ru1—P1i94.78 (11)C25—C24—C23120.36 (16)
C1i—Ru1—Cl14.43 (12)C25—C24—H24119.8
C1—Ru1—Cl1175.57 (12)C14—C13—H13119.8
C1i—Ru1—Cl1i175.57 (12)C12—C13—C14120.37 (18)
C1—Ru1—Cl1i4.43 (12)C12—C13—H13119.8
C1i—Ru1—C1180.0C10—C11—H11119.9
C23—P2—Ru1121.50 (5)C12—C11—C10120.24 (18)
C23—P2—C16102.27 (7)C12—C11—H11119.9
C17—P2—Ru1119.70 (5)C22—C21—H21119.8
C17—P2—C23101.62 (7)C22—C21—C20120.35 (18)
C17—P2—C16103.83 (7)C20—C21—H21119.8
C16—P2—Ru1105.41 (5)C28—C27—H27119.7
C3—P1—Ru1127.91 (17)C26—C27—C28120.58 (17)
C3—P1—C1596.22 (18)C26—C27—H27119.7
C9—P1—Ru1116.67 (5)C17—C22—H22119.8
C9—P1—C399.91 (19)C21—C22—C17120.42 (16)
C9—P1—C15103.66 (8)C21—C22—H22119.8
C9—P1—C3A103.0 (5)C21—C20—H20120.1
C15—P1—Ru1108.57 (5)C19—C20—C21119.78 (17)
C3A—P1—Ru1121.2 (5)C19—C20—H20120.1
C3A—P1—C15101.4 (6)C13—C12—H12120.1
C2i—Cl1—Ru1158.0 (5)C11—C12—C13119.81 (17)
C2i—Cl1—C1i145.2 (7)C11—C12—H12120.1
C4—C3—P1119.8 (2)C18—C19—H19119.9
C4—C3—C8120.0C20—C19—C18120.18 (18)
C8—C3—P1120.2 (2)C20—C19—H19119.9
C3—C4—H4120.0C24—C25—H25119.8
C5—C4—C3120.0C26—C25—C24120.43 (17)
C5—C4—H4120.0C26—C25—H25119.8
C4—C5—H5120.0C27—C26—H26120.2
C4—C5—C6120.0C25—C26—C27119.56 (17)
C6—C5—H5120.0C25—C26—H26120.2
C5—C6—H6120.0C2—C1—Ru1177.7 (4)
C7—C6—C5120.0Cl1i—C2—H2161.3
C7—C6—H6120.0C1—C2—H2180.0
C6—C7—H7120.0C4A—C3A—P1119.6 (9)
C6—C7—C8120.0C4A—C3A—C8A115.4 (8)
C8—C7—H7120.0C8A—C3A—P1122.4 (10)
C3—C8—H8120.0C3A—C4A—H4A120.3
C7—C8—C3120.0C3A—C4A—C5A119.3 (10)
C7—C8—H8120.0C5A—C4A—H4A120.3
C28—C23—P2118.30 (12)C4A—C5A—H5A119.1
C24—C23—P2122.70 (13)C6A—C5A—C4A121.8 (11)
C24—C23—C28118.99 (15)C6A—C5A—H5A119.1
C18—C17—P2122.66 (13)C5A—C6A—H6A119.5
C22—C17—P2118.88 (12)C5A—C6A—C7A121.0 (9)
C22—C17—C18118.41 (15)C7A—C6A—H6A119.5
P2—C16—H16A109.9C6A—C7A—H7A120.3
P2—C16—H16B109.9C6A—C7A—C8A119.5 (9)
H16A—C16—H16B108.3C8A—C7A—H7A120.3
C15—C16—P2108.75 (11)C3A—C8A—C7A121.5 (10)
C15—C16—H16A109.9C3A—C8A—H8A119.2
C15—C16—H16B109.9C7A—C8A—H8A119.2
Ru1—P2—C23—C2838.82 (15)C4—C5—C6—C70.0
Ru1—P2—C23—C24139.91 (13)C5—C6—C7—C80.0
Ru1—P2—C17—C18125.95 (13)C6—C7—C8—C30.0
Ru1—P2—C17—C2256.55 (14)C8—C3—C4—C50.0
Ru1—P2—C16—C1551.85 (11)C23—P2—C17—C1897.05 (15)
Ru1—P1—C3—C416.3 (4)C23—P2—C17—C2280.45 (14)
Ru1—P1—C3—C8165.22 (18)C23—P2—C16—C15179.76 (11)
Ru1—P1—C9—C1487.24 (14)C23—C28—C27—C261.0 (3)
Ru1—P1—C9—C1091.31 (13)C23—C24—C25—C260.4 (3)
Ru1—P1—C15—C1612.75 (13)C17—P2—C23—C28174.82 (13)
Ru1—P1—C3A—C4A34.9 (14)C17—P2—C23—C243.91 (16)
Ru1—P1—C3A—C8A163.9 (8)C17—P2—C16—C1574.82 (12)
P2—Ru1—P1—C399.6 (2)C17—C18—C19—C200.9 (3)
P2i—Ru1—P1—C380.4 (2)C16—P2—C23—C2878.06 (14)
P2i—Ru1—P1—C949.05 (6)C16—P2—C23—C24103.21 (15)
P2—Ru1—P1—C9130.95 (6)C16—P2—C17—C188.85 (16)
P2—Ru1—P1—C1514.37 (6)C16—P2—C17—C22173.64 (13)
P2i—Ru1—P1—C15165.63 (6)C9—P1—C3—C4151.8 (3)
P2i—Ru1—P1—C3A77.8 (7)C9—P1—C3—C829.7 (3)
P2—Ru1—P1—C3A102.2 (7)C9—P1—C15—C16111.93 (12)
P2i—Ru1—Cl1—C1i79.0 (14)C9—P1—C3A—C4A167.6 (11)
P2—Ru1—Cl1—C1i101.0 (14)C9—P1—C3A—C8A31.2 (11)
P2i—Ru1—Cl1—C2i89.1 (15)C9—C14—C13—C120.1 (3)
P2—Ru1—Cl1—C2i90.9 (15)C9—C10—C11—C120.1 (3)
P2—Ru1—C1—Cl1i101.3 (14)C14—C9—C10—C110.1 (2)
P2i—Ru1—C1—Cl1i78.7 (14)C14—C13—C12—C110.0 (3)
P2—C23—C28—C27177.65 (13)C28—C23—C24—C250.4 (3)
P2—C23—C24—C25178.28 (15)C28—C27—C26—C250.2 (3)
P2—C17—C18—C19178.71 (14)C18—C17—C22—C210.2 (2)
P2—C17—C22—C21177.77 (13)C15—P1—C3—C4103.1 (3)
P2—C16—C15—P141.29 (14)C15—P1—C3—C875.4 (3)
P1i—Ru1—P2—C2330.89 (6)C15—P1—C9—C1432.02 (15)
P1—Ru1—P2—C23149.11 (6)C15—P1—C9—C10149.43 (13)
P1—Ru1—P2—C1782.46 (6)C15—P1—C3A—C4A85.3 (12)
P1i—Ru1—P2—C1797.54 (6)C15—P1—C3A—C8A75.9 (10)
P1i—Ru1—P2—C16146.19 (6)C10—C9—C14—C130.2 (2)
P1—Ru1—P2—C1633.81 (6)C10—C11—C12—C130.2 (3)
P1i—Ru1—Cl1—C1i3.5 (14)C24—C23—C28—C271.1 (3)
P1—Ru1—Cl1—C1i176.5 (14)C24—C25—C26—C270.5 (3)
P1i—Ru1—Cl1—C2i6.6 (15)C21—C20—C19—C180.5 (3)
P1—Ru1—Cl1—C2i173.4 (15)C22—C17—C18—C191.2 (3)
P1—Ru1—C1—Cl1i176.6 (14)C22—C21—C20—C191.5 (3)
P1i—Ru1—C1—Cl1i3.4 (14)C20—C21—C22—C171.2 (3)
P1—C3—C4—C5178.5 (4)C1—Ru1—P2—C23116.59 (12)
P1—C3—C8—C7178.5 (4)C1i—Ru1—P2—C2363.41 (12)
P1—C9—C14—C13178.75 (13)C1—Ru1—P2—C1711.84 (12)
P1—C9—C10—C11178.64 (13)C1i—Ru1—P2—C17168.16 (12)
P1—C3A—C4A—C5A172.6 (13)C1i—Ru1—P2—C1651.89 (12)
P1—C3A—C8A—C7A169.8 (14)C1—Ru1—P2—C16128.11 (12)
Cl1i—Ru1—P2—C23112.23 (7)C1—Ru1—P1—C36.5 (3)
Cl1—Ru1—P2—C2367.77 (7)C1i—Ru1—P1—C3173.5 (3)
Cl1i—Ru1—P2—C1716.20 (7)C1—Ru1—P1—C9135.96 (13)
Cl1—Ru1—P2—C17163.80 (7)C1i—Ru1—P1—C944.04 (13)
Cl1i—Ru1—P2—C16132.47 (6)C1—Ru1—P1—C15107.46 (12)
Cl1—Ru1—P2—C1647.53 (6)C1i—Ru1—P1—C1572.54 (12)
Cl1—Ru1—P1—C3173.7 (2)C1i—Ru1—P1—C3A170.9 (7)
Cl1i—Ru1—P1—C36.3 (2)C1—Ru1—P1—C3A9.1 (7)
Cl1—Ru1—P1—C944.31 (7)C1i—Ru1—Cl1—C2i10 (2)
Cl1i—Ru1—P1—C9135.69 (7)C3A—P1—C3—C435 (6)
Cl1—Ru1—P1—C1572.28 (6)C3A—P1—C3—C8147 (6)
Cl1i—Ru1—P1—C15107.72 (6)C3A—P1—C9—C14137.4 (6)
Cl1—Ru1—P1—C3A171.1 (7)C3A—P1—C9—C1044.1 (6)
Cl1i—Ru1—P1—C3A8.9 (7)C3A—P1—C15—C16141.5 (5)
C3—P1—C9—C14131.0 (2)C3A—C4A—C5A—C6A2.2 (13)
C3—P1—C9—C1050.5 (2)C4A—C3A—C8A—C7A7.8 (14)
C3—P1—C15—C16146.3 (2)C4A—C5A—C6A—C7A9.1 (17)
C3—P1—C3A—C4A128 (7)C5A—C6A—C7A—C8A11.4 (18)
C3—P1—C3A—C8A33 (5)C6A—C7A—C8A—C3A2.7 (15)
C3—C4—C5—C60.0C8A—C3A—C4A—C5A10.1 (13)
C4—C3—C8—C70.0
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C2H)Cl(C26H24P2)2]
Mr958.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)10.92406 (18), 16.0826 (2), 13.2228 (2)
β (°) 105.2553 (17)
V3)2241.22 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.41 × 0.35 × 0.20
Data collection
DiffractometerAgilent Xcalibur (Sapphire3, Gemini ultra)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.912, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
32289, 6470, 5653
Rint0.040
(sin θ/λ)max1)0.721
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 1.09
No. of reflections6470
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.48

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009)., OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

This work was supported by FONDECYT through grant No. 3110066. MF thanks the Becaschile Programme (Chile) for support through a postdoctoral fellowship.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFaulkner, C. W., Ingham, S. L., Khan, M. S., Lewis, J., Long, N. J. & Raithby, P. R. (1994). J. Organomet. Chem. 482, 139–145.  CSD CrossRef CAS Web of Science Google Scholar
First citationFox, M. A., Harris, J. E., Heider, S., Pérez-Gregorio, V., Zakrzewska, M. E., Farmer, J. D., Yufit, D. S., Howard, J. A. K. & Low, P. J. (2009). J. Organomet. Chem. 694, 2350–2358.  Web of Science CSD CrossRef CAS Google Scholar
First citationGauthier, N., Olivier, C., Rigaut, S., Touchard, D., Roisnel, T., Humphrey, M. G. & Paul, F. (2008). Organometallics, 27, 1063–1072.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, Q. Y., Lu, W. X., Tang, H. D., Sung, H. H. Y., Wen, T. B., Williams, I. D., Wong, G. K. L., Lin, Z. & Jia, G. (2005). Organometallics, 24, 3966–3973.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYounus, M., Long, N. J., Raithby, P. R., Lewis, J., Page, N. A., White, A. J. P., Williams, D. J., Colbert, M. C. B., Hodge, A. J. & Khan, M. S. (1999). J. Organomet. Chem. 578, 198–209.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, Y., Millet, D. B., Wolf, M. O. & Rettig, S. J. (1999). Organometallics, 18, 1930–1938.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds