organic compounds
N1-(4-Methylphenyl)piperidine-1,4-dicarboxamide
aNational Institute of Technology-Karnataka, Department of Chemistry, Medicinal Chemistry Laboratory, Surathkal, Mangalore 575 025, India, bGM Institute of Technology, Department of Physics, Davangere 577 006, India, cSiddaganga Institute of Technololgy, Department of Physics, Tumkur 572 103, India, dSree Siddaganga College for Women, Tumkur 572 103, India, and eNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za
In the title compound, C14H19N3O2, the heterocycle adopts a 1C4 conformation with the N atom being one of the flap atoms. In the crystal, classical N—H⋯O hydrogen bonds and C—H⋯O contacts connect the molecules into a three-dimensional network.
Related literature
For the pharmacological importance of piperidine and its derivatives, see: Chen et al. (2012); Boja et al. (2011); Jakubowska et al. (2012). For puckering analysis of six-membered rings, see: Cremer & Pople (1975); Boeyens (1978). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812047836/bg2489sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: 10.1107/S1600536812047836/bg2489Isup2.cdx
Structure factors: contains datablock I. DOI: 10.1107/S1600536812047836/bg2489Isup3.hkl
Supporting information file. DOI: 10.1107/S1600536812047836/bg2489Isup4.cml
Piperidine-4-carboxamide (10.0 g, 0.078 mol) was dissolved in THF (200 ml). To this triethylamine (23.27 g, 0.23 mol) was added, followed by 1-isocyanato-4-methylbenzene (11.31 g, 0.085 mol). The reaction mixture was stirred at room temperature for 12 h. Completion of the reaction was monitored by TLC. The precipitated solid was filtered, washed with THF and dried under vacuum to get the desired product. The resulting solid was recrystallized from ethanol, yield: 18.5 g (90.77%).
Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic carbon atoms, C–H 0.99 Å for methylene groups and C–H 1.00 Å for methine groups) and were included in the
in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C–C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). All nitrogen-bound H atoms were located on a difference Fourier map and refined freely.Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C14H19N3O2 | F(000) = 560 |
Mr = 261.32 | Dx = 1.227 Mg m−3 |
Monoclinic, P21/c | Melting point = 523–521 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 5.0102 (1) Å | Cell parameters from 9992 reflections |
b = 28.6642 (7) Å | θ = 2.2–28.3° |
c = 10.1131 (2) Å | µ = 0.08 mm−1 |
β = 103.113 (1)° | T = 200 K |
V = 1414.50 (5) Å3 | Platelet, colourless |
Z = 4 | 0.42 × 0.25 × 0.11 mm |
Bruker APEXII CCD diffractometer | 3556 independent reflections |
Radiation source: fine-focus sealed tube | 3014 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ϕ and ω scans | θmax = 28.4°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −6→6 |
Tmin = 0.966, Tmax = 0.991 | k = −38→38 |
27256 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0614P)2 + 0.3543P] where P = (Fo2 + 2Fc2)/3 |
3556 reflections | (Δ/σ)max < 0.001 |
185 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C14H19N3O2 | V = 1414.50 (5) Å3 |
Mr = 261.32 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.0102 (1) Å | µ = 0.08 mm−1 |
b = 28.6642 (7) Å | T = 200 K |
c = 10.1131 (2) Å | 0.42 × 0.25 × 0.11 mm |
β = 103.113 (1)° |
Bruker APEXII CCD diffractometer | 3556 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 3014 reflections with I > 2σ(I) |
Tmin = 0.966, Tmax = 0.991 | Rint = 0.020 |
27256 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.124 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.31 e Å−3 |
3556 reflections | Δρmin = −0.19 e Å−3 |
185 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | 0.1615 (2) | 0.25725 (3) | 0.13744 (9) | 0.0434 (2) | |
O2 | 0.31030 (17) | 0.05523 (3) | 0.44661 (12) | 0.0459 (3) | |
N1 | 0.1515 (2) | 0.27199 (3) | 0.35689 (10) | 0.0330 (2) | |
H1 | 0.155 (3) | 0.2596 (5) | 0.4318 (17) | 0.042 (4)* | |
N2 | 0.3917 (3) | 0.20893 (4) | 0.30192 (10) | 0.0394 (3) | |
N3 | 0.7377 (2) | 0.03696 (4) | 0.43233 (13) | 0.0386 (3) | |
H3A | 0.710 (3) | 0.0081 (6) | 0.4578 (17) | 0.049 (4)* | |
H3B | 0.898 (3) | 0.0466 (6) | 0.4190 (16) | 0.045 (4)* | |
C1 | −0.2229 (5) | 0.46134 (6) | 0.3273 (2) | 0.0767 (6) | |
H1A | −0.0793 | 0.4818 | 0.3082 | 0.115* | |
H1B | −0.2613 | 0.4698 | 0.4150 | 0.115* | |
H1C | −0.3898 | 0.4649 | 0.2556 | 0.115* | |
C2 | 0.2337 (3) | 0.24678 (4) | 0.25859 (11) | 0.0310 (2) | |
C3 | 0.5469 (3) | 0.20076 (4) | 0.44066 (12) | 0.0368 (3) | |
H3C | 0.4867 | 0.2229 | 0.5031 | 0.044* | |
H3D | 0.7444 | 0.2060 | 0.4461 | 0.044* | |
C4 | 0.5025 (2) | 0.15119 (4) | 0.48297 (12) | 0.0321 (2) | |
H4A | 0.3070 | 0.1467 | 0.4839 | 0.039* | |
H4B | 0.6129 | 0.1456 | 0.5760 | 0.039* | |
C5 | 0.5848 (2) | 0.11644 (4) | 0.38535 (12) | 0.0301 (2) | |
H5 | 0.7851 | 0.1202 | 0.3899 | 0.036* | |
C6 | 0.4276 (3) | 0.12705 (4) | 0.24063 (13) | 0.0409 (3) | |
H6A | 0.4911 | 0.1060 | 0.1765 | 0.049* | |
H6B | 0.2297 | 0.1213 | 0.2327 | 0.049* | |
C7 | 0.4714 (4) | 0.17763 (4) | 0.20382 (14) | 0.0472 (4) | |
H7A | 0.6666 | 0.1827 | 0.2034 | 0.057* | |
H7B | 0.3604 | 0.1845 | 0.1117 | 0.057* | |
C8 | 0.5337 (2) | 0.06691 (4) | 0.42456 (12) | 0.0305 (2) | |
C11 | 0.0476 (2) | 0.31796 (4) | 0.34039 (11) | 0.0302 (2) | |
C12 | −0.1339 (3) | 0.33220 (5) | 0.41605 (15) | 0.0455 (3) | |
H12 | −0.2011 | 0.3104 | 0.4713 | 0.055* | |
C13 | −0.2187 (4) | 0.37835 (6) | 0.41185 (17) | 0.0544 (4) | |
H13 | −0.3429 | 0.3877 | 0.4653 | 0.065* | |
C14 | −0.1276 (3) | 0.41117 (5) | 0.33202 (15) | 0.0482 (3) | |
C15 | 0.0491 (3) | 0.39607 (5) | 0.25471 (15) | 0.0452 (3) | |
H15 | 0.1115 | 0.4177 | 0.1972 | 0.054* | |
C16 | 0.1383 (3) | 0.35025 (4) | 0.25839 (13) | 0.0383 (3) | |
H16 | 0.2618 | 0.3409 | 0.2046 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0715 (7) | 0.0391 (5) | 0.0191 (4) | 0.0123 (4) | 0.0091 (4) | 0.0027 (3) |
O2 | 0.0244 (4) | 0.0361 (5) | 0.0818 (7) | 0.0014 (3) | 0.0219 (4) | 0.0156 (4) |
N1 | 0.0484 (6) | 0.0318 (5) | 0.0201 (5) | 0.0058 (4) | 0.0106 (4) | 0.0038 (4) |
N2 | 0.0650 (7) | 0.0307 (5) | 0.0221 (5) | 0.0115 (5) | 0.0094 (5) | 0.0012 (4) |
N3 | 0.0236 (5) | 0.0294 (5) | 0.0654 (8) | 0.0017 (4) | 0.0159 (5) | 0.0104 (5) |
C1 | 0.1017 (15) | 0.0434 (9) | 0.0764 (13) | 0.0245 (9) | 0.0024 (11) | −0.0068 (8) |
C2 | 0.0435 (6) | 0.0291 (5) | 0.0209 (5) | −0.0002 (4) | 0.0083 (4) | 0.0012 (4) |
C3 | 0.0458 (7) | 0.0307 (6) | 0.0301 (6) | 0.0028 (5) | 0.0011 (5) | 0.0018 (4) |
C4 | 0.0347 (6) | 0.0338 (6) | 0.0265 (6) | 0.0043 (4) | 0.0042 (4) | 0.0054 (4) |
C5 | 0.0241 (5) | 0.0282 (5) | 0.0410 (6) | 0.0009 (4) | 0.0135 (4) | 0.0063 (4) |
C6 | 0.0620 (8) | 0.0311 (6) | 0.0324 (6) | 0.0079 (5) | 0.0162 (6) | −0.0017 (5) |
C7 | 0.0824 (10) | 0.0338 (6) | 0.0312 (6) | 0.0140 (6) | 0.0253 (7) | 0.0051 (5) |
C8 | 0.0223 (5) | 0.0293 (5) | 0.0412 (6) | −0.0004 (4) | 0.0096 (4) | 0.0059 (4) |
C11 | 0.0347 (5) | 0.0326 (5) | 0.0219 (5) | 0.0022 (4) | 0.0033 (4) | −0.0010 (4) |
C12 | 0.0540 (8) | 0.0451 (7) | 0.0429 (7) | 0.0076 (6) | 0.0224 (6) | 0.0027 (6) |
C13 | 0.0629 (9) | 0.0538 (9) | 0.0502 (9) | 0.0195 (7) | 0.0205 (7) | −0.0047 (7) |
C14 | 0.0566 (8) | 0.0371 (7) | 0.0438 (8) | 0.0100 (6) | −0.0032 (6) | −0.0054 (6) |
C15 | 0.0570 (8) | 0.0345 (6) | 0.0403 (7) | −0.0013 (6) | 0.0035 (6) | 0.0052 (5) |
C16 | 0.0460 (7) | 0.0368 (6) | 0.0330 (6) | 0.0014 (5) | 0.0113 (5) | 0.0029 (5) |
O1—C2 | 1.2333 (14) | C4—H4B | 0.9900 |
O2—C8 | 1.2360 (13) | C5—C8 | 1.5114 (15) |
N1—C2 | 1.3659 (15) | C5—C6 | 1.5270 (17) |
N1—C11 | 1.4127 (15) | C5—H5 | 1.0000 |
N1—H1 | 0.834 (17) | C6—C7 | 1.5249 (18) |
N2—C2 | 1.3560 (15) | C6—H6A | 0.9900 |
N2—C7 | 1.4588 (16) | C6—H6B | 0.9900 |
N2—C3 | 1.4605 (15) | C7—H7A | 0.9900 |
N3—C8 | 1.3235 (14) | C7—H7B | 0.9900 |
N3—H3A | 0.886 (18) | C11—C12 | 1.3763 (17) |
N3—H3B | 0.890 (17) | C11—C16 | 1.3863 (17) |
C1—C14 | 1.513 (2) | C12—C13 | 1.387 (2) |
C1—H1A | 0.9800 | C12—H12 | 0.9500 |
C1—H1B | 0.9800 | C13—C14 | 1.383 (2) |
C1—H1C | 0.9800 | C13—H13 | 0.9500 |
C3—C4 | 1.5151 (16) | C14—C15 | 1.377 (2) |
C3—H3C | 0.9900 | C15—C16 | 1.3852 (18) |
C3—H3D | 0.9900 | C15—H15 | 0.9500 |
C4—C5 | 1.5238 (16) | C16—H16 | 0.9500 |
C4—H4A | 0.9900 | ||
C2—N1—C11 | 124.85 (10) | C6—C5—H5 | 108.5 |
C2—N1—H1 | 119.3 (11) | C7—C6—C5 | 110.61 (11) |
C11—N1—H1 | 115.8 (11) | C7—C6—H6A | 109.5 |
C2—N2—C7 | 120.14 (10) | C5—C6—H6A | 109.5 |
C2—N2—C3 | 125.68 (10) | C7—C6—H6B | 109.5 |
C7—N2—C3 | 112.74 (10) | C5—C6—H6B | 109.5 |
C8—N3—H3A | 117.0 (11) | H6A—C6—H6B | 108.1 |
C8—N3—H3B | 120.2 (10) | N2—C7—C6 | 110.00 (10) |
H3A—N3—H3B | 122.7 (15) | N2—C7—H7A | 109.7 |
C14—C1—H1A | 109.5 | C6—C7—H7A | 109.7 |
C14—C1—H1B | 109.5 | N2—C7—H7B | 109.7 |
H1A—C1—H1B | 109.5 | C6—C7—H7B | 109.7 |
C14—C1—H1C | 109.5 | H7A—C7—H7B | 108.2 |
H1A—C1—H1C | 109.5 | O2—C8—N3 | 122.17 (11) |
H1B—C1—H1C | 109.5 | O2—C8—C5 | 121.06 (10) |
O1—C2—N2 | 122.28 (11) | N3—C8—C5 | 116.76 (10) |
O1—C2—N1 | 121.69 (11) | C12—C11—C16 | 118.82 (11) |
N2—C2—N1 | 116.01 (10) | C12—C11—N1 | 118.89 (11) |
N2—C3—C4 | 109.95 (10) | C16—C11—N1 | 122.10 (11) |
N2—C3—H3C | 109.7 | C11—C12—C13 | 120.15 (13) |
C4—C3—H3C | 109.7 | C11—C12—H12 | 119.9 |
N2—C3—H3D | 109.7 | C13—C12—H12 | 119.9 |
C4—C3—H3D | 109.7 | C14—C13—C12 | 121.80 (14) |
H3C—C3—H3D | 108.2 | C14—C13—H13 | 119.1 |
C3—C4—C5 | 110.57 (10) | C12—C13—H13 | 119.1 |
C3—C4—H4A | 109.5 | C15—C14—C13 | 117.23 (13) |
C5—C4—H4A | 109.5 | C15—C14—C1 | 121.33 (16) |
C3—C4—H4B | 109.5 | C13—C14—C1 | 121.42 (16) |
C5—C4—H4B | 109.5 | C14—C15—C16 | 121.86 (13) |
H4A—C4—H4B | 108.1 | C14—C15—H15 | 119.1 |
C8—C5—C4 | 110.93 (9) | C16—C15—H15 | 119.1 |
C8—C5—C6 | 110.94 (10) | C15—C16—C11 | 120.11 (12) |
C4—C5—C6 | 109.52 (9) | C15—C16—H16 | 119.9 |
C8—C5—H5 | 108.5 | C11—C16—H16 | 119.9 |
C4—C5—H5 | 108.5 | ||
C7—N2—C2—O1 | −3.0 (2) | C4—C5—C8—O2 | 50.08 (16) |
C3—N2—C2—O1 | 162.27 (13) | C6—C5—C8—O2 | −71.88 (15) |
C7—N2—C2—N1 | 175.02 (12) | C4—C5—C8—N3 | −130.68 (12) |
C3—N2—C2—N1 | −19.70 (19) | C6—C5—C8—N3 | 107.35 (13) |
C11—N1—C2—O1 | −18.65 (19) | C2—N1—C11—C12 | 151.54 (13) |
C11—N1—C2—N2 | 163.31 (11) | C2—N1—C11—C16 | −33.52 (18) |
C2—N2—C3—C4 | 134.00 (13) | C16—C11—C12—C13 | −1.4 (2) |
C7—N2—C3—C4 | −59.78 (15) | N1—C11—C12—C13 | 173.76 (13) |
N2—C3—C4—C5 | 57.39 (13) | C11—C12—C13—C14 | 0.5 (2) |
C3—C4—C5—C8 | −178.42 (9) | C12—C13—C14—C15 | 0.9 (2) |
C3—C4—C5—C6 | −55.63 (13) | C12—C13—C14—C1 | 179.54 (16) |
C8—C5—C6—C7 | 177.79 (10) | C13—C14—C15—C16 | −1.5 (2) |
C4—C5—C6—C7 | 55.01 (13) | C1—C14—C15—C16 | 179.85 (15) |
C2—N2—C7—C6 | −133.78 (13) | C14—C15—C16—C11 | 0.7 (2) |
C3—N2—C7—C6 | 59.15 (16) | C12—C11—C16—C15 | 0.76 (19) |
C5—C6—C7—N2 | −56.27 (16) | N1—C11—C16—C15 | −174.18 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.834 (17) | 2.128 (17) | 2.9481 (13) | 167.9 (15) |
N3—H3A···O2ii | 0.886 (18) | 2.071 (18) | 2.9451 (14) | 168.9 (15) |
N3—H3B···O2iii | 0.890 (17) | 2.034 (17) | 2.8875 (13) | 160.3 (15) |
C3—H3C···O1i | 0.99 | 2.41 | 3.2987 (17) | 149 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z+1; (iii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C14H19N3O2 |
Mr | 261.32 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 200 |
a, b, c (Å) | 5.0102 (1), 28.6642 (7), 10.1131 (2) |
β (°) | 103.113 (1) |
V (Å3) | 1414.50 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.42 × 0.25 × 0.11 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.966, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27256, 3556, 3014 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.670 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.124, 1.06 |
No. of reflections | 3556 |
No. of parameters | 185 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.31, −0.19 |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.834 (17) | 2.128 (17) | 2.9481 (13) | 167.9 (15) |
N3—H3A···O2ii | 0.886 (18) | 2.071 (18) | 2.9451 (14) | 168.9 (15) |
N3—H3B···O2iii | 0.890 (17) | 2.034 (17) | 2.8875 (13) | 160.3 (15) |
C3—H3C···O1i | 0.99 | 2.41 | 3.2987 (17) | 148.5 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y, −z+1; (iii) x+1, y, z. |
Acknowledgements
AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for a Young scientist award. JMR thanks the Principal of GMIT Davavangere for providing research facilities.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320. CrossRef Web of Science Google Scholar
Boja, P., Won, S., Suh, D. H., Chu, J., Park, W. K. & Lim, H. (2011). Bull. Korean Chem. Soc. 32, 1249–1252. CrossRef CAS Google Scholar
Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA. Google Scholar
Chen, X., Zhan, P., Pannecouque, C., Balzarini, J., Clercq, E. D. & Liu, X. (2012). Eur. J. Med. Chem. 51, 60–66. Web of Science CrossRef PubMed Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jakubowska, A., Kulig, K., Guzior, N. & Malawska, B. (2012). Acta Pol. Pharm. Drug Res. 69, 449–455. CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Piperidine and its derivatives are ubiquitous building blocks in the synthesis of pharmaceuticals and fine chemicals (Chen et al., 2012; Boja et al., 2011, Jakubowska et al., 2012). Members of this family have found a wide range of applications in pharmacology and are used as antidepressants (e.g. Paroxetine) and analgesics (e.g. meperidine hydrochloride) or to control attention-deficit hyperactivity disorder (e.g. Methylphenidate). In view of the biological importance, the title compound was synthesized to study its crystal structure.
According to a puckering analysis (Cremer & Pople, 1975; Boeyens, 1978), the piperidine ring adopts a 1C4 conformation with the the nitrogen atom as well as the carbon atom in para position to it acting as the flap atoms (N2CC5). The primary amide group occupies an equatorial position. Due to amide-type resonance, the intracyclic nitrogen atom is present in an almost planar environment, the least-squares plane defined by the urea moiety (N2–C2–O1–N1) featuring the carbon atom as the one atom deviating most from this plane by 0.010 (1) Å (r.m.s. of all fitted atoms = 0.0057 Å). The least-squares planes through the atoms of the heterocycle and the phenyl groups define an angle of 48.15 (7) °. The planes defined by the non-hydrogen atoms of the amide groups intersect the least-squares plane defined by the intracyclic atoms of the heterocycle at angles of 29.22 (15) ° and 71.8 (2) ° with the smaller angle found for the secondary amide group (Fig. 1).
In the crystal, non-classical C–H..O bonds as well as classical hydrogen bonds of the N–H···O type coexist. The former ones take part between one of the intracyclic methylene groups directly bonded to the nitrogen atom of the piperidine moiety and the oxygen atom of the secondary amide group (which also acts as acceptor for one set of N–H···O hydrogen bonds). The hydrogen atoms of the primary amide group, in turn, link the oxygen atom of its own functional group in neighbouring molecules as acceptor. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In total, these contacts connect the molecules to a three-dimensional network. According to a graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C–H···O contacts is C11(5) on the unitary level while the descriptor found for the hydrogen bonds fostered by the secondary amide group necessitates a C11(4) on the same level. The description of the hydrogen bonding pattern created by the primary amide group is best achieved by a binary descriptor of R24(8). The shortest intercentroid distance between two aromatic systems corersponds to a [100] translation (Fig. 2).