metal-organic compounds
(Benzoylacetonato-κ2O,O′)dicarbonylrhodium(I)
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: CPretorius@ufs.ac.za
In the title compound, [Rh(C10H9O2)(CO)2], a distorted square-planar coordination geometry is observed around the RhI atom, formed by the O atoms of the bidentate ligand and two C atoms from the carbonyl ligands. The RhI atom is displaced from the plane through the surrounding atoms by 0.017 Å. In the crystal, C—H⋯O interaction is observed between a methyl group of the bidentate ligand and a carbonyl O atom. Metallophilic interactions [3.308 (3) and 3.461 (3) Å] between neighbouring RhI atoms are encountered in the crystal, resulting in the formation of a metal chain along the b-axis direction.
Related literature
For applications of rhodium chemistry, see: Dutta & Singh (1994); Paulik & Roth (1968); Evans et al. (1968). For rhodium dicarbonyl complexes as precursor catalysts, see: Brink et al. (2010). For background to metallophilicity, see: Doerrer (2010). For other metallophilic rhodium complexes, see: Prater et al. (1999); Laurila et al. (2012); Real et al. (1989). For other rhodium dicarbonyl complexes, see: Huq & Skapski (1974); Leipoldt et al. (1977).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2011); cell SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2002 (Burla et al., 2003) and SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), publCIF (Westrip, 2010), PARST (Nardelli, 1995) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812044893/bh2458sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812044893/bh2458Isup2.hkl
[RhCl(CO)2]2 was prepared in situ by refluxing RhCl3.3H2O (0.1014 g, 0.385 mmol) in 2 ml DMF for 30 min. 1-Phenyl-1,3-butanedione (0.0906 g, 0.905 mmol) was added to the cooled DMF solution of [RhCl(CO)2]2. The orange product was precipitated with ice-water and isolated by centrifuge. Recrystallization from diethyl ether yielded pleochroic orange-red crystals suitable for X-ray diffraction. IR (ATR, cm-1): νCO, sym 2066 s, νCO, asym 1999 s.
The methyl and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 and 0.98 Å and Uiso(H) = 1.5Ueq(carrier C) and 1.2Ueq(carrier C), respectively. The highest residual electron density was located 0.04 Å from C12 and the deepest hole was 0.17 Å from O4.
Data collection: APEX2 (Bruker, 2011); cell
SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SIR2002 (Burla et al., 2003) and SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), publCIF (Westrip, 2010), PARST (Nardelli, 1995) and PLATON (Spek, 2009).[Rh(C10H9O2)(CO)2] | F(000) = 632 |
Mr = 320.1 | Dx = 1.864 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7402 reflections |
a = 7.5887 (2) Å | θ = 2.7–28.3° |
b = 6.7522 (1) Å | µ = 1.50 mm−1 |
c = 22.5299 (5) Å | T = 100 K |
β = 98.850 (1)° | Needle, orange |
V = 1140.70 (4) Å3 | 0.19 × 0.09 × 0.05 mm |
Z = 4 |
Bruker APEXII KappaCCD diffractometer | 2827 independent reflections |
Radiation source: fine-focus sealed tube | 2494 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 512 pixels mm-1 | θmax = 28.3°, θmin = 1.8° |
ϕ and ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −9→8 |
Tmin = 0.851, Tmax = 0.928 | l = −29→30 |
15332 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.018 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.048 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0197P)2 + 0.986P] where P = (Fo2 + 2Fc2)/3 |
2827 reflections | (Δ/σ)max = 0.002 |
154 parameters | Δρmax = 0.56 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
0 constraints |
[Rh(C10H9O2)(CO)2] | V = 1140.70 (4) Å3 |
Mr = 320.1 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.5887 (2) Å | µ = 1.50 mm−1 |
b = 6.7522 (1) Å | T = 100 K |
c = 22.5299 (5) Å | 0.19 × 0.09 × 0.05 mm |
β = 98.850 (1)° |
Bruker APEXII KappaCCD diffractometer | 2827 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2494 reflections with I > 2σ(I) |
Tmin = 0.851, Tmax = 0.928 | Rint = 0.020 |
15332 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | 0 restraints |
wR(F2) = 0.048 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.56 e Å−3 |
2827 reflections | Δρmin = −0.44 e Å−3 |
154 parameters |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | −0.0248 (2) | 0.2092 (2) | 0.36980 (7) | 0.0130 (3) | |
C2 | 0.1566 (2) | 0.1653 (2) | 0.37257 (7) | 0.0156 (3) | |
H2 | 0.1964 | 0.1341 | 0.3357 | 0.019* | |
C3 | 0.2848 (2) | 0.1629 (2) | 0.42418 (8) | 0.0157 (3) | |
C4 | −0.1396 (2) | 0.2156 (2) | 0.30958 (7) | 0.0132 (3) | |
C5 | −0.0945 (2) | 0.1102 (2) | 0.26078 (7) | 0.0162 (3) | |
H5 | 0.0096 | 0.0299 | 0.2658 | 0.019* | |
C6 | −0.2006 (2) | 0.1218 (3) | 0.20490 (8) | 0.0174 (3) | |
H6 | −0.1681 | 0.0505 | 0.1719 | 0.021* | |
C7 | −0.3540 (2) | 0.2371 (2) | 0.19702 (8) | 0.0171 (3) | |
H7 | −0.4262 | 0.2448 | 0.1587 | 0.02* | |
C8 | −0.4015 (2) | 0.3411 (3) | 0.24546 (8) | 0.0170 (3) | |
H8 | −0.5067 | 0.4195 | 0.2403 | 0.02* | |
C9 | −0.2949 (2) | 0.3305 (2) | 0.30142 (7) | 0.0150 (3) | |
H9 | −0.3278 | 0.4019 | 0.3344 | 0.018* | |
C10 | 0.4773 (2) | 0.1331 (3) | 0.41774 (8) | 0.0201 (4) | |
H10A | 0.5507 | 0.1351 | 0.4575 | 0.03* | 0.5 |
H10B | 0.5155 | 0.2396 | 0.393 | 0.03* | 0.5 |
H10C | 0.4912 | 0.0052 | 0.3984 | 0.03* | 0.5 |
H10D | 0.4876 | 0.1182 | 0.3751 | 0.03* | 0.5 |
H10E | 0.5227 | 0.0136 | 0.4396 | 0.03* | 0.5 |
H10F | 0.5471 | 0.2481 | 0.4342 | 0.03* | 0.5 |
C11 | −0.1975 (2) | 0.3058 (3) | 0.53050 (7) | 0.0170 (3) | |
C12 | 0.1228 (2) | 0.2372 (2) | 0.58225 (8) | 0.0177 (3) | |
O1 | −0.10332 (17) | 0.25034 (16) | 0.41481 (5) | 0.0152 (2) | |
O2 | 0.25558 (16) | 0.18797 (19) | 0.47805 (5) | 0.0170 (2) | |
O3 | −0.32389 (17) | 0.3454 (2) | 0.54935 (6) | 0.0240 (3) | |
O4 | 0.19329 (19) | 0.23292 (19) | 0.63064 (6) | 0.0245 (3) | |
Rh1 | 0.013973 (17) | 0.244320 (18) | 0.503043 (5) | 0.01307 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0169 (8) | 0.0101 (7) | 0.0118 (7) | −0.0026 (6) | 0.0018 (6) | 0.0010 (6) |
C2 | 0.0181 (8) | 0.0165 (8) | 0.0127 (8) | −0.0007 (6) | 0.0040 (6) | 0.0006 (6) |
C3 | 0.0172 (8) | 0.0140 (8) | 0.0160 (8) | −0.0023 (6) | 0.0028 (6) | 0.0020 (6) |
C4 | 0.0157 (8) | 0.0130 (7) | 0.0108 (7) | −0.0020 (6) | 0.0018 (6) | 0.0010 (6) |
C5 | 0.0181 (8) | 0.0160 (8) | 0.0146 (8) | 0.0024 (6) | 0.0026 (6) | 0.0001 (6) |
C6 | 0.0230 (9) | 0.0169 (8) | 0.0124 (8) | 0.0005 (7) | 0.0033 (7) | −0.0023 (6) |
C7 | 0.0204 (8) | 0.0172 (8) | 0.0126 (8) | −0.0014 (6) | −0.0006 (6) | 0.0018 (6) |
C8 | 0.0169 (8) | 0.0163 (8) | 0.0174 (8) | 0.0024 (6) | 0.0014 (7) | 0.0014 (6) |
C9 | 0.0178 (8) | 0.0141 (8) | 0.0138 (8) | −0.0003 (6) | 0.0044 (6) | −0.0012 (6) |
C10 | 0.0148 (8) | 0.0282 (9) | 0.0170 (8) | −0.0028 (7) | 0.0019 (7) | 0.0007 (7) |
C11 | 0.0239 (9) | 0.0163 (8) | 0.0100 (8) | −0.0033 (7) | 0.0000 (7) | −0.0002 (6) |
C12 | 0.0198 (8) | 0.0142 (8) | 0.0192 (9) | −0.0039 (6) | 0.0038 (7) | −0.0002 (6) |
O1 | 0.0166 (6) | 0.0180 (6) | 0.0111 (6) | −0.0011 (4) | 0.0021 (5) | −0.0002 (4) |
O2 | 0.0159 (6) | 0.0216 (6) | 0.0135 (6) | −0.0026 (5) | 0.0020 (5) | 0.0011 (5) |
O3 | 0.0240 (7) | 0.0308 (7) | 0.0183 (6) | 0.0009 (6) | 0.0063 (5) | −0.0014 (6) |
O4 | 0.0306 (8) | 0.0264 (7) | 0.0143 (6) | −0.0057 (5) | −0.0033 (6) | 0.0003 (5) |
Rh1 | 0.01542 (8) | 0.01454 (7) | 0.00917 (7) | −0.00290 (5) | 0.00160 (5) | 0.00006 (5) |
C1—O1 | 1.283 (2) | C8—C9 | 1.391 (2) |
C1—C2 | 1.399 (2) | C8—H8 | 0.95 |
C1—C4 | 1.496 (2) | C9—H9 | 0.95 |
C2—C3 | 1.397 (2) | C10—H10A | 0.98 |
C2—H2 | 0.95 | C10—H10B | 0.98 |
C3—O2 | 1.278 (2) | C10—H10C | 0.98 |
C3—C10 | 1.504 (2) | C10—H10D | 0.98 |
C4—C5 | 1.396 (2) | C10—H10E | 0.98 |
C4—C9 | 1.400 (2) | C10—H10F | 0.98 |
C5—C6 | 1.388 (2) | C11—O3 | 1.139 (2) |
C5—H5 | 0.95 | C11—Rh1 | 1.8539 (18) |
C6—C7 | 1.389 (2) | C12—O4 | 1.138 (2) |
C6—H6 | 0.95 | C12—Rh1 | 1.8480 (19) |
C7—C8 | 1.391 (2) | O1—Rh1 | 2.0498 (12) |
C7—H7 | 0.95 | O2—Rh1 | 2.0349 (12) |
O1—C1—C2 | 125.71 (15) | H10A—C10—H10B | 109.5 |
O1—C1—C4 | 115.70 (15) | C3—C10—H10C | 109.5 |
C2—C1—C4 | 118.57 (15) | H10A—C10—H10C | 109.5 |
C3—C2—C1 | 126.44 (15) | H10B—C10—H10C | 109.5 |
C3—C2—H2 | 116.8 | C3—C10—H10D | 109.5 |
C1—C2—H2 | 116.8 | H10A—C10—H10D | 141.1 |
O2—C3—C2 | 126.05 (16) | H10B—C10—H10D | 56.3 |
O2—C3—C10 | 114.98 (15) | H10C—C10—H10D | 56.3 |
C2—C3—C10 | 118.95 (15) | C3—C10—H10E | 109.5 |
C5—C4—C9 | 118.87 (15) | H10A—C10—H10E | 56.3 |
C5—C4—C1 | 121.36 (15) | H10B—C10—H10E | 141.1 |
C9—C4—C1 | 119.77 (15) | H10C—C10—H10E | 56.3 |
C6—C5—C4 | 120.47 (16) | H10D—C10—H10E | 109.5 |
C6—C5—H5 | 119.8 | C3—C10—H10F | 109.5 |
C4—C5—H5 | 119.8 | H10A—C10—H10F | 56.3 |
C5—C6—C7 | 120.36 (16) | H10B—C10—H10F | 56.3 |
C5—C6—H6 | 119.8 | H10C—C10—H10F | 141.1 |
C7—C6—H6 | 119.8 | H10D—C10—H10F | 109.5 |
C6—C7—C8 | 119.72 (16) | H10E—C10—H10F | 109.5 |
C6—C7—H7 | 120.1 | O3—C11—Rh1 | 177.49 (15) |
C8—C7—H7 | 120.1 | O4—C12—Rh1 | 178.55 (17) |
C9—C8—C7 | 120.02 (16) | C1—O1—Rh1 | 125.23 (11) |
C9—C8—H8 | 120 | C3—O2—Rh1 | 125.64 (11) |
C7—C8—H8 | 120 | C12—Rh1—C11 | 87.98 (8) |
C8—C9—C4 | 120.54 (15) | C12—Rh1—O2 | 88.54 (7) |
C8—C9—H9 | 119.7 | C11—Rh1—O2 | 175.85 (6) |
C4—C9—H9 | 119.7 | C12—Rh1—O1 | 179.13 (6) |
C3—C10—H10A | 109.5 | C11—Rh1—O1 | 92.88 (6) |
C3—C10—H10B | 109.5 | O2—Rh1—O1 | 90.61 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O3i | 0.98 | 2.57 | 3.427 (2) | 146 |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Rh(C10H9O2)(CO)2] |
Mr | 320.1 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.5887 (2), 6.7522 (1), 22.5299 (5) |
β (°) | 98.850 (1) |
V (Å3) | 1140.70 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.50 |
Crystal size (mm) | 0.19 × 0.09 × 0.05 |
Data collection | |
Diffractometer | Bruker APEXII KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.851, 0.928 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15332, 2827, 2494 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.018, 0.048, 1.08 |
No. of reflections | 2827 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.44 |
Computer programs: APEX2 (Bruker, 2011), SAINT-Plus (Bruker, 2008), SIR2002 (Burla et al., 2003) and SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999), publCIF (Westrip, 2010), PARST (Nardelli, 1995) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O3i | 0.98 | 2.57 | 3.427 (2) | 146.4 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
Financial assistance from the University of the Free State Strategic Academic Cluster Initiative (Materials and Nanosciences), SASOL and the South African National Research Foundation (SA-NRF/THRIP) is gratefully acknowledged.
References
Brink, A., Roodt, A., Steyl, G. & Visser, H. G. (2010). Dalton Trans. 39, 5572–5578. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2008). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Doerrer, L. H. (2010). Dalton Trans. 39, 3543–3553. Web of Science CrossRef CAS PubMed Google Scholar
Dutta, D. K. & Singh, M. M. (1994). Transition Met. Chem. 19, 290–292. CrossRef CAS Google Scholar
Evans, D., Osborn, J. A. & Wilkinson, G. (1968). J. Chem. Soc. A, pp. 3133–3142. CrossRef Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Huq, F. & Skapski, A. C. (1974). J. Cryst. Mol. Struct. 4, 411–418. CSD CrossRef CAS Google Scholar
Laurila, E., Oresmaa, L., Hassinen, J., Hirva, P. & Haukka, M. (2012). Dalton Trans. In the press. doi:10.1039/C2DT31671D. Google Scholar
Leipoldt, J. G., Bok, L. D. C., Basson, S. S., van Vollenhoven, J. S. & Gerber, T. I. A. (1977). Inorg. Chim. Acta, 25, L63–L64. CSD CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Paulik, F. E. & Roth, J. F. (1968). Chem. Commun. (London), pp. 1578–1578. Google Scholar
Prater, M. E., Pence, L. E., Clérac, R., Finniss, G. M., Campana, C., Auban-Senzier, P., Jérome, D., Canadell, E. & Dunbar, K. R. (1999). J. Am. Chem. Soc. 121, 8005–8016. Web of Science CSD CrossRef CAS Google Scholar
Real, J., Bayón, J. C., Lahoz, F. J. & López, J. A. (1989). J. Chem. Soc. Chem. Commun. pp. 1889–1890. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rhodium is one of the most studied transition metals due to its importance in various applications including catalysis and biological activity (Dutta & Singh, 1994). It is widely recognized as a good catalyst for several industrial processes such as the Monsanto process (Paulik & Roth, 1968) and hydroformylation (Evans et al., 1968). In turn, rhodium dicarbonyl complexes of the type [Rh(L,L')(CO)2] where (L,L') represents a mono-anionic bidentate ligand have been widely studied as catalyst precursors (Brink et al., 2010).
The structural analysis of the title complex was undertaken to obtain a better understanding of the rhodium-ligand interactions in this type of compound and as a partial study of the effects that the different substituents in non-symmetrical β-diketones have on the kinetics of substitution reactions of these complexes.
Metallophilicity has been defined as the interaction between electron densities of large metal centres with an associated energy in the same order as hydrogen-bonding (Doerrer, 2010). These metallophilic interactions lead to the construction of 1D metal chains and have been widely recognized for other square-planar RhI molecules (Prater et al., 1999; Laurila et al., 2012; Real et al., 1989). The rhodium complex reported here showed stacking in such a way that the rhodium atoms of neighbouring molecules occupy the two remaining pseudo-octahedral positions almost perpendicular to the coordination polyhedron, with Rh···Rh distances of 3.308 (3) and 3.461 (3) Å respectively (see Figure 2). These values are slightly longer than the Rh···Rh distances reported for [Rh(acac)(CO)2] (3.253 and 3.271 Å, Huq & Skapski, 1974). For the benzoyl-1,1,1-trifluoroacetonatodicarbonylrhodium(I) complex these distances were reported as 3.537 Å (Leipoldt et al., 1977). The metallophilic interactions result in the formation of a 1D metal chain along the b-axis in the unit cell. This is consistent with the [Rh(acac)(CO)2] complex and benzoyl-1,1,1-trifluoroacetonatodicarbonylrhodium(I), that also displayed chain growth along the shortest unit cell axis.
A substitutional disorder over two positions was observed for the hydrogen atoms of the methyl group on the pentenone backbone. Intermolecular C10—H10C···O3 hydrogen bonding in the order of 3.427 Å was observed with one of the carbonyl moieties.