organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Methyl-1,3,5-triazine-2,4-di­amine butane-1,4-diol monosolvate

aStrathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 11 October 2012; accepted 26 October 2012; online 17 November 2012)

The title co-crystal, C4H7N5·C4H10O2, crystallizes with one mol­ecule of 6-methyl-1,3,5-triazine-2,4-diamine (DMT) and one mol­ecule of butane-1,4-diol in the asymmetric unit. The DMT mol­ecules form ribbons involving centrosymmetric R22(8) dimer motifs between DMT mol­ecules along the c-axis direction. These ribbons are further hydrogen bonded to each other through butane-1,4-diol, forming sheets parallel to (121).

Related literature

For background to DMT and related structural studies, see: Šebenik et al. (1989[Šebenik, A., Osredkar, U. & Žigon, M. (1989). Polym. Bull. 22, 155-161.]); Kaczmarek et al. (2008[Kaczmarek, M., Radecka-Paryzek, W. & Kubicki, M. (2008). Acta Cryst. E64, o269.]); Portalone (2008[Portalone, G. (2008). Acta Cryst. E64, o1685.]); Xiao (2008[Xiao, Z.-H. (2008). Acta Cryst. E64, o411.]); Fan et al. (2009[Fan, Y., You, W., Qian, H.-F., Liu, J.-L. & Huang, W. (2009). Acta Cryst. E65, o494.]); Qian & Huang (2010[Qian, H.-F. & Huang, W. (2010). Acta Cryst. E66, o759.]); Thanigaimani et al. (2010[Thanigaimani, K., Devi, P., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2010). Acta Cryst. C66, o324-o328.]); Perpétuo & Janczak (2007[Perpétuo, G. J. & Janczak, J. (2007). Acta Cryst. C63, o271-o273.]); Portalone & Colapietro (2007[Portalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o655-o658.]); Delori et al. (2008[Delori, A., Suresh, E. & Pedireddi, V. R. (2008). Chem. Eur. J. 14, 6967-6977.]). For details of experimental methods used, see: Florence et al. (2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]). For ring-motif nomenclature, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C4H7N5·C4H10O2

  • Mr = 215.27

  • Triclinic, [P \overline 1]

  • a = 5.8755 (3) Å

  • b = 9.0515 (5) Å

  • c = 10.7607 (5) Å

  • α = 87.911 (3)°

  • β = 74.346 (3)°

  • γ = 83.550 (3)°

  • V = 547.55 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 K

  • 0.50 × 0.05 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.637, Tmax = 0.745

  • 7713 measured reflections

  • 1911 independent reflections

  • 1288 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.093

  • S = 1.00

  • 1911 reflections

  • 155 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.92 2.764 (2) 176
O2—H2⋯N1ii 0.84 1.94 2.777 (2) 178
N4—H7N⋯O1iii 0.92 (3) 2.52 (2) 3.173 (2) 128.5 (7)
N4—H8N⋯N2iv 0.85 (2) 2.19 (2) 3.037 (2) 178 (2)
N5—H9N⋯O1v 0.88 (2) 2.069 (19) 2.909 (2) 160.1 (18)
N5—H10N⋯N3v 0.87 (2) 2.14 (2) 3.008 (3) 179 (2)
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y, -z+1; (iii) x+1, y, z-1; (iv) -x+1, -y+1, -z; (v) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and WinGX (Farrugia, 1999)[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.].

Supporting information


Comment top

2,4-diamino-6-methyl-1,3,5-triazine (DMT, acetoguanamine, Fig. 1) is used as an intermediate for pharmaceutical and resin synthesis (Šebenik et al., 1989). The crystal structures of the methanol, ethanol, DMF solvates and trifluoroacetate, phthalate, nitrate and chloride salts as well as of various complexes with aliphatic dicarboxylic acids have been reported in the literature (Kaczmarek et al., 2008; Portalone, 2008; Xiao, 2008; Fan et al., 2009; Qian & Huang, 2010; Thanigaimani et al., 2010; Portalone & Colapietro, 2007; Perpétuo & Janczak, 2007; Delori et al., 2008). The sample of DMT butane-1,4-diol solvate was isolated during an experimental physical form screen. The sample was identified as a novel form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). A suitable sample for single-crystal X-ray diffraction analysis was obtained from slow evaporation of saturated butane-1,4-diol solution at room temperature. The title compound crystallizes in space group P1, with one molecule of DMT and one molecule of butane-1,4-diol in the asymmetric unit. Each DMT molecule forms two hydrogen-bonded dimers via an R22(8) motif (Etter, 1990) that extends to form a ribbon structure along the c-direction (Fig. 2). The hydrogen bonded DMT ribbons connect to adjacent ribbons through the solvent molecule, butane-1,4-diol, thus forming a second R32(8) ring motif (Fig. 2).These solvent separated ribbon structures extended to form sheets parallel to (121) plane, and are connected through hydrogen bond interactions via the hydroxyl groups. Solvent hydroxyl group also donates a hydrogen bond to the solvent in adjacent sheet, creating a three-dimensional layered structure (Fig. 3).

Related literature top

For background to DMT and related structural studies, see: Šebenik et al. (1989); Kaczmarek et al. (2008); Portalone (2008); Xiao (2008); Fan et al. (2009); Qian & Huang (2010); Thanigaimani et al. (2010); Perpétuo & Janczak (2007); Portalone & Colapietro (2007); Delori et al. (2008). For details of experimental methods used, see: Florence et al. (2003). For ring-motif nomenclature, see: Etter (1990).

Experimental top

A single needle shape crystal was grown from the saturated solution of DMT in butane-1,4-diol by isothermal solvent evaporation at 298 K.

Refinement top

The positions of the N-bound H atoms were refined freely. All other H atoms were placed in calculated positions and refined in riding modes with X—H = 0.98 or 0.99 or 0.84 Å for the CH3, CH2 and OH groups, respectively. The Uiso(H) values were set to 1.5 or 1.2 times Ueq of their parent C atoms for the CH3 and CH2 groups, respectively. The Uiso(H) values were set to 1.5 times Ueq of their parent O atoms for the OH groups.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of 2,4-diamino-6-methyl-1,3,5-triazine (DMT), butane-1,4-diol solvate. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. DMT molecules form ribbons through R22(8) dimer, ribbons are connected via H-bonding (shown in cyan dotted line) interactions mediated by butane-1,4-diol, thus give rise to sheet structure. C, N and H atoms are shown in black, blue and tan colour respectively. Other H atoms are omitted for clarity.
[Figure 3] Fig. 3. 3-D Layered structure formed by sheets connected through H-bonding (cyan dotted line) mediated by butane-1,4-diol. C, N and H atoms are shown in grey, blue and white colour respectively. Other H atoms are omitted for clarity.
6-Methyl-1,3,5-triazine-2,4-diamine butane-1,4-diol monosolvate top
Crystal data top
C4H7N5·C4H10O2Z = 2
Mr = 215.27F(000) = 232
Triclinic, P1Dx = 1.306 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8755 (3) ÅCell parameters from 1602 reflections
b = 9.0515 (5) Åθ = 2.3–24.6°
c = 10.7607 (5) ŵ = 0.10 mm1
α = 87.911 (3)°T = 123 K
β = 74.346 (3)°Needle, colourless
γ = 83.550 (3)°0.50 × 0.05 × 0.04 mm
V = 547.55 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1911 independent reflections
Radiation source: fine-focus sealed tube1288 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 66
Tmin = 0.637, Tmax = 0.745k = 1010
7713 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.1476P]
where P = (Fo2 + 2Fc2)/3
1911 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
0 constraints
Crystal data top
C4H7N5·C4H10O2γ = 83.550 (3)°
Mr = 215.27V = 547.55 (5) Å3
Triclinic, P1Z = 2
a = 5.8755 (3) ÅMo Kα radiation
b = 9.0515 (5) ŵ = 0.10 mm1
c = 10.7607 (5) ÅT = 123 K
α = 87.911 (3)°0.50 × 0.05 × 0.04 mm
β = 74.346 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1911 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1288 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.745Rint = 0.045
7713 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.20 e Å3
1911 reflectionsΔρmin = 0.22 e Å3
155 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5923 (3)0.3881 (2)0.16893 (18)0.0160 (5)
C20.2419 (3)0.4825 (2)0.30267 (18)0.0163 (5)
C30.5020 (3)0.3277 (2)0.38201 (19)0.0174 (5)
C40.5670 (4)0.2448 (2)0.49230 (19)0.0243 (5)
H4A0.43170.25590.56920.036*
H4B0.70350.28500.50950.036*
H4C0.60830.13930.47050.036*
C50.3181 (3)0.1867 (2)0.9133 (2)0.0207 (5)
H5A0.26390.10780.97710.025*
H5B0.31140.27880.96150.025*
C60.5730 (3)0.1418 (2)0.83897 (19)0.0182 (5)
H6A0.67440.13730.89930.022*
H6B0.62540.21950.77370.022*
C70.6115 (3)0.0072 (2)0.77120 (19)0.0191 (5)
H7A0.56110.08550.83630.023*
H7B0.50990.00330.71100.023*
C80.8673 (3)0.0489 (2)0.69683 (19)0.0220 (5)
H8A0.88200.14650.65510.026*
H8B0.91650.02600.62820.026*
N10.6600 (3)0.31119 (18)0.26599 (15)0.0175 (4)
N20.3851 (3)0.47401 (18)0.18167 (15)0.0162 (4)
N30.2928 (3)0.41094 (18)0.40710 (15)0.0174 (4)
N40.7434 (3)0.3769 (2)0.05127 (17)0.0221 (4)
N50.0347 (3)0.5670 (2)0.32441 (19)0.0201 (4)
O10.1589 (2)0.21134 (16)0.83288 (14)0.0238 (4)
H10.12210.12930.81460.036*
O21.0196 (2)0.05639 (16)0.78135 (13)0.0229 (4)
H21.11540.13390.76600.034*
H7N0.883 (4)0.316 (3)0.040 (2)0.037 (7)*
H8N0.704 (4)0.418 (2)0.013 (2)0.028 (7)*
H9N0.008 (3)0.618 (2)0.262 (2)0.019 (6)*
H10N0.059 (4)0.572 (2)0.402 (2)0.026 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0178 (11)0.0139 (11)0.0162 (11)0.0025 (9)0.0042 (9)0.0004 (9)
C20.0158 (11)0.0155 (11)0.0169 (11)0.0015 (9)0.0036 (9)0.0005 (9)
C30.0192 (12)0.0152 (11)0.0180 (11)0.0017 (9)0.0069 (9)0.0010 (9)
C40.0269 (12)0.0266 (13)0.0167 (11)0.0075 (10)0.0055 (10)0.0007 (9)
C50.0165 (11)0.0232 (13)0.0221 (11)0.0028 (9)0.0062 (9)0.0016 (9)
C60.0144 (11)0.0194 (12)0.0210 (11)0.0004 (9)0.0055 (9)0.0001 (9)
C70.0166 (11)0.0200 (12)0.0212 (11)0.0005 (9)0.0067 (9)0.0007 (9)
C80.0202 (12)0.0240 (13)0.0230 (11)0.0021 (9)0.0088 (10)0.0032 (9)
N10.0176 (9)0.0180 (10)0.0151 (9)0.0024 (7)0.0031 (8)0.0012 (7)
N20.0151 (9)0.0164 (9)0.0148 (9)0.0024 (7)0.0016 (7)0.0008 (7)
N30.0184 (9)0.0175 (10)0.0145 (9)0.0025 (7)0.0033 (7)0.0023 (7)
N40.0184 (11)0.0272 (11)0.0152 (10)0.0082 (9)0.0004 (9)0.0015 (8)
N50.0172 (10)0.0258 (11)0.0120 (10)0.0071 (8)0.0005 (9)0.0047 (8)
O10.0201 (8)0.0202 (8)0.0340 (9)0.0013 (7)0.0139 (7)0.0009 (7)
O20.0171 (8)0.0223 (9)0.0299 (9)0.0073 (6)0.0102 (7)0.0055 (7)
Geometric parameters (Å, º) top
C1—N41.336 (2)C6—C71.522 (3)
C1—N21.345 (2)C6—H6A0.9900
C1—N11.357 (2)C6—H6B0.9900
C2—N51.331 (3)C7—C81.512 (3)
C2—N21.346 (2)C7—H7A0.9900
C2—N31.362 (2)C7—H7B0.9900
C3—N31.334 (2)C8—O21.434 (2)
C3—N11.342 (2)C8—H8A0.9900
C3—C41.494 (3)C8—H8B0.9900
C4—H4A0.9800N4—H7N0.92 (2)
C4—H4B0.9800N4—H8N0.85 (2)
C4—H4C0.9800N5—H9N0.87 (2)
C5—O11.431 (2)N5—H10N0.87 (2)
C5—C61.512 (3)O1—H10.8400
C5—H5A0.9900O2—H20.8400
C5—H5B0.9900
N4—C1—N2117.48 (18)C7—C6—H6B108.7
N4—C1—N1117.24 (18)H6A—C6—H6B107.6
N2—C1—N1125.28 (18)C8—C7—C6113.03 (17)
N5—C2—N2118.72 (19)C8—C7—H7A109.0
N5—C2—N3116.41 (18)C6—C7—H7A109.0
N2—C2—N3124.86 (18)C8—C7—H7B109.0
N3—C3—N1125.76 (18)C6—C7—H7B109.0
N3—C3—C4117.45 (18)H7A—C7—H7B107.8
N1—C3—C4116.79 (17)O2—C8—C7110.49 (16)
C3—C4—H4A109.5O2—C8—H8A109.6
C3—C4—H4B109.5C7—C8—H8A109.6
H4A—C4—H4B109.5O2—C8—H8B109.6
C3—C4—H4C109.5C7—C8—H8B109.6
H4A—C4—H4C109.5H8A—C8—H8B108.1
H4B—C4—H4C109.5C3—N1—C1114.53 (16)
O1—C5—C6113.42 (16)C1—N2—C2114.71 (17)
O1—C5—H5A108.9C3—N3—C2114.85 (17)
C6—C5—H5A108.9C1—N4—H7N118.7 (14)
O1—C5—H5B108.9C1—N4—H8N120.1 (15)
C6—C5—H5B108.9H7N—N4—H8N121 (2)
H5A—C5—H5B107.7C2—N5—H9N121.4 (13)
C5—C6—C7114.11 (17)C2—N5—H10N119.2 (14)
C5—C6—H6A108.7H9N—N5—H10N119.4 (19)
C7—C6—H6A108.7C5—O1—H1109.5
C5—C6—H6B108.7C8—O2—H2109.5
O1—C5—C6—C764.5 (2)N1—C1—N2—C21.1 (3)
C5—C6—C7—C8179.55 (17)N5—C2—N2—C1178.99 (18)
C6—C7—C8—O259.0 (2)N3—C2—N2—C10.6 (3)
N3—C3—N1—C10.1 (3)N1—C3—N3—C20.5 (3)
C4—C3—N1—C1179.68 (18)C4—C3—N3—C2179.23 (18)
N4—C1—N1—C3179.49 (18)N5—C2—N3—C3179.76 (18)
N2—C1—N1—C30.8 (3)N2—C2—N3—C30.1 (3)
N4—C1—N2—C2179.17 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.922.764 (2)176
O2—H2···N1ii0.841.942.777 (2)178
N4—H7N···O1iii0.92 (3)2.52 (2)3.173 (2)128.5 (7)
N4—H8N···N2iv0.85 (2)2.19 (2)3.037 (2)178 (2)
N5—H9N···O1v0.88 (2)2.069 (19)2.909 (2)160.1 (18)
N5—H10N···N3v0.87 (2)2.14 (2)3.008 (3)179 (2)
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+1; (iii) x+1, y, z1; (iv) x+1, y+1, z; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H7N5·C4H10O2
Mr215.27
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)5.8755 (3), 9.0515 (5), 10.7607 (5)
α, β, γ (°)87.911 (3), 74.346 (3), 83.550 (3)
V3)547.55 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.05 × 0.04
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.637, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
7713, 1911, 1288
Rint0.045
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.093, 1.00
No. of reflections1911
No. of parameters155
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and ORTEP-3 (Farrugia, 1997), enCIFer (Allen et al., 2004) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.922.764 (2)176
O2—H2···N1ii0.841.942.777 (2)178
N4—H7N···O1iii0.92 (3)2.52 (2)3.173 (2)128.5 (7)
N4—H8N···N2iv0.85 (2)2.19 (2)3.037 (2)178 (2)
N5—H9N···O1v0.88 (2)2.069 (19)2.909 (2)160.1 (18)
N5—H10N···N3v0.87 (2)2.14 (2)3.008 (3)179 (2)
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+1; (iii) x+1, y, z1; (iv) x+1, y+1, z; (v) x, y+1, z+1.
 

Acknowledgements

RMB thanks the Commonwealth Scholarship Commission for providing a scholarship.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelori, A., Suresh, E. & Pedireddi, V. R. (2008). Chem. Eur. J. 14, 6967–6977.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFan, Y., You, W., Qian, H.-F., Liu, J.-L. & Huang, W. (2009). Acta Cryst. E65, o494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKaczmarek, M., Radecka-Paryzek, W. & Kubicki, M. (2008). Acta Cryst. E64, o269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPerpétuo, G. J. & Janczak, J. (2007). Acta Cryst. C63, o271–o273.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPortalone, G. (2008). Acta Cryst. E64, o1685.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPortalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o655–o658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQian, H.-F. & Huang, W. (2010). Acta Cryst. E66, o759.  Web of Science CrossRef IUCr Journals Google Scholar
First citationŠebenik, A., Osredkar, U. & Žigon, M. (1989). Polym. Bull. 22, 155–161.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Devi, P., Muthiah, P. T., Lynch, D. E. & Butcher, R. J. (2010). Acta Cryst. C66, o324–o328.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Z.-H. (2008). Acta Cryst. E64, o411.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds