organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3413-o3414

(25R)-6α-Hy­dr­oxy-5α-spiro­stan-3β-yl tosyl­ate

aBenemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, Ciudad Universitaria, Puebla, Pue. 72570, Mexico, bUniversidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León CP 66451, Mexico, cHerbario y Jardín Botánico, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla, Pue. 72570, Mexico, and dEscuelas de Ingeniería en Petróleos e Ingeniería Química, Universidad del Istmo, Ciudad Universitaria s/n, 70760 Sto. Domingo Tehuantepec, Oax., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 5 November 2012; accepted 12 November 2012; online 24 November 2012)

The title steroid, C34H50O6S, is an inter­mediate on the synthetic route between diosgenin and brassinosteroids, which possess the A ring modified with the 2α,3α-diol functionality. The polycyclic spiro­stan system has the expected conformation, with six-membered rings adopting chair forms and the five-membered rings envelope forms (flap atoms are the methine C atom in the C/D-ring junction and the spiro C atom connecting rings E and F). The 3β-tosyl­ate group is oriented in such a way that S=O bonds are engaged in inter­molecular hydrogen bonds with O—H and C—H donors. Chains of mol­ecules are formed along [100] via O—H⋯O hydrogen bonds, and secondary weak C—H⋯O inter­actions connect two neighbouring chains in the [001] direction.

Related literature

For background to brassinosteroids, see: Asami et al. (2005[Asami, T., Nakano, T. & Fujioka, S. (2005). Vitam. Horm. 72, 479-504.]); Kang & Guo (2011[Kang, Y. Y. & Guo, S. R. (2011). Brassinosteroids: A Class of Plant Hormone, edited by S. Hayat & A. Ahmad, pp. 269-288. Dordrecht: Springer.]); Zullo & Adam (2002[Zullo, M. A. T. & Adam, G. (2002). Braz. J. Plant Physiol. 14, 143-181.]). For the hydro­boration-oxidation synthetic step used for the preparation of the title compound, see: Smith & Pelter (1991[Smith, K. & Pelter, A. (1991). Comprehensive Organic Synthesis, Vol. 8, edited by B. M. Trost & I. Fleming, pp. 703-731. Oxford: Pergamon Press.]); Brown (1962[Brown, H. C. (1962). Hydroboration, pp. 12-13. New York: W. A. Benjamin Inc.]). For the structure of another steroid functionalized at C-3 with a tosyl­ate group, see: Cox et al. (1996[Cox, P. J., Buchanan, H. J. & Wardell, J. L. (1996). Acta Cryst. C52, 2111-2113.]).

[Scheme 1]

Experimental

Crystal data
  • C34H50O6S

  • Mr = 586.80

  • Orthorhombic, P 21 21 21

  • a = 6.7653 (8) Å

  • b = 12.2856 (11) Å

  • c = 37.943 (4) Å

  • V = 3153.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 296 K

  • 0.6 × 0.5 × 0.4 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.943

  • 9218 measured reflections

  • 6167 independent reflections

  • 5274 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections every 97 reflections intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.03

  • 6167 reflections

  • 380 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2504 Friedel pairs

  • Flack parameter: −0.03 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O30—H30⋯O33i 0.78 (3) 2.35 (3) 3.098 (2) 159 (3)
C40—H40A⋯O34ii 0.93 2.65 3.352 (3) 133
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Brassinosteroids (BS) are endogenous plant hormones essential for the regulation of multiple physiological processes required for normal plant growth and development (Asami et al., 2005). Since their discovery, more than 30 years ago, the synthetic chemistry has been extensively developed for obtaining BS and analogs (Zullo & Adam, 2002; Kang & Guo, 2011). The most active BS and analogs possess a 2α,3α-diol in ring A and a ketone at C-6 (or a lactone) in ring B. The introduction of the required 6-keto-2α,3α-diol functionality has been satisfactorily achieved from the 6-hydroxy-3β-tosylate framework. The title compound belongs to this line of synthetic approaches to BS analogs. It was synthesized from diosgenin, through a tosylation followed by hydroboration-oxidation (Smith & Pelter, 1991; Brown, 1962). Commonly, the crude product after the hydroboration-oxidation procedure is immediately oxidized in order to obtain the 6-keto derivative; we decided instead, to isolate and properly characterize the 6-hydroxy intermediate.

The compound crystallizes with one molecule in the asymmetric unit (Fig. 1) and the conformation of the A-F ring system is as expected for a spirostan nucleus. All 6-membered rings have a chair conformation, while 5-membered rings D and E are envelopes on C14 and C22, respectively. The tosylate group in equatorial position at C3 is oriented in such a way that a potential intramolecular stabilizing O—H···π contact could be formed between the hydroxyl group at C6 and the benzene ring of the tosylate. However, this interaction should have an energy approaching zero, because of the too long H···π separation, ca. 4.4 Å. On the other hand, the tosylate orientation in the title compound is similar to that observed in cholesteryl tosylate (Cox et al., 1996), which has C-6 engaged in a double bond. This suggests that the tosylate orientation results from packing restraints or intermolecular interactions rather than intramolecular contacts.

Regarding the crystal structure, the single feature of interest is the intermolecular hydrogen bond formed between the hydroxyl group and one SO group in the tosylate. These contacts link molecules in chains oriented in the [100] direction in the crystal. A weak hydrogen bond involving the other SO group is observed between chains, C40—H40A···O34, characterized by a small C—H···O angle of 133° (Fig. 2).

Related literature top

For background to brassinosteroids, see: Asami et al. (2005); Kang & Guo (2011); Zullo & Adam (2002). For the hydroboration-oxidation synthetic step used for the preparation of the title compound, see: Smith & Pelter (1991); Brown (1962). For the structure of another steroid functionalized at C-3 with a tosylate group, see: Cox et al. (1996).

Experimental top

Diosgenin (750 mg, 1.8 mmol) was tosylated by means of p-TsCl/py/DCM, following the standard procedure, affording diosgenin tosylate quantitatively; the crude was properly washed, dried and immediately submitted to the next reaction. Diosgenin tosylate (1 g, 1.76 mmol) was dissolved in THF (30 ml) and NaBH4 (0.4 g, 10.8 mmol) was added. The system was sealed under Ar atmosphere and then, BF3.Et2O (0.7 ml, 5.6 mmol) was carefully added. The reaction mixture was kept for 2 h at room temperature, concentrated under reduced pressure, and re-dissolved in a solution of KOH/MeOH (2%, 50 ml), followed by 5 ml of 35% H2O2. The reaction mixture was stirred for 1 h; then the addition of water produced a precipitate, which was filtered off, washed with cold water, and dried under high vacuum. The resulting white powder was purified by column chromatography with hexanes/EtOAc 7:3 to afford the title compound as a white powder. It was recrystallized from hexanes/EtOAc 8:2 to obtain 0.72 g (70%) of colourless crystals. M.p. 149–150 °C, [α]D -39° (c 1.0, CHCl3). Spectroscopic characterization may be found in the archived CIF.

Refinement top

Hydroxyl H atom H30 was found in a difference map and refined with free coordinates and isotropic U parameter. Other H atoms were placed in idealized positions and refined with a riding model and fixed isotropic U parameters. C—H bond lengths were fixed to 0.96 (methyl), 0.97 (methylene), or 0.98 Å (methine). Displacement parameters were calculated as Uiso(H) = xUeq(parent C) where x = 1.5 (methyl) or 1.2 (methylene, methine). Anomalous dispersion of the tosylate S atom allowed to refine a Flack parameter (Flack, 1983), which is in agreement with the expected absolute configuration for the molecule.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title molecule, with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing pairs of chains. On the left stack, intermolecular contacts are depicted with dashed bonds. Red: O—H···O hydrogen bonds; green: interchain C—H···O weak interactions.
(25R)-6α-Hydroxy-5α-spirostan-3β-yl tosylate top
Crystal data top
C34H50O6SDx = 1.236 Mg m3
Mr = 586.80Melting point: 422 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 72 reflections
a = 6.7653 (8) Åθ = 4.6–12.5°
b = 12.2856 (11) ŵ = 0.15 mm1
c = 37.943 (4) ÅT = 296 K
V = 3153.6 (6) Å3Prism, colourless
Z = 40.6 × 0.5 × 0.4 mm
F(000) = 1272
Data collection top
Bruker P4
diffractometer
5274 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, FN4Rint = 0.023
Graphite monochromatorθmax = 26.3°, θmin = 2.0°
ω scansh = 86
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 1515
Tmin = 0.905, Tmax = 0.943l = 4647
9218 measured reflections3 standard reflections every 97 reflections
6167 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.5535P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max = 0.002
S = 1.03Δρmax = 0.16 e Å3
6167 reflectionsΔρmin = 0.16 e Å3
380 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0058 (5)
0 constraintsAbsolute structure: Flack (1983), 2504 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Secondary atom site location: difference Fourier map
Crystal data top
C34H50O6SV = 3153.6 (6) Å3
Mr = 586.80Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.7653 (8) ŵ = 0.15 mm1
b = 12.2856 (11) ÅT = 296 K
c = 37.943 (4) Å0.6 × 0.5 × 0.4 mm
Data collection top
Bruker P4
diffractometer
5274 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.023
Tmin = 0.905, Tmax = 0.9433 standard reflections every 97 reflections
9218 measured reflections intensity decay: 1.5%
6167 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090Δρmax = 0.16 e Å3
S = 1.03Δρmin = 0.16 e Å3
6167 reflectionsAbsolute structure: Flack (1983), 2504 Friedel pairs
380 parametersAbsolute structure parameter: 0.03 (7)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7277 (3)0.76613 (17)0.81367 (5)0.0487 (5)
H1A0.75490.70240.79940.058*
H1B0.80560.82590.80440.058*
C20.7923 (3)0.74351 (17)0.85158 (5)0.0535 (5)
H2A0.72460.67930.86030.064*
H2B0.93330.72930.85210.064*
C30.7455 (3)0.83933 (17)0.87512 (5)0.0501 (5)
H3A0.82910.90130.86860.060*
C40.5302 (3)0.87241 (18)0.87337 (5)0.0510 (5)
H4A0.50950.93740.88740.061*
H4B0.44850.81480.88300.061*
C50.4702 (3)0.89471 (15)0.83500 (4)0.0424 (4)
H5A0.55630.95320.82650.051*
C60.2580 (3)0.93700 (16)0.83213 (5)0.0478 (4)
H6A0.16640.88050.84020.057*
C70.2094 (3)0.96671 (16)0.79427 (5)0.0484 (5)
H7A0.29011.02820.78720.058*
H7B0.07200.98890.79290.058*
C80.2445 (3)0.87236 (14)0.76861 (4)0.0392 (4)
H8A0.15400.81300.77480.047*
C90.4581 (3)0.82992 (14)0.77203 (4)0.0397 (4)
H9A0.54430.89200.76680.048*
C100.5071 (3)0.79483 (14)0.81045 (4)0.0398 (4)
C110.5084 (3)0.74214 (17)0.74437 (5)0.0520 (5)
H11A0.64940.72800.74510.062*
H11B0.44100.67520.75070.062*
C120.4505 (3)0.77331 (17)0.70650 (5)0.0493 (5)
H12A0.53390.83260.69850.059*
H12B0.47230.71160.69100.059*
C130.2344 (3)0.80791 (14)0.70437 (4)0.0392 (4)
C140.2068 (3)0.90418 (14)0.73031 (4)0.0394 (4)
H14A0.30940.95730.72430.047*
C150.0107 (3)0.95550 (16)0.71905 (5)0.0487 (4)
H15A0.00631.02750.72910.058*
H15B0.10110.91020.72550.058*
C160.0397 (3)0.96013 (15)0.67900 (4)0.0444 (4)
H16A0.10651.02810.67260.053*
C170.1717 (3)0.86180 (14)0.66890 (4)0.0409 (4)
H17A0.29000.88850.65670.049*
C180.1006 (3)0.71110 (16)0.71335 (5)0.0555 (5)
H18A0.13500.68330.73620.083*
H18B0.11780.65500.69600.083*
H18C0.03480.73440.71350.083*
C190.3831 (3)0.69510 (15)0.82133 (5)0.0517 (5)
H19A0.43380.63130.80990.078*
H19B0.24800.70620.81450.078*
H19C0.39020.68580.84640.078*
C200.0414 (3)0.79983 (16)0.64246 (5)0.0483 (5)
H20A0.04000.74840.65580.058*
C210.1537 (4)0.7352 (2)0.61469 (6)0.0721 (7)
H21A0.06140.70070.59910.108*
H21B0.23330.68080.62600.108*
H21C0.23730.78340.60150.108*
C220.0941 (3)0.88812 (16)0.62844 (4)0.0471 (4)
C230.2867 (3)0.85149 (19)0.61189 (5)0.0588 (5)
H23A0.36650.81510.62960.071*
H23B0.25870.79950.59330.071*
C240.4025 (4)0.9461 (2)0.59666 (6)0.0648 (6)
H24A0.51650.91850.58400.078*
H24B0.44990.99180.61570.078*
C250.2772 (4)1.01361 (18)0.57190 (5)0.0593 (5)
H25A0.24290.96860.55150.071*
C260.0883 (4)1.04441 (18)0.59073 (5)0.0599 (5)
H26A0.00321.08340.57450.072*
H26B0.11981.09320.61000.072*
O270.0167 (2)0.95231 (12)0.60433 (3)0.0537 (3)
C280.3833 (4)1.1154 (2)0.55875 (6)0.0824 (7)
H28A0.29111.16130.54650.124*
H28B0.43771.15430.57840.124*
H28C0.48781.09480.54300.124*
O290.1410 (2)0.95014 (11)0.65939 (3)0.0510 (3)
O300.2301 (3)1.03360 (13)0.85290 (4)0.0693 (5)
H300.206 (5)1.017 (3)0.8723 (8)0.107 (12)*
O310.7980 (2)0.80181 (12)0.91112 (3)0.0565 (4)
S320.89495 (8)0.88025 (5)0.938758 (13)0.05819 (15)
O331.0188 (2)0.95749 (16)0.92101 (4)0.0753 (5)
O340.9767 (3)0.80926 (16)0.96460 (4)0.0825 (5)
C350.6942 (3)0.94918 (16)0.95735 (5)0.0506 (5)
C360.6646 (4)1.05871 (19)0.95077 (7)0.0735 (7)
H36A0.75371.09740.93690.088*
C370.5013 (5)1.1100 (2)0.96490 (8)0.0859 (8)
H37A0.48121.18340.96010.103*
C380.3682 (4)1.0562 (2)0.98576 (7)0.0763 (7)
C390.4014 (4)0.9468 (2)0.99195 (6)0.0749 (7)
H39A0.31250.90841.00590.090*
C400.5620 (3)0.89296 (19)0.97808 (5)0.0614 (6)
H40A0.58110.81930.98270.074*
C410.1927 (6)1.1145 (3)1.00114 (11)0.1337 (14)
H41A0.18861.18770.99230.201*
H41B0.20401.11601.02640.201*
H41C0.07371.07710.99460.201*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0473 (11)0.0556 (11)0.0431 (10)0.0123 (9)0.0071 (9)0.0001 (9)
C20.0517 (12)0.0623 (12)0.0465 (10)0.0189 (10)0.0007 (9)0.0011 (9)
C30.0565 (12)0.0576 (11)0.0362 (9)0.0088 (10)0.0011 (9)0.0058 (8)
C40.0581 (12)0.0573 (11)0.0378 (9)0.0136 (10)0.0044 (8)0.0005 (9)
C50.0475 (10)0.0443 (9)0.0355 (8)0.0061 (9)0.0048 (8)0.0013 (7)
C60.0553 (11)0.0487 (10)0.0394 (9)0.0171 (9)0.0063 (9)0.0048 (8)
C70.0552 (12)0.0494 (10)0.0407 (9)0.0202 (10)0.0017 (8)0.0024 (8)
C80.0428 (10)0.0393 (9)0.0356 (8)0.0050 (8)0.0057 (7)0.0007 (7)
C90.0406 (10)0.0420 (9)0.0367 (8)0.0025 (8)0.0077 (7)0.0027 (7)
C100.0411 (10)0.0416 (9)0.0369 (8)0.0078 (8)0.0084 (8)0.0022 (7)
C110.0537 (11)0.0586 (11)0.0436 (10)0.0190 (10)0.0077 (9)0.0053 (9)
C120.0533 (12)0.0549 (11)0.0397 (9)0.0111 (10)0.0076 (8)0.0040 (9)
C130.0441 (10)0.0369 (8)0.0366 (8)0.0013 (8)0.0069 (8)0.0022 (7)
C140.0446 (10)0.0357 (9)0.0380 (8)0.0003 (8)0.0050 (8)0.0008 (7)
C150.0578 (12)0.0491 (10)0.0393 (9)0.0138 (10)0.0017 (9)0.0074 (8)
C160.0529 (11)0.0416 (9)0.0387 (9)0.0013 (9)0.0036 (8)0.0019 (8)
C170.0439 (10)0.0418 (9)0.0371 (8)0.0051 (8)0.0046 (7)0.0016 (7)
C180.0685 (13)0.0443 (10)0.0536 (11)0.0121 (11)0.0078 (11)0.0016 (9)
C190.0589 (12)0.0464 (10)0.0498 (10)0.0020 (10)0.0090 (10)0.0082 (9)
C200.0554 (12)0.0471 (10)0.0424 (9)0.0055 (9)0.0033 (8)0.0089 (8)
C210.0797 (17)0.0773 (16)0.0594 (13)0.0107 (14)0.0034 (12)0.0307 (12)
C220.0501 (10)0.0540 (10)0.0373 (8)0.0082 (10)0.0034 (8)0.0058 (8)
C230.0579 (13)0.0719 (14)0.0468 (11)0.0172 (12)0.0006 (10)0.0029 (10)
C240.0556 (13)0.0872 (16)0.0516 (11)0.0077 (14)0.0082 (10)0.0018 (11)
C250.0699 (14)0.0672 (13)0.0409 (10)0.0005 (12)0.0053 (10)0.0072 (9)
C260.0707 (14)0.0584 (12)0.0506 (11)0.0120 (12)0.0046 (11)0.0041 (10)
O270.0522 (8)0.0616 (8)0.0472 (7)0.0106 (7)0.0010 (6)0.0036 (7)
C280.0959 (19)0.0858 (17)0.0654 (14)0.0142 (17)0.0129 (14)0.0027 (14)
O290.0533 (8)0.0609 (8)0.0387 (6)0.0071 (7)0.0027 (6)0.0085 (6)
O300.0981 (13)0.0661 (9)0.0435 (8)0.0378 (10)0.0019 (9)0.0110 (7)
O310.0708 (10)0.0598 (8)0.0390 (6)0.0138 (8)0.0043 (6)0.0051 (6)
S320.0559 (3)0.0777 (4)0.0410 (2)0.0079 (3)0.0039 (2)0.0055 (2)
O330.0600 (9)0.1110 (13)0.0551 (9)0.0139 (10)0.0071 (8)0.0017 (9)
O340.0882 (12)0.1071 (13)0.0521 (8)0.0312 (11)0.0188 (9)0.0102 (9)
C350.0605 (12)0.0548 (11)0.0365 (9)0.0038 (10)0.0006 (9)0.0038 (9)
C360.0881 (19)0.0585 (13)0.0740 (15)0.0034 (13)0.0191 (13)0.0177 (12)
C370.108 (2)0.0530 (13)0.0968 (18)0.0096 (16)0.0092 (18)0.0002 (14)
C380.0751 (17)0.0809 (17)0.0730 (15)0.0027 (15)0.0090 (13)0.0160 (14)
C390.0727 (16)0.0827 (17)0.0692 (14)0.0126 (15)0.0197 (13)0.0031 (13)
C400.0720 (15)0.0563 (12)0.0559 (11)0.0085 (12)0.0084 (11)0.0065 (10)
C410.117 (3)0.134 (3)0.150 (3)0.031 (3)0.041 (3)0.040 (3)
Geometric parameters (Å, º) top
C1—C21.528 (3)C18—H18B0.9600
C1—C101.539 (3)C18—H18C0.9600
C1—H1A0.9700C19—H19A0.9600
C1—H1B0.9700C19—H19B0.9600
C2—C31.511 (3)C19—H19C0.9600
C2—H2A0.9700C20—C221.516 (3)
C2—H2B0.9700C20—C211.523 (3)
C3—O311.485 (2)C20—H20A0.9800
C3—C41.514 (3)C21—H21A0.9600
C3—H3A0.9800C21—H21B0.9600
C4—C51.536 (2)C21—H21C0.9600
C4—H4A0.9700C22—O271.422 (2)
C4—H4B0.9700C22—O291.435 (2)
C5—C61.530 (3)C22—C231.515 (3)
C5—C101.561 (2)C23—C241.516 (3)
C5—H5A0.9800C23—H23A0.9700
C6—O301.437 (2)C23—H23B0.9700
C6—C71.518 (2)C24—C251.513 (3)
C6—H6A0.9800C24—H24A0.9700
C7—C81.532 (2)C24—H24B0.9700
C7—H7A0.9700C25—C261.512 (3)
C7—H7B0.9700C25—C281.526 (3)
C8—C141.526 (2)C25—H25A0.9800
C8—C91.542 (2)C26—O271.432 (3)
C8—H8A0.9800C26—H26A0.9700
C9—C111.543 (2)C26—H26B0.9700
C9—C101.556 (2)C28—H28A0.9600
C9—H9A0.9800C28—H28B0.9600
C10—C191.541 (3)C28—H28C0.9600
C11—C121.538 (3)O30—H300.78 (3)
C11—H11A0.9700O31—S321.5680 (15)
C11—H11B0.9700S32—O341.4241 (16)
C12—C131.525 (3)S32—O331.4340 (18)
C12—H12A0.9700S32—C351.749 (2)
C12—H12B0.9700C35—C401.377 (3)
C13—C181.533 (3)C35—C361.383 (3)
C13—C141.550 (2)C36—C371.380 (4)
C13—C171.559 (2)C36—H36A0.9300
C14—C151.529 (3)C37—C381.369 (4)
C14—H14A0.9800C37—H37A0.9300
C15—C161.533 (2)C38—C391.383 (4)
C15—H15A0.9700C38—C411.504 (4)
C15—H15B0.9700C39—C401.377 (3)
C16—O291.436 (2)C39—H39A0.9300
C16—C171.550 (3)C40—H40A0.9300
C16—H16A0.9800C41—H41A0.9600
C17—C201.537 (3)C41—H41B0.9600
C17—H17A0.9800C41—H41C0.9600
C18—H18A0.9600
C2—C1—C10113.18 (16)C16—C17—C13105.90 (13)
C2—C1—H1A108.9C20—C17—H17A109.1
C10—C1—H1A108.9C16—C17—H17A109.1
C2—C1—H1B108.9C13—C17—H17A109.1
C10—C1—H1B108.9C13—C18—H18A109.5
H1A—C1—H1B107.8C13—C18—H18B109.5
C3—C2—C1110.78 (16)H18A—C18—H18B109.5
C3—C2—H2A109.5C13—C18—H18C109.5
C1—C2—H2A109.5H18A—C18—H18C109.5
C3—C2—H2B109.5H18B—C18—H18C109.5
C1—C2—H2B109.5C10—C19—H19A109.5
H2A—C2—H2B108.1C10—C19—H19B109.5
O31—C3—C2104.59 (15)H19A—C19—H19B109.5
O31—C3—C4110.72 (16)C10—C19—H19C109.5
C2—C3—C4112.62 (18)H19A—C19—H19C109.5
O31—C3—H3A109.6H19B—C19—H19C109.5
C2—C3—H3A109.6C22—C20—C21115.60 (17)
C4—C3—H3A109.6C22—C20—C17102.79 (15)
C3—C4—C5110.11 (15)C21—C20—C17115.06 (18)
C3—C4—H4A109.6C22—C20—H20A107.6
C5—C4—H4A109.6C21—C20—H20A107.6
C3—C4—H4B109.6C17—C20—H20A107.6
C5—C4—H4B109.6C20—C21—H21A109.5
H4A—C4—H4B108.2C20—C21—H21B109.5
C6—C5—C4112.09 (15)H21A—C21—H21B109.5
C6—C5—C10112.00 (15)C20—C21—H21C109.5
C4—C5—C10112.53 (15)H21A—C21—H21C109.5
C6—C5—H5A106.6H21B—C21—H21C109.5
C4—C5—H5A106.6O27—C22—O29110.39 (15)
C10—C5—H5A106.6O27—C22—C23110.60 (16)
O30—C6—C7106.97 (15)O29—C22—C23107.87 (16)
O30—C6—C5111.38 (17)O27—C22—C20107.67 (16)
C7—C6—C5110.63 (15)O29—C22—C20103.08 (14)
O30—C6—H6A109.3C23—C22—C20116.93 (18)
C7—C6—H6A109.3C22—C23—C24111.99 (18)
C5—C6—H6A109.3C22—C23—H23A109.2
C6—C7—C8112.68 (15)C24—C23—H23A109.2
C6—C7—H7A109.1C22—C23—H23B109.2
C8—C7—H7A109.1C24—C23—H23B109.2
C6—C7—H7B109.1H23A—C23—H23B107.9
C8—C7—H7B109.1C25—C24—C23111.6 (2)
H7A—C7—H7B107.8C25—C24—H24A109.3
C14—C8—C7112.66 (14)C23—C24—H24A109.3
C14—C8—C9108.86 (14)C25—C24—H24B109.3
C7—C8—C9110.35 (15)C23—C24—H24B109.3
C14—C8—H8A108.3H24A—C24—H24B108.0
C7—C8—H8A108.3C26—C25—C24108.51 (17)
C9—C8—H8A108.3C26—C25—C28110.3 (2)
C8—C9—C11112.69 (16)C24—C25—C28112.9 (2)
C8—C9—C10111.83 (14)C26—C25—H25A108.3
C11—C9—C10113.38 (15)C24—C25—H25A108.3
C8—C9—H9A106.1C28—C25—H25A108.3
C11—C9—H9A106.1O27—C26—C25113.06 (17)
C10—C9—H9A106.1O27—C26—H26A109.0
C1—C10—C19108.94 (16)C25—C26—H26A109.0
C1—C10—C9110.15 (14)O27—C26—H26B109.0
C19—C10—C9110.82 (16)C25—C26—H26B109.0
C1—C10—C5106.74 (16)H26A—C26—H26B107.8
C19—C10—C5112.22 (14)C22—O27—C26114.12 (16)
C9—C10—C5107.90 (14)C25—C28—H28A109.5
C12—C11—C9113.93 (15)C25—C28—H28B109.5
C12—C11—H11A108.8H28A—C28—H28B109.5
C9—C11—H11A108.8C25—C28—H28C109.5
C12—C11—H11B108.8H28A—C28—H28C109.5
C9—C11—H11B108.8H28B—C28—H28C109.5
H11A—C11—H11B107.7C22—O29—C16106.34 (13)
C13—C12—C11111.28 (15)C6—O30—H30109 (2)
C13—C12—H12A109.4C3—O31—S32121.63 (13)
C11—C12—H12A109.4O34—S32—O33120.11 (12)
C13—C12—H12B109.4O34—S32—O31104.27 (10)
C11—C12—H12B109.4O33—S32—O31109.71 (9)
H12A—C12—H12B108.0O34—S32—C35108.69 (10)
C12—C13—C18109.76 (16)O33—S32—C35108.83 (11)
C12—C13—C14107.14 (15)O31—S32—C35104.03 (9)
C18—C13—C14112.31 (14)C40—C35—C36119.8 (2)
C12—C13—C17115.15 (15)C40—C35—S32119.47 (16)
C18—C13—C17111.15 (16)C36—C35—S32120.73 (17)
C14—C13—C17101.04 (13)C37—C36—C35119.4 (2)
C8—C14—C15121.10 (15)C37—C36—H36A120.3
C8—C14—C13112.90 (14)C35—C36—H36A120.3
C15—C14—C13103.99 (14)C38—C37—C36122.1 (2)
C8—C14—H14A105.9C38—C37—H37A119.0
C15—C14—H14A105.9C36—C37—H37A119.0
C13—C14—H14A105.9C37—C38—C39117.4 (2)
C14—C15—C16100.44 (15)C37—C38—C41120.9 (3)
C14—C15—H15A111.7C39—C38—C41121.7 (3)
C16—C15—H15A111.7C40—C39—C38122.0 (2)
C14—C15—H15B111.7C40—C39—H39A119.0
C16—C15—H15B111.7C38—C39—H39A119.0
H15A—C15—H15B109.5C39—C40—C35119.4 (2)
O29—C16—C15113.67 (16)C39—C40—H40A120.3
O29—C16—C17107.18 (14)C35—C40—H40A120.3
C15—C16—C17106.85 (14)C38—C41—H41A109.5
O29—C16—H16A109.7C38—C41—H41B109.5
C15—C16—H16A109.7H41A—C41—H41B109.5
C17—C16—H16A109.7C38—C41—H41C109.5
C20—C17—C16102.53 (15)H41A—C41—H41C109.5
C20—C17—C13120.61 (15)H41B—C41—H41C109.5
C10—C1—C2—C356.5 (2)O29—C16—C17—C13127.69 (15)
C1—C2—C3—O31174.77 (17)C15—C16—C17—C135.49 (19)
C1—C2—C3—C454.5 (2)C12—C13—C17—C20107.2 (2)
O31—C3—C4—C5171.61 (16)C18—C13—C17—C2018.4 (2)
C2—C3—C4—C554.9 (2)C14—C13—C17—C20137.79 (17)
C3—C4—C5—C6175.57 (17)C12—C13—C17—C16137.32 (16)
C3—C4—C5—C1057.1 (2)C18—C13—C17—C1697.08 (17)
C4—C5—C6—O3056.6 (2)C14—C13—C17—C1622.27 (17)
C10—C5—C6—O30175.81 (15)C16—C17—C20—C2224.43 (18)
C4—C5—C6—C7175.44 (17)C13—C17—C20—C22141.67 (16)
C10—C5—C6—C757.0 (2)C16—C17—C20—C21150.96 (18)
O30—C6—C7—C8176.66 (17)C13—C17—C20—C2191.8 (2)
C5—C6—C7—C855.2 (2)C21—C20—C22—O2750.2 (2)
C6—C7—C8—C14176.75 (17)C17—C20—C22—O2776.01 (17)
C6—C7—C8—C954.8 (2)C21—C20—C22—O29166.88 (18)
C14—C8—C9—C1150.40 (19)C17—C20—C22—O2940.70 (18)
C7—C8—C9—C11174.53 (15)C21—C20—C22—C2375.0 (2)
C14—C8—C9—C10179.51 (15)C17—C20—C22—C23158.82 (16)
C7—C8—C9—C1056.36 (19)O27—C22—C23—C2452.4 (2)
C2—C1—C10—C1964.9 (2)O29—C22—C23—C2468.4 (2)
C2—C1—C10—C9173.36 (16)C20—C22—C23—C24176.07 (17)
C2—C1—C10—C556.5 (2)C22—C23—C24—C2552.5 (2)
C8—C9—C10—C1173.24 (15)C23—C24—C25—C2652.1 (2)
C11—C9—C10—C158.0 (2)C23—C24—C25—C28174.71 (18)
C8—C9—C10—C1966.14 (19)C24—C25—C26—O2754.8 (2)
C11—C9—C10—C1962.6 (2)C28—C25—C26—O27178.89 (18)
C8—C9—C10—C557.08 (19)O29—C22—O27—C2663.9 (2)
C11—C9—C10—C5174.17 (16)C23—C22—O27—C2655.4 (2)
C6—C5—C10—C1175.76 (15)C20—C22—O27—C26175.73 (15)
C4—C5—C10—C156.9 (2)C25—C26—O27—C2258.3 (2)
C6—C5—C10—C1965.0 (2)O27—C22—O29—C1673.14 (18)
C4—C5—C10—C1962.4 (2)C23—C22—O29—C16165.92 (16)
C6—C5—C10—C957.39 (19)C20—C22—O29—C1641.62 (18)
C4—C5—C10—C9175.26 (16)C15—C16—O29—C22143.50 (16)
C8—C9—C11—C1248.6 (2)C17—C16—O29—C2225.66 (18)
C10—C9—C11—C12176.91 (17)C2—C3—O31—S32142.58 (15)
C9—C11—C12—C1352.6 (2)C4—C3—O31—S3295.9 (2)
C11—C12—C13—C1864.8 (2)C3—O31—S32—O34162.55 (15)
C11—C12—C13—C1457.4 (2)C3—O31—S32—O3332.69 (18)
C11—C12—C13—C17168.88 (15)C3—O31—S32—C3583.60 (16)
C7—C8—C14—C1553.7 (2)O34—S32—C35—C4042.7 (2)
C9—C8—C14—C15176.44 (16)O33—S32—C35—C40175.16 (17)
C7—C8—C14—C13177.83 (15)O31—S32—C35—C4067.93 (18)
C9—C8—C14—C1359.4 (2)O34—S32—C35—C36138.8 (2)
C12—C13—C14—C863.21 (19)O33—S32—C35—C366.4 (2)
C18—C13—C14—C857.4 (2)O31—S32—C35—C36110.5 (2)
C17—C13—C14—C8175.91 (15)C40—C35—C36—C370.5 (4)
C12—C13—C14—C15163.71 (15)S32—C35—C36—C37177.9 (2)
C18—C13—C14—C1575.69 (18)C35—C36—C37—C380.9 (4)
C17—C13—C14—C1542.83 (17)C36—C37—C38—C390.8 (4)
C8—C14—C15—C16174.43 (16)C36—C37—C38—C41179.3 (3)
C13—C14—C15—C1646.22 (17)C37—C38—C39—C400.4 (4)
C14—C15—C16—O29149.34 (15)C41—C38—C39—C40179.7 (3)
C14—C15—C16—C1731.31 (18)C38—C39—C40—C350.1 (4)
O29—C16—C17—C200.41 (18)C36—C35—C40—C390.1 (3)
C15—C16—C17—C20121.79 (16)S32—C35—C40—C39178.35 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O30—H30···O33i0.78 (3)2.35 (3)3.098 (2)159 (3)
C40—H40A···O34ii0.932.653.352 (3)133
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formulaC34H50O6S
Mr586.80
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.7653 (8), 12.2856 (11), 37.943 (4)
V3)3153.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.6 × 0.5 × 0.4
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.905, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
9218, 6167, 5274
Rint0.023
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.03
No. of reflections6167
No. of parameters380
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.16
Absolute structureFlack (1983), 2504 Friedel pairs
Absolute structure parameter0.03 (7)

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O30—H30···O33i0.78 (3)2.35 (3)3.098 (2)159 (3)
C40—H40A···O34ii0.932.653.352 (3)133.3
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+2.
 

Acknowledgements

The authors thank CONACYT for the Repatriation grant 166040 and PROMEP for the grant PROMEP/103.5/12/4367 BUAP-PTC-301.

References

First citationAsami, T., Nakano, T. & Fujioka, S. (2005). Vitam. Horm. 72, 479–504.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrown, H. C. (1962). Hydroboration, pp. 12–13. New York: W. A. Benjamin Inc.  Google Scholar
First citationCox, P. J., Buchanan, H. J. & Wardell, J. L. (1996). Acta Cryst. C52, 2111–2113.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKang, Y. Y. & Guo, S. R. (2011). Brassinosteroids: A Class of Plant Hormone, edited by S. Hayat & A. Ahmad, pp. 269–288. Dordrecht: Springer.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSmith, K. & Pelter, A. (1991). Comprehensive Organic Synthesis, Vol. 8, edited by B. M. Trost & I. Fleming, pp. 703–731. Oxford: Pergamon Press.  Google Scholar
First citationZullo, M. A. T. & Adam, G. (2002). Braz. J. Plant Physiol. 14, 143–181.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages o3413-o3414
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds