metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dimeth­yl(1,10-phenanthroline-κ2N,N′)bis­­(thio­cyanato-κN)tin(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 November 2012; accepted 20 November 2012; online 28 November 2012)

The SnIV atom in the title compound, [Sn(CH3)2(NCS)2(C12H8N2)], is located on a twofold rotation axis in a distorted octa­hedral enviroment. The methyl groups are trans to each other [C—Sn—C = 175.7 (3)°], whereas the thio­cyanate groups are cis to each other.

Related literature

For dimethyl­tin dithio­thiocyanate, see: Britton (2006[Britton, D. (2006). Acta Cryst. C62, m93-m94.]). For the 4,4′-bipyridine adduct, see: Najafi et al. (2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m350.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2(NCS)2(C12H8N2)]

  • Mr = 445.12

  • Orthorhombic, P c c n

  • a = 6.8218 (7) Å

  • b = 12.9272 (13) Å

  • c = 20.746 (2) Å

  • V = 1829.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 295 K

  • 0.30 × 0.15 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012)[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.] Tmin = 0.641, Tmax = 0.923

  • 10262 measured reflections

  • 2116 independent reflections

  • 1368 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.01

  • 2116 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Few amine adducts of dimethyltin dithiocyanate, which exists as a weakly bridged polymeric chain (Britton, 2006), have been reported. The 4,4'-bipyridine adduct is polymeric (Najafi et al., 2011). In the 1,10-phenanthroline adduct (Scheme I, Fig. 1), the SnIV atom is located on a twofold rotation axis in an octahedral enviroment. The methyl groups are trans to each other whereas the thiocyanate groups are cis to each other.

Related literature top

For dimethyltin dithiothiocyanate, see: Britton (2006). For the 4,4'-bipyridine adduct, see: Najafi et al. (2011).

Experimental top

Dimethyltin dithiocyanate (0.27 g, 1 mmol) and 1,10-phenanthroline hydrate (0.19 g, 1 mmol) were loaded into a convection tube; the tube was filled with ethyl alcohol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.93 to 0.96 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (CH3)2Sn(NCS)2(C12H8N2) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Dimethyl(1,10-phenanthroline-κ2N,N')bis(thiocyanato- κN)tin(IV) top
Crystal data top
[Sn(CH3)2(NCS)2(C12H8N2)]F(000) = 880
Mr = 445.12Dx = 1.616 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 1757 reflections
a = 6.8218 (7) Åθ = 3.2–27.5°
b = 12.9272 (13) ŵ = 1.63 mm1
c = 20.746 (2) ÅT = 295 K
V = 1829.5 (3) Å3Prism, colorless
Z = 40.30 × 0.15 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2116 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1368 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.055
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 3.2°
ω scanh = 68
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1616
Tmin = 0.641, Tmax = 0.923l = 2724
10262 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.5974P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2116 reflectionsΔρmax = 0.51 e Å3
106 parametersΔρmin = 0.63 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (4)
Crystal data top
[Sn(CH3)2(NCS)2(C12H8N2)]V = 1829.5 (3) Å3
Mr = 445.12Z = 4
Orthorhombic, PccnMo Kα radiation
a = 6.8218 (7) ŵ = 1.63 mm1
b = 12.9272 (13) ÅT = 295 K
c = 20.746 (2) Å0.30 × 0.15 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2116 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1368 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.923Rint = 0.055
10262 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.01Δρmax = 0.51 e Å3
2116 reflectionsΔρmin = 0.63 e Å3
106 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.75000.25000.243352 (18)0.04816 (19)
S10.3311 (2)0.45584 (12)0.09896 (7)0.0957 (6)
N10.5798 (5)0.3037 (3)0.33508 (16)0.0515 (8)
N20.5246 (7)0.3231 (4)0.1785 (2)0.1073 (18)
C10.5903 (7)0.1114 (4)0.2395 (2)0.0746 (14)
H1A0.63370.07100.20340.112*
H1B0.45330.12670.23490.112*
H1C0.61090.07310.27860.112*
C20.4146 (7)0.3576 (4)0.3337 (3)0.0736 (14)
H20.36000.37480.29410.088*
C30.3208 (10)0.3891 (5)0.3898 (4)0.107 (2)
H30.20600.42760.38750.128*
C40.3969 (12)0.3635 (6)0.4470 (4)0.115 (3)
H40.33270.38320.48460.138*
C50.5721 (10)0.3073 (5)0.4510 (3)0.0882 (18)
C60.6600 (6)0.2783 (3)0.3924 (2)0.0556 (11)
C70.6688 (15)0.2767 (9)0.5097 (3)0.142 (5)
H70.61350.29560.54900.170*
C80.4443 (7)0.3778 (4)0.1449 (2)0.0644 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0574 (3)0.0459 (3)0.0411 (3)0.00503 (18)0.0000.000
S10.1188 (12)0.0817 (11)0.0866 (11)0.0168 (9)0.0541 (9)0.0028 (8)
N10.056 (2)0.043 (2)0.055 (2)0.0032 (17)0.0090 (16)0.0054 (17)
N20.127 (4)0.085 (4)0.110 (4)0.010 (3)0.058 (3)0.019 (3)
C10.081 (4)0.065 (3)0.078 (4)0.010 (3)0.014 (2)0.009 (3)
C20.062 (3)0.054 (3)0.105 (4)0.005 (2)0.023 (3)0.010 (3)
C30.085 (4)0.075 (4)0.161 (7)0.002 (3)0.061 (5)0.028 (5)
C40.137 (6)0.096 (5)0.113 (6)0.044 (5)0.087 (5)0.050 (5)
C50.123 (5)0.082 (4)0.059 (3)0.039 (4)0.038 (3)0.022 (3)
C60.071 (3)0.052 (3)0.044 (2)0.021 (2)0.014 (2)0.008 (2)
C70.225 (15)0.156 (12)0.044 (3)0.092 (10)0.035 (4)0.019 (4)
C80.071 (3)0.068 (3)0.054 (3)0.001 (3)0.015 (2)0.009 (2)
Geometric parameters (Å, º) top
Sn1—C12.098 (5)C1—H1C0.9600
Sn1—C1i2.098 (5)C2—C31.388 (8)
Sn1—N2i2.251 (4)C2—H20.9300
Sn1—N22.251 (4)C3—C41.337 (10)
Sn1—N12.335 (3)C3—H30.9300
Sn1—N1i2.335 (3)C4—C51.401 (9)
S1—C81.588 (5)C4—H40.9300
N1—C21.326 (5)C5—C61.405 (6)
N1—C61.350 (5)C5—C71.442 (9)
N2—C81.134 (5)C6—C6i1.430 (9)
C1—H1A0.9600C7—C7i1.31 (2)
C1—H1B0.9600C7—H70.9300
C1—Sn1—C1i175.7 (3)Sn1—C1—H1C109.5
C1—Sn1—N2i88.48 (19)H1A—C1—H1C109.5
C1i—Sn1—N2i88.94 (18)H1B—C1—H1C109.5
C1—Sn1—N288.94 (18)N1—C2—C3121.9 (6)
C1i—Sn1—N288.48 (19)N1—C2—H2119.1
N2i—Sn1—N2106.6 (3)C3—C2—H2119.1
C1—Sn1—N191.51 (16)C4—C3—C2119.5 (7)
C1i—Sn1—N192.01 (15)C4—C3—H3120.2
N2i—Sn1—N1162.09 (16)C2—C3—H3120.2
N2—Sn1—N191.30 (17)C3—C4—C5120.7 (6)
C1—Sn1—N1i92.01 (15)C3—C4—H4119.6
C1i—Sn1—N1i91.51 (16)C5—C4—H4119.6
N2i—Sn1—N1i91.30 (17)C4—C5—C6116.9 (6)
N2—Sn1—N1i162.09 (16)C4—C5—C7125.6 (6)
N1—Sn1—N1i70.80 (18)C6—C5—C7117.6 (7)
C2—N1—C6119.4 (4)N1—C6—C5121.6 (5)
C2—N1—Sn1124.2 (3)N1—C6—C6i118.2 (2)
C6—N1—Sn1116.4 (3)C5—C6—C6i120.2 (4)
C8—N2—Sn1163.6 (5)C7i—C7—C5122.2 (4)
Sn1—C1—H1A109.5C7i—C7—H7118.9
Sn1—C1—H1B109.5C5—C7—H7118.9
H1A—C1—H1B109.5N2—C8—S1178.8 (5)
C1—Sn1—N1—C289.4 (4)Sn1—N1—C2—C3178.9 (4)
C1i—Sn1—N1—C288.1 (4)N1—C2—C3—C40.9 (9)
N2i—Sn1—N1—C2179.2 (5)C2—C3—C4—C51.4 (10)
N2—Sn1—N1—C20.5 (4)C3—C4—C5—C61.1 (9)
N1i—Sn1—N1—C2179.0 (4)C3—C4—C5—C7179.2 (8)
C1—Sn1—N1—C691.6 (3)C2—N1—C6—C50.2 (6)
C1i—Sn1—N1—C690.9 (3)Sn1—N1—C6—C5179.3 (3)
N2i—Sn1—N1—C61.8 (6)C2—N1—C6—C6i178.9 (4)
N2—Sn1—N1—C6179.5 (3)Sn1—N1—C6—C6i0.1 (6)
N1i—Sn1—N1—C60.0 (2)C4—C5—C6—N10.3 (7)
C1—Sn1—N2—C8167.4 (17)C7—C5—C6—N1180.0 (6)
C1i—Sn1—N2—C89.2 (17)C4—C5—C6—C6i179.4 (5)
N2i—Sn1—N2—C879.3 (17)C7—C5—C6—C6i0.8 (9)
N1—Sn1—N2—C8101.1 (17)C4—C5—C7—C7i179.3 (13)
N1i—Sn1—N2—C899.4 (17)C6—C5—C7—C7i0.5 (19)
C6—N1—C2—C30.0 (7)
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(NCS)2(C12H8N2)]
Mr445.12
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)295
a, b, c (Å)6.8218 (7), 12.9272 (13), 20.746 (2)
V3)1829.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.63
Crystal size (mm)0.30 × 0.15 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.641, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
10262, 2116, 1368
Rint0.055
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.01
No. of reflections2116
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.63

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBritton, D. (2006). Acta Cryst. C62, m93–m94.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m350.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds