organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl­benzene-1,2-di­amine

aSchool of Material Engineering, Jinling Institute of Technology, Nanjing 211169, People's Republic of China
*Correspondence e-mail: yangjianming7706@sina.com

(Received 27 October 2012; accepted 8 November 2012; online 14 November 2012)

The title compound, C7H10N2, was synthesized from 2-methyl-6-nitro­aniline by a reduction reaction. In the crystal, molecules are linked via N—H⋯N hydrogen bonds, forming two-dimensional networks lying parallel to (100). These networks are stabilized by C—H⋯π and N—H⋯π inter­actions.

Related literature

The title compound is an important organic synthesis inter­mediate. For background to its applications, see: Wen et al. (2009[Wen, H. L., Yao, K. S., Zhang, Y. D., Zhou, Z. M. & Kirschning, A. (2009). Catal. Commun. 10, 1207-1211.]). For the synthetic procedure, see: Li et al. (2011[Li, Y., Zhang, H. B., Liu, Y. Y., Li, F. S. & Liu, X. N. (2011). J. Mol. Struct. 997, 110-116.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N2

  • Mr = 122.17

  • Monoclinic, P 21 /c

  • a = 11.836 (2) Å

  • b = 7.7160 (15) Å

  • c = 7.7430 (15) Å

  • β = 90.72 (3)°

  • V = 707.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 291 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.979, Tmax = 0.993

  • 2693 measured reflections

  • 1300 independent reflections

  • 962 reflections with I > 2σ(I)

  • Rint = 0.060

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.124

  • S = 1.00

  • 1300 reflections

  • 110 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.91 (2) 2.36 (2) 3.237 (2) 163.5 (16)
N2—H2A⋯N1ii 0.84 (2) 2.48 (2) 3.248 (2) 152.2 (19)
C2—H2⋯Cg1iii 0.93 2.85 3.6713 (18) 148
N2—H2BCg1iv 0.90 (2) 2.776 (18) 3.5192 (17) 141.2 (16)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (iv) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aromatic amines are important organic intermediates and widely used in chemical, pharmaceutical, agricultural and photographic chemicals. Aromatic amines are mainly synthesized by the reduction of aromatic nitro compounds. Compared with other reduction methods, catalytic transfer hydrogenation (CTH) is environmentally friendly, high yield and good selectivity (Wen et al., 2009), in which hydrogen gas is replaced by a hydrogen donor such as hydrazine hydrate. Here, the title compound, (I), was synthesized by the CTH of 2-methyl-6-nitroaniline, and we report the crystal structure of (I).

In the molecule of (I), (Fig.1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal, there are two C—H···Cg1 and N—H···Cg1 interactions (Cg1 is the centroid of C1-C6 ring). The molecules are linked each other by the two intermolecular N—H···N hydrogen bonds to form a three-dimensional network, which seem to be very effective in the stabilization of the crystal structure (Fig. 2.).

Related literature top

The title compound is an important organic synthesis intermediate. For background to its applications, see: Wen et al. (2009). For the synthetic procedure, see: Li et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by the literature method (Li et al., 2011). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.5 g) in ethyl acetate (20 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/N), where x = 1.2 for aromatic H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown by dashed lines.
3-Methylbenzene-1,2-diamine top
Crystal data top
C7H10N2F(000) = 264
Mr = 122.17Dx = 1.148 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.836 (2) Åθ = 9–13°
b = 7.7160 (15) ŵ = 0.07 mm1
c = 7.7430 (15) ÅT = 291 K
β = 90.72 (3)°Needle, colourless
V = 707.1 (2) Å30.3 × 0.2 × 0.1 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
962 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
ω/2θ scansh = 1414
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.979, Tmax = 0.993l = 09
2693 measured reflections3 standard reflections every 200 reflections
1300 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.073P)2]
where P = (Fo2 + 2Fc2)/3
1300 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C7H10N2V = 707.1 (2) Å3
Mr = 122.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.836 (2) ŵ = 0.07 mm1
b = 7.7160 (15) ÅT = 291 K
c = 7.7430 (15) Å0.3 × 0.2 × 0.1 mm
β = 90.72 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
962 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.060
Tmin = 0.979, Tmax = 0.9933 standard reflections every 200 reflections
2693 measured reflections intensity decay: 1%
1300 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.13 e Å3
1300 reflectionsΔρmin = 0.12 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.15863 (14)0.55588 (19)0.1128 (2)0.0551 (5)
H10.08290.56120.07990.066*
C20.23534 (15)0.6592 (2)0.0300 (2)0.0578 (5)
H20.21160.73400.05730.069*
C30.34751 (13)0.65096 (18)0.07727 (19)0.0493 (4)
H30.39960.72060.02110.059*
C40.38402 (12)0.54018 (16)0.20768 (17)0.0408 (4)
C50.30472 (12)0.43631 (17)0.29360 (17)0.0399 (4)
C60.19124 (12)0.44367 (18)0.2446 (2)0.0478 (4)
C70.10562 (18)0.3339 (3)0.3346 (3)0.0760 (6)
N10.49730 (11)0.5349 (2)0.26271 (18)0.0508 (4)
N20.34528 (14)0.32174 (18)0.42184 (19)0.0525 (4)
H1A0.5472 (17)0.596 (3)0.199 (3)0.072 (6)*
H1B0.5231 (14)0.430 (3)0.290 (2)0.066 (6)*
H2A0.4043 (19)0.350 (3)0.478 (3)0.086 (7)*
H2B0.2929 (18)0.257 (2)0.474 (3)0.074 (6)*
H7A0.031 (2)0.350 (3)0.279 (3)0.097 (7)*
H7B0.127 (2)0.211 (3)0.323 (3)0.111 (8)*
H7C0.1046 (18)0.375 (3)0.458 (3)0.091 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0485 (9)0.0534 (9)0.0630 (10)0.0031 (7)0.0144 (8)0.0054 (8)
C20.0675 (11)0.0475 (9)0.0578 (10)0.0018 (8)0.0169 (8)0.0077 (8)
C30.0583 (10)0.0435 (8)0.0461 (9)0.0086 (7)0.0023 (7)0.0014 (7)
C40.0458 (8)0.0359 (7)0.0408 (8)0.0009 (6)0.0020 (6)0.0065 (6)
C50.0445 (8)0.0354 (7)0.0398 (7)0.0032 (6)0.0025 (6)0.0045 (6)
C60.0424 (8)0.0444 (8)0.0566 (9)0.0021 (6)0.0008 (7)0.0062 (7)
C70.0493 (11)0.0862 (16)0.0926 (17)0.0115 (10)0.0066 (11)0.0150 (13)
N10.0437 (8)0.0531 (9)0.0558 (8)0.0016 (6)0.0033 (6)0.0063 (7)
N20.0482 (8)0.0534 (8)0.0557 (8)0.0009 (7)0.0021 (7)0.0128 (7)
Geometric parameters (Å, º) top
C1—C21.373 (2)C5—N21.4092 (19)
C1—C61.389 (2)C6—C71.499 (2)
C1—H10.9300C7—H7A0.98 (2)
C2—C31.374 (2)C7—H7B0.99 (2)
C2—H20.9300C7—H7C1.01 (2)
C3—C41.388 (2)N1—H1A0.91 (2)
C3—H30.9300N1—H1B0.89 (2)
C4—N11.4023 (19)N2—H2A0.84 (2)
C4—C51.408 (2)N2—H2B0.90 (2)
C5—C61.392 (2)
C2—C1—C6121.70 (15)C1—C6—C5118.94 (14)
C2—C1—H1119.2C1—C6—C7120.69 (16)
C6—C1—H1119.2C5—C6—C7120.37 (15)
C1—C2—C3119.44 (15)C6—C7—H7A109.4 (13)
C1—C2—H2120.3C6—C7—H7B108.7 (16)
C3—C2—H2120.3H7A—C7—H7B108.3 (19)
C2—C3—C4120.86 (15)C6—C7—H7C106.2 (12)
C2—C3—H3119.6H7A—C7—H7C110.6 (19)
C4—C3—H3119.6H7B—C7—H7C113 (2)
C3—C4—N1121.78 (14)C4—N1—H1A116.5 (12)
C3—C4—C5119.42 (14)C4—N1—H1B115.0 (11)
N1—C4—C5118.72 (13)H1A—N1—H1B112.1 (17)
C6—C5—C4119.64 (13)C5—N2—H2A118.1 (14)
C6—C5—N2122.45 (14)C5—N2—H2B115.9 (12)
C4—C5—N2117.83 (14)H2A—N2—H2B118.8 (19)
C6—C1—C2—C30.5 (2)N1—C4—C5—N25.00 (19)
C1—C2—C3—C40.2 (2)C2—C1—C6—C50.1 (2)
C2—C3—C4—N1177.35 (13)C2—C1—C6—C7179.18 (17)
C2—C3—C4—C50.6 (2)C4—C5—C6—C10.9 (2)
C3—C4—C5—C61.19 (19)N2—C5—C6—C1177.77 (13)
N1—C4—C5—C6178.00 (12)C4—C5—C6—C7179.99 (16)
C3—C4—C5—N2178.19 (12)N2—C5—C6—C73.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.91 (2)2.36 (2)3.237 (2)163.5 (16)
N2—H2A···N1ii0.84 (2)2.48 (2)3.248 (2)152.2 (19)
C2—H2···Cg1iii0.932.853.6713 (18)148
N2—H2B···Cg1iv0.90 (2)2.776 (18)3.5192 (17)141.2 (16)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z3/2; (iv) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC7H10N2
Mr122.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)11.836 (2), 7.7160 (15), 7.7430 (15)
β (°) 90.72 (3)
V3)707.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.979, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
2693, 1300, 962
Rint0.060
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.124, 1.00
No. of reflections1300
No. of parameters110
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.12

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.91 (2)2.36 (2)3.237 (2)163.5 (16)
N2—H2A···N1ii0.84 (2)2.48 (2)3.248 (2)152.2 (19)
C2—H2···Cg1iii0.93002.84873.6713 (18)148.16
N2—H2B···Cg1iv0.90 (2)2.776 (18)3.5192 (17)141.2 (16)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z3/2; (iv) x, y1/2, z1/2.
 

Acknowledgements

This work was supported by the Doctoral Fund of Jinling Institute of Technology (jit-b-201227). The authors thank the Center of Test and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, Y., Zhang, H. B., Liu, Y. Y., Li, F. S. & Liu, X. N. (2011). J. Mol. Struct. 997, 110–116.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, H. L., Yao, K. S., Zhang, Y. D., Zhou, Z. M. & Kirschning, A. (2009). Catal. Commun. 10, 1207–1211.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds