organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­hydro-1H-pyrrolo­[1,2-a]indole-9-carbo­nitrile

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
*Correspondence e-mail: joseph.michael@wits.ac.za

(Received 26 October 2012; accepted 2 November 2012; online 10 November 2012)

The asymmetric unit of the title compound, C12H10N2, which may serve as a model for mitosenes, contains two independent mol­ecules. The conformation of the five-membered rings in both molecules is envelope, with the central CH2—CH2—CH2 C atom at the flap in each case. In the crystal, they inter­act by a combination of weak C—H⋯N and ππ inter­actions [centroid–centroid distances = 3.616 (1) and 3.499 (1) Å] and C—H⋯π contacts.

Related literature

For the synthesis of the title compound by intra­molecular Heck reaction of [1-(2-bromo­phen­yl)pyrrolidin-2-yl­idene]-acetonitrile, see: Michael et al. (1993[Michael, J. P., Chang, S.-F. & Wilson, C. (1993). Tetrahedron Lett. 34, 8365-8368.]). For an alternative synthesis by cyclization of [2-(2-oxopyrrolidin-1-yl)phen­yl]acetonitrile with sodium hydride, see: Verboom et al. (1986[Verboom, W., Orlemans, E. O. M., Berga, H. J., Scheltinga, H. W. & Reinhoudt, D. N. (1986). Tetrahedron, 42, 5053-5064.]). For background to mitosenes, see: Franck (1978[Franck, R. W. (1978). Fortschr. Chem. Org. Naturst. 38, 1-45.]); Kasai & Kono (1992[Kasai, M. & Kono, M. (1992). Synlett, pp. 778-790.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2

  • Mr = 182.22

  • Triclinic, [P \overline 1]

  • a = 9.1383 (3) Å

  • b = 9.5340 (3) Å

  • c = 12.3138 (4) Å

  • α = 90.794 (2)°

  • β = 90.528 (2)°

  • γ = 116.272 (2)°

  • V = 961.78 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.50 × 0.45 × 0.30 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.978

  • 7592 measured reflections

  • 3498 independent reflections

  • 2809 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.04

  • 3498 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C6A–C11A and C6B–C11B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1A1⋯N2B 0.99 2.68 3.338 (2) 124
C2A—H2A1⋯N2B 0.99 2.66 3.373 (2) 129
C3A—H3A2⋯N2Ai 0.99 2.66 3.634 (2) 168
C3B—H3B1⋯N2Bii 0.99 2.57 3.495 (2) 156
C3A—H3A1⋯Cg1iii 0.99 2.79 3.545 (2) 135
C3B—H3B2⋯Cg2iv 0.99 2.67 3.523 (2) 146
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z+1; (iii) -x, -y, -z; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker 2004[Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The mitosenes, naturally occurring biologically active degradation products of the important mitomycin antibiotics (Franck, 1978; Kasai & Kono, 1992) are characterized by the presence of a pyrrolo[1,2-a]indole core. The title compound, 2,3-dihydro-1H-pyrrolo[1,2-a]indole-9-carbonitrile, was prepared as part of a model study on the use of intramolecular Heck reactions for creating this core from various [1-(2-bromoaryl)pyrrolidin-2-ylidene]acetates and analogues (Michael et al., 1993).

The asymmetric unit of (I) consists of two molecules, labelled A and B, on general positions. Fig. 1 shows the atomic numbering scheme. The hydrogen bonding of (I) consists of weak C—H···N hydrogen bonds and various ππ interactions. Each molecule in the asymmetric unit makes centrosymmetric dimers using the C3A—H3A2···N2A and C3B—H3B1···N2B hydrogen bonds, shown explicitly for the B molecule in Fig. 2. Between the A and B molecules, two ethylene groups from the A molecule hydrogen bond to the cyanide N atom of the B molecule, through C1A—H1A1···N2B and C2A—H2A1···N2B hydrogen bonds. In addition, both A/A and B/B molecules sit parallel to each other and undergo ππ interactions, with distances of 3.616 (1) Å for A···A and 3.499 (1) Å for B···B (Fig. 2). Also C—H···π contacts are formed between those same A/A and B/B molecules, C3A—H3A1···Cg1iii [Cg1: C6A to C11A; symmetry operator: (iii) -x, -y, -z] and C3B—H3B2···Cg2iv [Cg2: C6B to C11B; symmetry operator: (iv) 1-x, 1-y, 1-z].

Related literature top

For the synthesis of the title compound by intramolecular Heck reaction of [1-(2-bromophenyl)pyrrolidin-2-ylidene]-acetonitrile, see: Michael et al. (1993). For an alternative synthesis by cyclization of [2-(2-oxopyrrolidin-1-yl)phenyl]acetonitrile with sodium hydride, see: Verboom et al. (1986). For background to mitosenes, see: Franck (1978); Kasai & Kono (1992).

Experimental top

The title compound was prepared by reaction of [1-(2-bromophenyl)pyrrolidin-2-ylidene]acetonitrile (350 mg, 1.33 mmol) with palladium(II) acetate (299 mg, 1.33 mmol, 1 eq.), tri-o-tolylphosphine (407 mg, 1.33 mmol) and triethylamine (0.19 ml, 1.33 mmol), heated under reflux in acetonitrile (7 ml) for 96 h. The crude oil obtained after evaporation of the solvent (1.20 g) was purified by column chromatography on silica gel with hexane/ethyl acetate (5:1 v/v) as eluent to yield a colourless solid (133 mg, 55%). Recrystallization from ethyl acetate produced colourless blocks, m.p. 400–401 K. An alternative synthesis is available from the literature, based on cyclization of [2-(2-oxopyrrolidin-1-yl)phenyl]acetonitrile with sodium hydride (Verboom et al., 1986).

Refinement top

The C-bound H atoms were geometrically placed (C—H bond lengths of 0.95 for aromatic CH and 0.99 for methylene CH2) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. View of the hydrogen bonds of (I). C—H···N are shown as dashed red lines and C—H···π as dashed blue lines. H atoms not involved in hydrogen bonding are omitted for clarity.
2,3-Dihydro-1H-pyrrolo[1,2-a]indole-9-carbonitrile top
Crystal data top
C12H10N2Z = 4
Mr = 182.22F(000) = 384
Triclinic, P1Dx = 1.258 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1383 (3) ÅCell parameters from 3160 reflections
b = 9.5340 (3) Åθ = 2.4–28.2°
c = 12.3138 (4) ŵ = 0.08 mm1
α = 90.794 (2)°T = 173 K
β = 90.528 (2)°Block, colourless
γ = 116.272 (2)°0.50 × 0.45 × 0.30 mm
V = 961.78 (5) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2809 reflections with I > 2σ(I)
ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.5°, θmin = 1.7°
Tmin = 0.963, Tmax = 0.978h = 1011
7592 measured reflectionsk = 1111
3498 independent reflectionsl = 1414
Refinement top
Refinement on F20 constraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.2024P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.19 e Å3
3498 reflectionsΔρmin = 0.15 e Å3
254 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.027 (2)
Crystal data top
C12H10N2γ = 116.272 (2)°
Mr = 182.22V = 961.78 (5) Å3
Triclinic, P1Z = 4
a = 9.1383 (3) ÅMo Kα radiation
b = 9.5340 (3) ŵ = 0.08 mm1
c = 12.3138 (4) ÅT = 173 K
α = 90.794 (2)°0.50 × 0.45 × 0.30 mm
β = 90.528 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3498 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2809 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.978Rint = 0.023
7592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
3498 reflectionsΔρmin = 0.15 e Å3
254 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.10944 (18)0.17265 (18)0.14642 (13)0.0397 (4)
H1A10.12990.18430.22410.048*
H1A20.2110.09370.11140.048*
C2A0.0463 (2)0.32983 (19)0.08862 (13)0.0447 (4)
H2A10.0180.41640.14240.054*
H2A20.13110.33030.03820.054*
C3A0.10660 (19)0.35042 (18)0.02512 (13)0.0419 (4)
H3A10.08360.33830.05410.05*
H3A20.19870.45440.04050.05*
C4A0.14316 (17)0.22297 (16)0.06621 (11)0.0323 (3)
C5A0.25796 (16)0.16684 (15)0.05611 (11)0.0307 (3)
C6A0.20402 (16)0.02878 (15)0.12165 (11)0.0296 (3)
C7A0.26457 (17)0.07929 (17)0.14459 (12)0.0358 (3)
H7A0.36320.06970.11330.043*
C8A0.17821 (18)0.20006 (17)0.21350 (13)0.0407 (4)
H8A0.21780.27460.22910.049*
C9A0.03390 (18)0.21502 (18)0.26077 (12)0.0422 (4)
H9A0.02180.29860.30870.051*
C10A0.02975 (18)0.11093 (17)0.23936 (12)0.0375 (4)
H10A0.12830.12140.27120.045*
C11A0.05677 (16)0.00985 (16)0.16923 (11)0.0304 (3)
C12A0.40232 (18)0.23407 (17)0.00564 (12)0.0361 (3)
N1A0.02493 (14)0.13034 (13)0.13356 (9)0.0325 (3)
N2A0.52063 (17)0.28700 (16)0.05460 (11)0.0503 (4)
C1B0.49796 (18)0.56982 (17)0.73859 (12)0.0365 (3)
H1B10.61630.62150.72370.044*
H1B20.48010.51770.80960.044*
C2B0.4245 (2)0.68616 (19)0.73518 (13)0.0463 (4)
H2B10.51040.79410.74840.056*
H2B20.34050.66170.79150.056*
C3B0.34765 (17)0.67027 (16)0.62107 (12)0.0346 (3)
H3B10.24260.67680.62430.041*
H3B20.42210.75190.57240.041*
C4B0.32309 (15)0.51204 (15)0.58477 (11)0.0281 (3)
C5B0.24306 (16)0.40067 (15)0.50510 (11)0.0297 (3)
C6B0.27990 (16)0.27070 (15)0.52490 (11)0.0292 (3)
C7B0.23096 (18)0.12242 (16)0.47682 (12)0.0375 (4)
H7B0.15940.09020.41530.045*
C8B0.28912 (19)0.02423 (17)0.52084 (13)0.0422 (4)
H8B0.25650.07680.48910.051*
C9B0.39485 (19)0.06978 (17)0.61108 (13)0.0406 (4)
H9B0.43360.00040.63870.049*
C10B0.44413 (17)0.21428 (16)0.66078 (12)0.0344 (3)
H10B0.51560.24520.72240.041*
C11B0.38481 (16)0.31282 (15)0.61696 (11)0.0285 (3)
C12B0.14474 (18)0.41506 (17)0.42058 (12)0.0359 (3)
N1B0.40605 (13)0.45930 (12)0.65134 (9)0.0282 (3)
N2B0.06647 (18)0.42763 (17)0.35107 (12)0.0546 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0365 (8)0.0434 (9)0.0459 (9)0.0241 (7)0.0033 (7)0.0072 (7)
C2A0.0552 (10)0.0451 (9)0.0449 (9)0.0325 (8)0.0066 (8)0.0048 (7)
C3A0.0459 (9)0.0358 (8)0.0463 (9)0.0202 (7)0.0062 (7)0.0025 (7)
C4A0.0342 (8)0.0300 (7)0.0291 (7)0.0111 (6)0.0051 (6)0.0002 (6)
C5A0.0299 (7)0.0304 (7)0.0295 (7)0.0113 (6)0.0013 (6)0.0010 (6)
C6A0.0268 (7)0.0304 (7)0.0285 (7)0.0100 (6)0.0044 (6)0.0013 (6)
C7A0.0294 (7)0.0363 (8)0.0416 (8)0.0147 (6)0.0052 (6)0.0001 (6)
C8A0.0386 (8)0.0353 (8)0.0490 (9)0.0172 (7)0.0094 (7)0.0060 (7)
C9A0.0397 (9)0.0385 (8)0.0403 (9)0.0098 (7)0.0012 (7)0.0101 (7)
C10A0.0316 (8)0.0392 (8)0.0369 (8)0.0111 (7)0.0024 (6)0.0042 (6)
C11A0.0302 (7)0.0316 (7)0.0285 (7)0.0131 (6)0.0028 (6)0.0015 (6)
C12A0.0379 (8)0.0341 (8)0.0345 (8)0.0142 (7)0.0007 (7)0.0028 (6)
N1A0.0317 (6)0.0331 (6)0.0344 (6)0.0160 (5)0.0001 (5)0.0001 (5)
N2A0.0452 (8)0.0503 (8)0.0512 (8)0.0169 (7)0.0130 (7)0.0078 (7)
C1B0.0389 (8)0.0356 (8)0.0350 (8)0.0169 (7)0.0070 (6)0.0070 (6)
C2B0.0563 (10)0.0428 (9)0.0467 (9)0.0287 (8)0.0098 (8)0.0113 (7)
C3B0.0345 (8)0.0295 (7)0.0429 (8)0.0171 (6)0.0002 (6)0.0007 (6)
C4B0.0263 (7)0.0274 (7)0.0319 (7)0.0131 (6)0.0043 (6)0.0047 (6)
C5B0.0272 (7)0.0297 (7)0.0304 (7)0.0111 (6)0.0003 (6)0.0034 (6)
C6B0.0271 (7)0.0274 (7)0.0313 (7)0.0105 (6)0.0036 (6)0.0029 (6)
C7B0.0376 (8)0.0310 (8)0.0381 (8)0.0102 (6)0.0006 (7)0.0028 (6)
C8B0.0489 (9)0.0264 (7)0.0503 (9)0.0158 (7)0.0057 (8)0.0028 (7)
C9B0.0460 (9)0.0325 (8)0.0507 (9)0.0237 (7)0.0073 (7)0.0077 (7)
C10B0.0342 (8)0.0351 (8)0.0379 (8)0.0188 (6)0.0019 (6)0.0047 (6)
C11B0.0272 (7)0.0263 (7)0.0318 (7)0.0115 (6)0.0043 (6)0.0035 (5)
C12B0.0352 (8)0.0347 (8)0.0375 (8)0.0153 (7)0.0025 (7)0.0012 (6)
N1B0.0285 (6)0.0279 (6)0.0297 (6)0.0139 (5)0.0022 (5)0.0002 (5)
N2B0.0565 (9)0.0606 (9)0.0494 (9)0.0287 (8)0.0155 (7)0.0012 (7)
Geometric parameters (Å, º) top
C1A—N1A1.4616 (17)C1B—N1B1.4624 (17)
C1A—C2A1.535 (2)C1B—C2B1.530 (2)
C1A—H1A10.99C1B—H1B10.99
C1A—H1A20.99C1B—H1B20.99
C2A—C3A1.544 (2)C2B—C3B1.540 (2)
C2A—H2A10.99C2B—H2B10.99
C2A—H2A20.99C2B—H2B20.99
C3A—C4A1.4891 (19)C3B—C4B1.4852 (18)
C3A—H3A10.99C3B—H3B10.99
C3A—H3A20.99C3B—H3B20.99
C4A—N1A1.3517 (18)C4B—N1B1.3552 (16)
C4A—C5A1.3784 (19)C4B—C5B1.3767 (19)
C5A—C12A1.419 (2)C5B—C12B1.4161 (19)
C5A—C6A1.4455 (19)C5B—C6B1.4437 (19)
C6A—C7A1.3990 (19)C6B—C7B1.4005 (19)
C6A—C11A1.4104 (19)C6B—C11B1.4114 (19)
C7A—C8A1.380 (2)C7B—C8B1.379 (2)
C7A—H7A0.95C7B—H7B0.95
C8A—C9A1.396 (2)C8B—C9B1.397 (2)
C8A—H8A0.95C8B—H8B0.95
C9A—C10A1.381 (2)C9B—C10B1.378 (2)
C9A—H9A0.95C9B—H9B0.95
C10A—C11A1.3896 (19)C10B—C11B1.3882 (18)
C10A—H10A0.95C10B—H10B0.95
C11A—N1A1.3800 (17)C11B—N1B1.3818 (17)
C12A—N2A1.1508 (19)C12B—N2B1.1515 (18)
N1A—C1A—C2A102.51 (12)N1B—C1B—C2B101.64 (11)
N1A—C1A—H1A1111.3N1B—C1B—H1B1111.4
C2A—C1A—H1A1111.3C2B—C1B—H1B1111.4
N1A—C1A—H1A2111.3N1B—C1B—H1B2111.4
C2A—C1A—H1A2111.3C2B—C1B—H1B2111.4
H1A1—C1A—H1A2109.2H1B1—C1B—H1B2109.3
C1A—C2A—C3A107.49 (12)C1B—C2B—C3B106.64 (12)
C1A—C2A—H2A1110.2C1B—C2B—H2B1110.4
C3A—C2A—H2A1110.2C3B—C2B—H2B1110.4
C1A—C2A—H2A2110.2C1B—C2B—H2B2110.4
C3A—C2A—H2A2110.2C3B—C2B—H2B2110.4
H2A1—C2A—H2A2108.5H2B1—C2B—H2B2108.6
C4A—C3A—C2A103.49 (12)C4B—C3B—C2B102.46 (11)
C4A—C3A—H3A1111.1C4B—C3B—H3B1111.3
C2A—C3A—H3A1111.1C2B—C3B—H3B1111.3
C4A—C3A—H3A2111.1C4B—C3B—H3B2111.3
C2A—C3A—H3A2111.1C2B—C3B—H3B2111.3
H3A1—C3A—H3A2109H3B1—C3B—H3B2109.2
N1A—C4A—C5A109.25 (12)N1B—C4B—C5B109.20 (11)
N1A—C4A—C3A110.47 (12)N1B—C4B—C3B110.27 (11)
C5A—C4A—C3A140.26 (13)C5B—C4B—C3B140.53 (12)
C4A—C5A—C12A126.19 (12)C4B—C5B—C12B125.28 (13)
C4A—C5A—C6A106.83 (12)C4B—C5B—C6B106.93 (11)
C12A—C5A—C6A126.98 (13)C12B—C5B—C6B127.78 (13)
C7A—C6A—C11A118.89 (12)C7B—C6B—C11B118.82 (12)
C7A—C6A—C5A134.72 (13)C7B—C6B—C5B134.60 (13)
C11A—C6A—C5A106.40 (12)C11B—C6B—C5B106.53 (11)
C8A—C7A—C6A118.66 (14)C8B—C7B—C6B118.46 (14)
C8A—C7A—H7A120.7C8B—C7B—H7B120.8
C6A—C7A—H7A120.7C6B—C7B—H7B120.8
C7A—C8A—C9A121.37 (14)C7B—C8B—C9B121.55 (13)
C7A—C8A—H8A119.3C7B—C8B—H8B119.2
C9A—C8A—H8A119.3C9B—C8B—H8B119.2
C10A—C9A—C8A121.45 (14)C10B—C9B—C8B121.40 (13)
C10A—C9A—H9A119.3C10B—C9B—H9B119.3
C8A—C9A—H9A119.3C8B—C9B—H9B119.3
C9A—C10A—C11A117.06 (14)C9B—C10B—C11B117.09 (14)
C9A—C10A—H10A121.5C9B—C10B—H10B121.5
C11A—C10A—H10A121.5C11B—C10B—H10B121.5
N1A—C11A—C10A130.29 (13)N1B—C11B—C10B130.31 (13)
N1A—C11A—C6A107.14 (11)N1B—C11B—C6B106.98 (11)
C10A—C11A—C6A122.57 (13)C10B—C11B—C6B122.67 (13)
N2A—C12A—C5A178.68 (16)N2B—C12B—C5B179.15 (17)
C4A—N1A—C11A110.38 (11)C4B—N1B—C11B110.34 (11)
C4A—N1A—C1A114.62 (11)C4B—N1B—C1B113.89 (11)
C11A—N1A—C1A134.86 (12)C11B—N1B—C1B135.75 (11)
N1A—C1A—C2A—C3A11.78 (15)N1B—C1B—C2B—C3B21.63 (16)
C1A—C2A—C3A—C4A10.85 (16)C1B—C2B—C3B—C4B21.44 (16)
C2A—C3A—C4A—N1A5.68 (16)C2B—C3B—C4B—N1B13.05 (15)
C2A—C3A—C4A—C5A175.95 (17)C2B—C3B—C4B—C5B166.94 (17)
N1A—C4A—C5A—C12A178.53 (13)N1B—C4B—C5B—C12B179.62 (13)
C3A—C4A—C5A—C12A3.1 (3)C3B—C4B—C5B—C12B0.4 (3)
N1A—C4A—C5A—C6A0.56 (15)N1B—C4B—C5B—C6B0.12 (15)
C3A—C4A—C5A—C6A177.82 (17)C3B—C4B—C5B—C6B179.87 (16)
C4A—C5A—C6A—C7A179.59 (15)C4B—C5B—C6B—C7B176.58 (15)
C12A—C5A—C6A—C7A1.3 (3)C12B—C5B—C6B—C7B3.7 (3)
C4A—C5A—C6A—C11A0.40 (14)C4B—C5B—C6B—C11B0.84 (15)
C12A—C5A—C6A—C11A178.68 (13)C12B—C5B—C6B—C11B178.89 (13)
C11A—C6A—C7A—C8A0.4 (2)C11B—C6B—C7B—C8B0.8 (2)
C5A—C6A—C7A—C8A179.65 (14)C5B—C6B—C7B—C8B177.95 (15)
C6A—C7A—C8A—C9A0.5 (2)C6B—C7B—C8B—C9B0.2 (2)
C7A—C8A—C9A—C10A0.9 (2)C7B—C8B—C9B—C10B0.7 (2)
C8A—C9A—C10A—C11A0.4 (2)C8B—C9B—C10B—C11B0.3 (2)
C9A—C10A—C11A—N1A179.53 (14)C9B—C10B—C11B—N1B176.69 (13)
C9A—C10A—C11A—C6A0.5 (2)C9B—C10B—C11B—C6B0.7 (2)
C7A—C6A—C11A—N1A179.89 (12)C7B—C6B—C11B—N1B176.67 (12)
C5A—C6A—C11A—N1A0.10 (14)C5B—C6B—C11B—N1B1.24 (14)
C7A—C6A—C11A—C10A0.9 (2)C7B—C6B—C11B—C10B1.2 (2)
C5A—C6A—C11A—C10A179.10 (13)C5B—C6B—C11B—C10B179.14 (12)
C5A—C4A—N1A—C11A0.52 (15)C5B—C4B—N1B—C11B0.68 (15)
C3A—C4A—N1A—C11A178.38 (11)C3B—C4B—N1B—C11B179.33 (11)
C5A—C4A—N1A—C1A176.82 (11)C5B—C4B—N1B—C1B179.18 (11)
C3A—C4A—N1A—C1A2.08 (16)C3B—C4B—N1B—C1B0.83 (16)
C10A—C11A—N1A—C4A179.36 (14)C10B—C11B—N1B—C4B178.89 (14)
C6A—C11A—N1A—C4A0.25 (15)C6B—C11B—N1B—C4B1.21 (15)
C10A—C11A—N1A—C1A5.4 (3)C10B—C11B—N1B—C1B3.1 (3)
C6A—C11A—N1A—C1A175.50 (14)C6B—C11B—N1B—C1B179.25 (14)
C2A—C1A—N1A—C4A8.84 (16)C2B—C1B—N1B—C4B14.35 (16)
C2A—C1A—N1A—C11A176.06 (14)C2B—C1B—N1B—C11B167.66 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C6A–C11A and C6B–C11B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1A—H1A1···N2B0.992.683.338 (2)124
C2A—H2A1···N2B0.992.663.373 (2)129
C3A—H3A2···N2Ai0.992.663.634 (2)168
C3B—H3B1···N2Bii0.992.573.495 (2)156
C3A—H3A1···Cg1iii0.992.793.545 (2)135
C3B—H3B2···Cg2iv0.992.673.523 (2)146
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H10N2
Mr182.22
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.1383 (3), 9.5340 (3), 12.3138 (4)
α, β, γ (°)90.794 (2), 90.528 (2), 116.272 (2)
V3)961.78 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.45 × 0.30
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
7592, 3498, 2809
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.04
No. of reflections3498
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C6A–C11A and C6B–C11B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1A—H1A1···N2B0.992.683.338 (2)124
C2A—H2A1···N2B0.992.663.373 (2)129
C3A—H3A2···N2Ai0.992.663.634 (2)168
C3B—H3B1···N2Bii0.992.573.495 (2)156
C3A—H3A1···Cg1iii0.992.793.545 (2)135
C3B—H3B2···Cg2iv0.992.673.523 (2)146
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1; (iii) x, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the University of the Witwatersrand and the Mol­ecular Sciences Institute, which are thanked for providing the infrastructure required to do this work. Ms C. Wilson is thanked for carrying out the preliminary synthesis.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFranck, R. W. (1978). Fortschr. Chem. Org. Naturst. 38, 1–45.  CrossRef Google Scholar
First citationKasai, M. & Kono, M. (1992). Synlett, pp. 778–790.  CrossRef Google Scholar
First citationMichael, J. P., Chang, S.-F. & Wilson, C. (1993). Tetrahedron Lett. 34, 8365–8368.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerboom, W., Orlemans, E. O. M., Berga, H. J., Scheltinga, H. W. & Reinhoudt, D. N. (1986). Tetrahedron, 42, 5053–5064.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds