organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro­phen­yl)-4-nitro­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 16 November 2012; accepted 19 November 2012; online 24 November 2012)

There are two independent mol­ecules in the asymmetric unit of the title compound, C12H9ClN2O4S, in which the dihedral angles between the planes of the benzene rings are 46.90 (14) and 44.50 (14)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into zigzag chains parallel to the a axis.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-aryl­sulfonamides, see: Chaithanya et al. (2012[Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2576.]); Gowda et al. (2002[Gowda, B. T., Jyothi, K. & D'Souza, J. D. (2002). Z. Naturforsch. Teil A, 57, 967-973.]) and of N-chloro­aryl­amides, see: Gowda & Shetty (2004[Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848-864.]); Gowda & Weiss (1994[Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695-702.]); Shetty & Gowda (2004[Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63-72.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9ClN2O4S

  • Mr = 312.72

  • Monoclinic, P 21 /n

  • a = 14.3419 (8) Å

  • b = 7.7579 (4) Å

  • c = 23.895 (1) Å

  • β = 90.345 (5)°

  • V = 2658.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.48 × 0.40 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.810, Tmax = 0.914

  • 9649 measured reflections

  • 4839 independent reflections

  • 3112 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.163

  • S = 1.05

  • 4839 reflections

  • 367 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O8 0.87 (2) 2.22 (2) 3.052 (4) 163 (3)
N3—H3N⋯O4i 0.85 (2) 2.36 (2) 3.135 (4) 153 (4)
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of substituents on the structures and other aspects of N-arylsulfonamides (Chaithanya et al., 2012; Gowda et al., 2002) and N-chloroarylamides (Gowda & Shetty, 2004; Gowda & Weiss, 1994; Shetty & Gowda, 2004), in the present work, the crystal structure of N-(3-chlorophenyl)-4-nitrobenzenesulfonamide (I) has been determined (Fig. 1). The asymmetric unit of the structure contains two independent molecules. The N—C bonds in the C—SO2—NH—C segments have gauche torsions with respect to the SO bonds.

The molecules in (I) are twisted at the S—N bonds with the torsional angles of -58.67 (30) and 61.49 (30)°, compared to the value of 48.46 (18)° in N-(3-chlorophenyl)-2-nitrobenzenesulfonamide (II) (Chaithanya et al., 2012).

The dihedral angle between the sulfonyl and the anilino rings are 46.90 (14) and 44.50 (14)°, compared to the value of 73.65 (7)° in (II).

N—H···O hydrogen bonds link the molecules into zigzag chains parallel to the a-axis. (Table 1, Fig. 2.)

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-arylsulfonamides, see: Chaithanya et al. (2012); Gowda et al. (2002) and of N-chloroarylamides, see: Gowda & Shetty (2004); Gowda & Weiss (1994); Shetty & Gowda (2004).

Experimental top

The title compound was prepared by treating 4-nitrobenzenesulfonyl- chloride with 3-chloroaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml).

The resultant solid N-(3-chlorophenyl)-4-nitrobenzenesulfonamide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model with aromatic C—H = 0.93 Å. The amino H atoms were freely refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq of the parent atom. The (-1 0 3) reflection had a poor disagreement with its calculated value and was omitted from the refinement.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(3-Chlorophenyl)-4-nitrobenzenesulfonamide top
Crystal data top
C12H9ClN2O4SF(000) = 1280
Mr = 312.72Dx = 1.563 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3273 reflections
a = 14.3419 (8) Åθ = 2.6–27.8°
b = 7.7579 (4) ŵ = 0.46 mm1
c = 23.895 (1) ÅT = 293 K
β = 90.345 (5)°Prism, colourless
V = 2658.6 (2) Å30.48 × 0.40 × 0.20 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4839 independent reflections
Radiation source: fine-focus sealed tube3112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Rotation method data acquisition using ω scansθmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 917
Tmin = 0.810, Tmax = 0.914k = 95
9649 measured reflectionsl = 2728
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0682P)2 + 2.2606P]
where P = (Fo2 + 2Fc2)/3
4839 reflections(Δ/σ)max = 0.009
367 parametersΔρmax = 0.83 e Å3
2 restraintsΔρmin = 0.29 e Å3
Crystal data top
C12H9ClN2O4SV = 2658.6 (2) Å3
Mr = 312.72Z = 8
Monoclinic, P21/nMo Kα radiation
a = 14.3419 (8) ŵ = 0.46 mm1
b = 7.7579 (4) ÅT = 293 K
c = 23.895 (1) Å0.48 × 0.40 × 0.20 mm
β = 90.345 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4839 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
3112 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.914Rint = 0.027
9649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0622 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.83 e Å3
4839 reflectionsΔρmin = 0.29 e Å3
367 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09787 (10)0.35505 (17)0.01810 (6)0.0946 (5)
S10.16559 (6)0.12543 (12)0.20178 (4)0.0434 (3)
O10.11688 (19)0.0333 (3)0.20733 (11)0.0562 (7)
O20.22431 (18)0.1878 (4)0.24582 (11)0.0627 (8)
O30.1904 (2)0.6207 (4)0.12567 (15)0.0788 (10)
O40.0928 (2)0.8146 (4)0.14880 (15)0.0823 (10)
N10.23212 (19)0.1114 (4)0.14670 (14)0.0452 (8)
H1N0.272 (2)0.194 (4)0.1439 (15)0.054*
N20.1143 (2)0.6643 (5)0.14311 (14)0.0566 (9)
C10.0817 (2)0.2853 (4)0.18560 (14)0.0353 (8)
C20.1026 (2)0.4570 (4)0.19499 (15)0.0423 (9)
H20.15990.48770.21040.051*
C30.0387 (2)0.5819 (4)0.18147 (15)0.0442 (9)
H30.05140.69780.18780.053*
C40.0450 (2)0.5309 (4)0.15819 (14)0.0405 (8)
C50.0679 (2)0.3612 (5)0.14868 (16)0.0500 (10)
H50.12530.33130.13320.060*
C60.0030 (2)0.2365 (5)0.16275 (16)0.0469 (9)
H60.01630.12050.15690.056*
C70.1911 (2)0.0681 (5)0.09334 (15)0.0413 (9)
C80.1675 (2)0.1024 (5)0.08276 (17)0.0482 (10)
H80.17770.18740.10950.058*
C90.1285 (3)0.1422 (5)0.03155 (18)0.0544 (10)
C100.1144 (3)0.0199 (7)0.00864 (18)0.0658 (12)
H100.08830.04940.04310.079*
C110.1395 (3)0.1489 (6)0.00264 (18)0.0668 (12)
H110.13050.23340.02450.080*
C120.1773 (3)0.1921 (5)0.05326 (17)0.0549 (10)
H120.19370.30580.06060.066*
Cl20.61875 (14)1.53899 (18)0.02541 (7)0.1192 (6)
S20.66256 (6)1.03064 (12)0.20747 (4)0.0478 (3)
O50.61482 (19)1.1899 (3)0.21387 (12)0.0583 (7)
O60.72154 (19)0.9650 (4)0.25102 (12)0.0703 (9)
O70.3061 (2)0.5453 (4)0.12695 (15)0.0789 (10)
O80.4020 (2)0.3483 (4)0.15000 (17)0.0907 (11)
N30.7282 (2)1.0461 (4)0.15232 (15)0.0503 (8)
H3N0.762 (2)0.958 (4)0.1481 (16)0.060*
N40.3811 (2)0.4986 (5)0.14497 (14)0.0568 (9)
C130.5779 (2)0.8725 (4)0.19141 (14)0.0373 (8)
C140.5992 (2)0.6997 (5)0.19794 (16)0.0470 (9)
H140.65700.66700.21220.056*
C150.5345 (2)0.5764 (5)0.18336 (16)0.0486 (10)
H150.54740.45980.18800.058*
C160.4501 (2)0.6303 (5)0.16172 (15)0.0421 (9)
C170.4269 (2)0.8010 (5)0.15583 (15)0.0464 (9)
H170.36850.83310.14230.056*
C180.4919 (2)0.9235 (5)0.17029 (15)0.0437 (9)
H180.47831.04000.16600.052*
C190.6866 (2)1.0996 (5)0.10019 (16)0.0448 (9)
C200.6731 (3)1.2725 (5)0.08980 (18)0.0516 (10)
H200.69011.35470.11630.062*
C210.6343 (3)1.3211 (5)0.0398 (2)0.0633 (12)
C220.6084 (3)1.2024 (6)0.00016 (19)0.0672 (12)
H220.58091.23850.03320.081*
C230.6231 (3)1.0320 (6)0.0097 (2)0.0692 (13)
H230.60670.95110.01730.083*
C240.6630 (3)0.9787 (5)0.06058 (19)0.0592 (11)
H240.67340.86230.06740.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1078 (11)0.0610 (8)0.1148 (11)0.0144 (7)0.0227 (9)0.0310 (8)
S10.0416 (5)0.0361 (5)0.0524 (6)0.0073 (4)0.0107 (4)0.0001 (4)
O10.0621 (17)0.0330 (15)0.0736 (19)0.0044 (13)0.0006 (14)0.0137 (13)
O20.0595 (17)0.0634 (19)0.0648 (18)0.0187 (15)0.0274 (14)0.0094 (15)
O30.0481 (18)0.075 (2)0.113 (3)0.0106 (16)0.0208 (18)0.0294 (19)
O40.087 (2)0.0378 (18)0.122 (3)0.0197 (17)0.020 (2)0.0079 (18)
N10.0314 (16)0.0350 (18)0.069 (2)0.0020 (13)0.0051 (15)0.0042 (16)
N20.056 (2)0.053 (2)0.061 (2)0.0157 (18)0.0009 (17)0.0160 (18)
C10.0341 (18)0.0297 (19)0.042 (2)0.0035 (15)0.0032 (15)0.0025 (16)
C20.0317 (18)0.038 (2)0.057 (2)0.0035 (16)0.0079 (16)0.0043 (18)
C30.046 (2)0.0253 (19)0.061 (2)0.0012 (16)0.0008 (19)0.0000 (17)
C40.0397 (19)0.035 (2)0.047 (2)0.0074 (16)0.0010 (16)0.0079 (17)
C50.038 (2)0.045 (2)0.067 (3)0.0046 (17)0.0137 (18)0.002 (2)
C60.042 (2)0.033 (2)0.066 (3)0.0026 (17)0.0122 (19)0.0047 (18)
C70.0292 (18)0.040 (2)0.055 (2)0.0028 (16)0.0045 (16)0.0034 (18)
C80.043 (2)0.037 (2)0.065 (3)0.0010 (17)0.0002 (19)0.0002 (19)
C90.046 (2)0.050 (3)0.066 (3)0.0033 (19)0.001 (2)0.013 (2)
C100.061 (3)0.083 (4)0.053 (3)0.007 (3)0.002 (2)0.009 (3)
C110.074 (3)0.069 (3)0.057 (3)0.007 (3)0.001 (2)0.013 (2)
C120.059 (3)0.042 (2)0.063 (3)0.001 (2)0.007 (2)0.002 (2)
Cl20.1649 (16)0.0543 (8)0.1379 (14)0.0001 (9)0.0415 (12)0.0214 (9)
S20.0420 (5)0.0396 (6)0.0615 (6)0.0079 (4)0.0109 (5)0.0029 (5)
O50.0621 (17)0.0346 (15)0.0783 (19)0.0044 (13)0.0024 (14)0.0155 (14)
O60.0623 (18)0.072 (2)0.0765 (19)0.0191 (16)0.0324 (16)0.0079 (16)
O70.0486 (17)0.076 (2)0.112 (3)0.0156 (16)0.0221 (18)0.0165 (19)
O80.083 (2)0.0390 (19)0.150 (3)0.0190 (17)0.019 (2)0.006 (2)
N30.0324 (17)0.0358 (19)0.083 (2)0.0028 (13)0.0023 (16)0.0026 (17)
N40.052 (2)0.050 (2)0.068 (2)0.0148 (18)0.0021 (18)0.0091 (19)
C130.0332 (18)0.0322 (19)0.046 (2)0.0006 (15)0.0018 (15)0.0003 (16)
C140.037 (2)0.041 (2)0.063 (2)0.0035 (17)0.0058 (18)0.0061 (19)
C150.045 (2)0.030 (2)0.071 (3)0.0015 (17)0.002 (2)0.0024 (18)
C160.0378 (19)0.039 (2)0.049 (2)0.0060 (17)0.0010 (17)0.0050 (17)
C170.0353 (19)0.045 (2)0.058 (2)0.0016 (17)0.0088 (17)0.0015 (19)
C180.043 (2)0.0287 (19)0.060 (2)0.0035 (16)0.0083 (18)0.0019 (17)
C190.0335 (19)0.039 (2)0.062 (3)0.0053 (16)0.0090 (18)0.0008 (19)
C200.046 (2)0.034 (2)0.075 (3)0.0039 (17)0.001 (2)0.001 (2)
C210.066 (3)0.043 (2)0.082 (3)0.003 (2)0.000 (2)0.013 (2)
C220.071 (3)0.064 (3)0.066 (3)0.005 (3)0.006 (2)0.001 (3)
C230.071 (3)0.064 (3)0.073 (3)0.011 (3)0.011 (3)0.023 (3)
C240.057 (3)0.041 (2)0.080 (3)0.005 (2)0.012 (2)0.012 (2)
Geometric parameters (Å, º) top
Cl1—C91.738 (4)Cl2—C211.739 (4)
S1—O11.423 (3)S2—O51.421 (3)
S1—O21.428 (3)S2—O61.431 (3)
S1—N11.634 (3)S2—N31.629 (3)
S1—C11.770 (3)S2—C131.767 (3)
O3—N21.215 (4)O7—N41.211 (4)
O4—N21.214 (4)O8—N41.209 (4)
N1—C71.441 (5)N3—C191.439 (5)
N1—H1N0.865 (18)N3—H3N0.845 (18)
N2—C41.478 (4)N4—C161.476 (4)
C1—C61.382 (4)C13—C141.383 (5)
C1—C21.383 (5)C13—C181.388 (5)
C2—C31.371 (5)C14—C151.376 (5)
C2—H20.9300C14—H140.9300
C3—C41.377 (5)C15—C161.379 (5)
C3—H30.9300C15—H150.9300
C4—C51.375 (5)C16—C171.373 (5)
C5—C61.382 (5)C17—C181.373 (5)
C5—H50.9300C17—H170.9300
C6—H60.9300C18—H180.9300
C7—C121.371 (5)C19—C241.373 (5)
C7—C81.388 (5)C19—C201.378 (5)
C8—C91.377 (5)C20—C211.368 (6)
C8—H80.9300C20—H200.9300
C9—C101.364 (6)C21—C221.371 (6)
C10—C111.384 (6)C22—C231.358 (6)
C10—H100.9300C22—H220.9300
C11—C121.364 (6)C23—C241.402 (6)
C11—H110.9300C23—H230.9300
C12—H120.9300C24—H240.9300
O1—S1—O2120.83 (17)O5—S2—O6120.94 (18)
O1—S1—N1107.88 (16)O5—S2—N3107.70 (17)
O2—S1—N1105.75 (17)O6—S2—N3105.83 (18)
O1—S1—C1107.07 (16)O5—S2—C13107.24 (16)
O2—S1—C1108.70 (16)O6—S2—C13108.26 (17)
N1—S1—C1105.68 (16)N3—S2—C13105.98 (16)
C7—N1—S1119.4 (2)C19—N3—S2118.9 (2)
C7—N1—H1N112 (3)C19—N3—H3N111 (3)
S1—N1—H1N114 (3)S2—N3—H3N112 (3)
O3—N2—O4122.2 (3)O8—N4—O7122.9 (3)
O3—N2—C4119.4 (4)O8—N4—C16118.3 (3)
O4—N2—C4118.4 (3)O7—N4—C16118.8 (4)
C6—C1—C2121.2 (3)C14—C13—C18120.8 (3)
C6—C1—S1119.3 (3)C14—C13—S2119.9 (3)
C2—C1—S1119.5 (3)C18—C13—S2119.3 (3)
C3—C2—C1119.9 (3)C15—C14—C13119.9 (3)
C3—C2—H2120.1C15—C14—H14120.1
C1—C2—H2120.1C13—C14—H14120.1
C2—C3—C4118.1 (3)C14—C15—C16118.2 (3)
C2—C3—H3120.9C14—C15—H15120.9
C4—C3—H3120.9C16—C15—H15120.9
C5—C4—C3123.2 (3)C17—C16—C15122.8 (3)
C5—C4—N2118.0 (3)C17—C16—N4118.6 (3)
C3—C4—N2118.7 (3)C15—C16—N4118.5 (3)
C4—C5—C6118.0 (3)C16—C17—C18118.6 (3)
C4—C5—H5121.0C16—C17—H17120.7
C6—C5—H5121.0C18—C17—H17120.7
C1—C6—C5119.5 (3)C17—C18—C13119.6 (3)
C1—C6—H6120.2C17—C18—H18120.2
C5—C6—H6120.2C13—C18—H18120.2
C12—C7—C8120.5 (4)C24—C19—C20120.5 (4)
C12—C7—N1120.7 (3)C24—C19—N3120.0 (4)
C8—C7—N1118.8 (3)C20—C19—N3119.6 (4)
C9—C8—C7118.2 (4)C21—C20—C19118.8 (4)
C9—C8—H8120.9C21—C20—H20120.6
C7—C8—H8120.9C19—C20—H20120.6
C10—C9—C8121.8 (4)C20—C21—C22121.7 (4)
C10—C9—Cl1119.6 (3)C20—C21—Cl2119.4 (4)
C8—C9—Cl1118.6 (3)C22—C21—Cl2118.8 (4)
C9—C10—C11118.9 (4)C23—C22—C21119.8 (4)
C9—C10—H10120.5C23—C22—H22120.1
C11—C10—H10120.5C21—C22—H22120.1
C12—C11—C10120.4 (4)C22—C23—C24119.7 (4)
C12—C11—H11119.8C22—C23—H23120.2
C10—C11—H11119.8C24—C23—H23120.2
C11—C12—C7120.1 (4)C19—C24—C23119.6 (4)
C11—C12—H12119.9C19—C24—H24120.2
C7—C12—H12119.9C23—C24—H24120.2
O1—S1—N1—C755.6 (3)O5—S2—N3—C1953.0 (3)
O2—S1—N1—C7173.8 (3)O6—S2—N3—C19176.3 (3)
C1—S1—N1—C758.7 (3)C13—S2—N3—C1961.5 (3)
O1—S1—C1—C621.6 (3)O5—S2—C13—C14162.2 (3)
O2—S1—C1—C6153.6 (3)O6—S2—C13—C1430.2 (4)
N1—S1—C1—C693.2 (3)N3—S2—C13—C1483.0 (3)
O1—S1—C1—C2159.7 (3)O5—S2—C13—C1820.2 (3)
O2—S1—C1—C227.6 (3)O6—S2—C13—C18152.3 (3)
N1—S1—C1—C285.5 (3)N3—S2—C13—C1894.6 (3)
C6—C1—C2—C30.1 (6)C18—C13—C14—C150.1 (6)
S1—C1—C2—C3178.6 (3)S2—C13—C14—C15177.5 (3)
C1—C2—C3—C40.6 (5)C13—C14—C15—C160.9 (6)
C2—C3—C4—C51.0 (6)C14—C15—C16—C172.1 (6)
C2—C3—C4—N2179.6 (3)C14—C15—C16—N4178.8 (3)
O3—N2—C4—C53.8 (5)O8—N4—C16—C17179.6 (4)
O4—N2—C4—C5176.4 (4)O7—N4—C16—C170.5 (5)
O3—N2—C4—C3175.6 (4)O8—N4—C16—C151.3 (5)
O4—N2—C4—C34.2 (5)O7—N4—C16—C15178.6 (4)
C3—C4—C5—C60.7 (6)C15—C16—C17—C182.3 (6)
N2—C4—C5—C6179.9 (3)N4—C16—C17—C18178.6 (3)
C2—C1—C6—C50.4 (6)C16—C17—C18—C131.3 (6)
S1—C1—C6—C5178.3 (3)C14—C13—C18—C170.2 (6)
C4—C5—C6—C10.0 (6)S2—C13—C18—C17177.7 (3)
S1—N1—C7—C12104.1 (4)S2—N3—C19—C2499.5 (4)
S1—N1—C7—C877.1 (4)S2—N3—C19—C2082.3 (4)
C12—C7—C8—C91.1 (5)C24—C19—C20—C211.2 (6)
N1—C7—C8—C9179.9 (3)N3—C19—C20—C21179.3 (3)
C7—C8—C9—C101.1 (6)C19—C20—C21—C220.3 (6)
C7—C8—C9—Cl1179.5 (3)C19—C20—C21—Cl2178.8 (3)
C8—C9—C10—C110.4 (6)C20—C21—C22—C231.5 (7)
Cl1—C9—C10—C11179.8 (3)Cl2—C21—C22—C23177.6 (4)
C9—C10—C11—C120.3 (7)C21—C22—C23—C241.2 (7)
C10—C11—C12—C70.3 (6)C20—C19—C24—C231.4 (6)
C8—C7—C12—C110.4 (6)N3—C19—C24—C23179.5 (3)
N1—C7—C12—C11179.2 (3)C22—C23—C24—C190.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O80.87 (2)2.22 (2)3.052 (4)163 (3)
N3—H3N···O4i0.85 (2)2.36 (2)3.135 (4)153 (4)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H9ClN2O4S
Mr312.72
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.3419 (8), 7.7579 (4), 23.895 (1)
β (°) 90.345 (5)
V3)2658.6 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.48 × 0.40 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.810, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
9649, 4839, 3112
Rint0.027
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.163, 1.05
No. of reflections4839
No. of parameters367
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.83, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O80.865 (18)2.22 (2)3.052 (4)163 (3)
N3—H3N···O4i0.845 (18)2.36 (2)3.135 (4)153 (4)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under UGC–BSR one-time grant to faculty and the Department of Science and Technology, Government of India, New Delhi, for the research grant under its promotion of university research and scientific excellence programme.

References

First citationChaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2576.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K. & D'Souza, J. D. (2002). Z. Naturforsch. Teil A, 57, 967–973.  CAS Google Scholar
First citationGowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.  Web of Science CrossRef CAS Google Scholar
First citationGowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds