metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ2-ethano­lato-octa­methyl­bis­­(μ-4-methyl-5-sulfanyl­­idene-4,5-di­hydro-1H-1,2,4-triazol-1-ido-κ2N1:N2)di-μ3-oxido-tetra­tin(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 17 November 2012; accepted 20 November 2012; online 28 November 2012)

The tetra­nuclear title compound, [Sn4(CH3)8(C2H5O)2O2(C3H4N3S)2], lies about a center of inversion; the mol­ecule features a three-rung-staircase Sn4O4 core in which two SnIV atoms are bridged by the 4-methyl-5-sulfanyl­idene-4,5-dihydro-1H-1,2,4-triazol-1-ide group. The negatively charged N atom of the group binds to the terminal SnIV atom at a shorter distance [Sn—N = 2.240 (3) Å] compared with the neutral N atom that binds to the central SnIV atom [Sn← N = 2.641 (3) Å]. The terminal SnIV atom is five-coordinate in a cis-C2SnNO2 trigonal–bipyramidal geometry [C—Sn—C = 127.5 (2)°], whereas the central SnIV atom is six-coordinate in a C2SnNO3 skew-trazepoidal bipyramidal geometry [C—Sn—C = 145.0 (2)°].

Related literature

For the [Sn2O(CH3)4(CH3O)(C3H4N3S)]2 homolog, see: Najafi et al. (2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m242.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(CH3)8(C2H5O)2O2(C3H4N3S)2]

  • Mr = 945.46

  • Monoclinic, P 21 /n

  • a = 9.3965 (4) Å

  • b = 17.8939 (7) Å

  • c = 9.9084 (4) Å

  • β = 103.036 (4)°

  • V = 1623.06 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.20 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.447, Tmax = 0.567

  • 15728 measured reflections

  • 3743 independent reflections

  • 3280 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.065

  • S = 1.04

  • 3743 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.67 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (Scheme I, Fig. 1), a distannoxane, was the unexpected product from an attempt at synthesizing a dimethyltin 4-methyl-4H-1,2,4-triazol-3-thiolate that possesses a tin-sulfur linkage. In the reaction of diorganotin oxides with organic acids (particularly carboxylic acids), tetranuclear distannoxanes are sometimes formed; these compounds have four organic groups. In the present reaction, two of the four organic groups are replaced by ethoxide groups.

Tetranuclear Sn4O2(CH3)8(C2H5O)2(C3H4N3S)2 lies about a center-of-inversion; the molecule features a three-rung-staircase Sn4O4 core in which two Sn atoms are bridged by the C3H4N3S triazolate group. The negatively-charged N atom of the group binds to the terminal Sn atom at a shorter distance [Sn–N 2.240 (3) Å] compared with the neutral N atom that binds to the central Sn atom [SnN 2.641 (3) Å]. The terminal Sn atom is five-coordinate in a cis-C3SnNO trigonal bipyramid whereas the central Sn atom is six-coordinate in a C2SnNO3 skew-trazepoidal bipyramidal geometry.

Related literature top

For the [Sn2O(CH3)4(CH3O)(C3H4N3S)]2 homolog, see: Najafi et al. (2011).

Experimental top

Dimethyltin diisothiocyanate (1 mmol), 4-methyl-4H-1,2,4-triazole-3-thiol (1 mmol) and 1,10-phenanthroline (1 mmol) were loaded into a convection tube; several drops of triethylamine were added. The tube was filled with dry ethanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Sn4O2(CH3)8(C2H5O)2(C3H4N3S)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Di-µ2-ethanolato-octamethylbis(µ-4-methyl-5-sulfanylidene-4,5-dihydro- 1H-1,2,4-triazolido-κ2N1:N2)di-µ3-oxido- tetratin(IV) top
Crystal data top
[Sn4(CH3)8(C2H5O)2O2(C3H4N3S)2]F(000) = 912
Mr = 945.46Dx = 1.935 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6388 reflections
a = 9.3965 (4) Åθ = 2.9–27.5°
b = 17.8939 (7) ŵ = 3.20 mm1
c = 9.9084 (4) ÅT = 100 K
β = 103.036 (4)°Prism, colorless
V = 1623.06 (11) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3743 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3280 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 2321
Tmin = 0.447, Tmax = 0.567l = 1112
15728 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0302P)2 + 2.3203P]
where P = (Fo2 + 2Fc2)/3
3743 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Sn4(CH3)8(C2H5O)2O2(C3H4N3S)2]V = 1623.06 (11) Å3
Mr = 945.46Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.3965 (4) ŵ = 3.20 mm1
b = 17.8939 (7) ÅT = 100 K
c = 9.9084 (4) Å0.30 × 0.25 × 0.20 mm
β = 103.036 (4)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
3743 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3280 reflections with I > 2σ(I)
Tmin = 0.447, Tmax = 0.567Rint = 0.037
15728 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.04Δρmax = 0.75 e Å3
3743 reflectionsΔρmin = 0.67 e Å3
155 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.37077 (2)0.436391 (12)0.49959 (2)0.01497 (7)
Sn20.70638 (2)0.467990 (13)0.80539 (2)0.01507 (7)
S10.69104 (11)0.33447 (6)1.09067 (10)0.0342 (2)
O10.5639 (2)0.48179 (13)0.6221 (2)0.0182 (5)
O20.7909 (3)0.55849 (14)0.7058 (2)0.0200 (5)
N10.4168 (3)0.36557 (17)0.7393 (3)0.0224 (6)
N20.5475 (3)0.37949 (17)0.8347 (3)0.0199 (6)
N30.4324 (3)0.29205 (17)0.9189 (3)0.0233 (6)
C10.4547 (4)0.3342 (2)0.4438 (4)0.0253 (8)
H1A0.53730.34420.40120.038*
H1B0.37820.30760.37770.038*
H1C0.48770.30340.52680.038*
C20.2100 (4)0.4864 (2)0.5902 (4)0.0265 (8)
H2A0.22100.54080.59020.040*
H2B0.22210.46860.68570.040*
H2C0.11250.47270.53660.040*
C30.8781 (4)0.3928 (2)0.7987 (4)0.0276 (8)
H3A0.96370.42080.78590.041*
H3B0.84690.35790.72140.041*
H3C0.90340.36470.88580.041*
C40.6810 (4)0.5344 (2)0.9736 (3)0.0247 (8)
H4A0.74410.57850.98030.037*
H4B0.70810.50541.05940.037*
H4C0.57890.55040.95950.037*
C50.3523 (4)0.3131 (2)0.7935 (3)0.0236 (7)
H50.26030.29210.75050.028*
C60.4001 (5)0.2340 (2)1.0099 (4)0.0343 (9)
H6A0.30390.21240.96990.051*
H6B0.39990.25551.10080.051*
H6C0.47470.19481.02040.051*
C70.5556 (4)0.3356 (2)0.9450 (3)0.0212 (7)
C80.9254 (4)0.5956 (2)0.7578 (4)0.0239 (7)
H8A0.98410.59500.68640.029*
H8B0.98090.56850.84000.029*
C90.9025 (5)0.6751 (2)0.7972 (5)0.0381 (10)
H9A0.99740.69900.83270.057*
H9B0.84580.67580.86890.057*
H9C0.84930.70240.71550.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01475 (12)0.01498 (13)0.01399 (11)0.00248 (8)0.00072 (8)0.00005 (8)
Sn20.01482 (12)0.01626 (13)0.01265 (11)0.00072 (8)0.00002 (8)0.00025 (8)
S10.0269 (5)0.0421 (6)0.0294 (5)0.0007 (4)0.0028 (4)0.0170 (4)
O10.0186 (12)0.0190 (12)0.0146 (11)0.0030 (10)0.0011 (9)0.0042 (9)
O20.0177 (12)0.0203 (13)0.0190 (12)0.0075 (10)0.0018 (9)0.0009 (9)
N10.0239 (16)0.0221 (16)0.0198 (14)0.0062 (13)0.0017 (11)0.0017 (11)
N20.0179 (14)0.0235 (16)0.0154 (13)0.0038 (12)0.0021 (10)0.0026 (11)
N30.0275 (17)0.0184 (16)0.0251 (15)0.0027 (13)0.0083 (12)0.0011 (12)
C10.031 (2)0.022 (2)0.0214 (17)0.0031 (16)0.0031 (14)0.0010 (14)
C20.0229 (19)0.036 (2)0.0215 (17)0.0055 (16)0.0056 (14)0.0044 (15)
C30.0238 (19)0.025 (2)0.034 (2)0.0090 (16)0.0073 (15)0.0025 (15)
C40.029 (2)0.027 (2)0.0198 (17)0.0050 (16)0.0076 (14)0.0073 (14)
C50.0273 (19)0.0212 (19)0.0222 (17)0.0050 (15)0.0056 (14)0.0048 (13)
C60.043 (2)0.024 (2)0.039 (2)0.0082 (18)0.0167 (18)0.0084 (16)
C70.0218 (18)0.0180 (18)0.0242 (17)0.0023 (14)0.0062 (13)0.0017 (13)
C80.0184 (17)0.025 (2)0.0285 (18)0.0033 (15)0.0049 (14)0.0017 (14)
C90.030 (2)0.030 (2)0.050 (3)0.0106 (18)0.0016 (18)0.0093 (18)
Geometric parameters (Å, º) top
Sn1—O1i2.076 (2)C1—H1B0.9800
Sn1—O12.106 (2)C1—H1C0.9800
Sn1—C12.114 (4)C2—H2A0.9800
Sn1—C22.121 (4)C2—H2B0.9800
Sn1—O2i2.250 (2)C2—H2C0.9800
Sn1—N12.641 (3)C3—H3A0.9800
Sn2—O12.013 (2)C3—H3B0.9800
Sn2—C42.105 (3)C3—H3C0.9800
Sn2—C32.114 (4)C4—H4A0.9800
Sn2—O22.140 (2)C4—H4B0.9800
Sn2—N22.240 (3)C4—H4C0.9800
S1—C71.695 (4)C5—H50.9500
O1—Sn1i2.076 (2)C6—H6A0.9800
O2—C81.418 (4)C6—H6B0.9800
O2—Sn1i2.250 (2)C6—H6C0.9800
N1—C51.297 (5)C8—C91.503 (6)
N1—N21.393 (4)C8—H8A0.9900
N2—C71.334 (4)C8—H8B0.9900
N3—C51.353 (4)C9—H9A0.9800
N3—C71.371 (5)C9—H9B0.9800
N3—C61.452 (5)C9—H9C0.9800
C1—H1A0.9800
O1i—Sn1—O174.55 (9)H1A—C1—H1C109.5
O1i—Sn1—C1106.36 (12)H1B—C1—H1C109.5
O1—Sn1—C199.22 (12)Sn1—C2—H2A109.5
O1i—Sn1—C2106.31 (13)Sn1—C2—H2B109.5
O1—Sn1—C2101.36 (12)H2A—C2—H2B109.5
C1—Sn1—C2144.96 (16)Sn1—C2—H2C109.5
O1i—Sn1—O2i70.95 (8)H2A—C2—H2C109.5
O1—Sn1—O2i145.49 (9)H2B—C2—H2C109.5
C1—Sn1—O2i90.83 (12)Sn2—C3—H3A109.5
C2—Sn1—O2i88.04 (12)Sn2—C3—H3B109.5
O1i—Sn1—N1148.36 (9)H3A—C3—H3B109.5
O1—Sn1—N173.83 (9)Sn2—C3—H3C109.5
C1—Sn1—N179.92 (12)H3A—C3—H3C109.5
C2—Sn1—N179.00 (12)H3B—C3—H3C109.5
O2i—Sn1—N1140.66 (9)Sn2—C4—H4A109.5
O1—Sn2—C4118.29 (13)Sn2—C4—H4B109.5
O1—Sn2—C3114.01 (12)H4A—C4—H4B109.5
C4—Sn2—C3127.46 (15)Sn2—C4—H4C109.5
O1—Sn2—O274.44 (9)H4A—C4—H4C109.5
C4—Sn2—O293.32 (12)H4B—C4—H4C109.5
C3—Sn2—O295.86 (13)N1—C5—N3111.5 (3)
O1—Sn2—N282.92 (9)N1—C5—H5124.3
C4—Sn2—N295.66 (13)N3—C5—H5124.3
C3—Sn2—N295.15 (14)N3—C6—H6A109.5
O2—Sn2—N2157.27 (9)N3—C6—H6B109.5
Sn2—O1—Sn1i112.77 (11)H6A—C6—H6B109.5
Sn2—O1—Sn1141.62 (12)N3—C6—H6C109.5
Sn1i—O1—Sn1105.45 (9)H6A—C6—H6C109.5
C8—O2—Sn2125.4 (2)H6B—C6—H6C109.5
C8—O2—Sn1i132.4 (2)N2—C7—N3106.8 (3)
Sn2—O2—Sn1i101.70 (9)N2—C7—S1126.7 (3)
C5—N1—N2105.8 (3)N3—C7—S1126.4 (3)
C5—N1—Sn1136.2 (2)O2—C8—C9111.7 (3)
N2—N1—Sn1117.7 (2)O2—C8—H8A109.3
C7—N2—N1109.2 (3)C9—C8—H8A109.3
C7—N2—Sn2127.3 (2)O2—C8—H8B109.3
N1—N2—Sn2123.4 (2)C9—C8—H8B109.3
C5—N3—C7106.7 (3)H8A—C8—H8B108.0
C5—N3—C6128.2 (3)C8—C9—H9A109.5
C7—N3—C6125.1 (3)C8—C9—H9B109.5
Sn1—C1—H1A109.5H9A—C9—H9B109.5
Sn1—C1—H1B109.5C8—C9—H9C109.5
H1A—C1—H1B109.5H9A—C9—H9C109.5
Sn1—C1—H1C109.5H9B—C9—H9C109.5
C4—Sn2—O1—Sn1i88.55 (16)O1i—Sn1—N1—N29.0 (3)
C3—Sn2—O1—Sn1i86.31 (16)O1—Sn1—N1—N26.9 (2)
O2—Sn2—O1—Sn1i3.23 (10)C1—Sn1—N1—N295.9 (3)
N2—Sn2—O1—Sn1i178.81 (13)C2—Sn1—N1—N2112.3 (3)
C4—Sn2—O1—Sn196.9 (2)O2i—Sn1—N1—N2174.7 (2)
C3—Sn2—O1—Sn188.2 (2)C5—N1—N2—C71.2 (4)
O2—Sn2—O1—Sn1177.8 (2)Sn1—N1—N2—C7176.1 (2)
N2—Sn2—O1—Sn14.3 (2)C5—N1—N2—Sn2177.7 (2)
O1i—Sn1—O1—Sn2174.8 (3)Sn1—N1—N2—Sn27.5 (3)
C1—Sn1—O1—Sn270.2 (2)O1—Sn2—N2—C7179.2 (3)
C2—Sn1—O1—Sn281.3 (2)C4—Sn2—N2—C761.3 (3)
O2i—Sn1—O1—Sn2175.41 (15)C3—Sn2—N2—C767.2 (3)
N1—Sn1—O1—Sn26.38 (19)O2—Sn2—N2—C7174.1 (3)
O1i—Sn1—O1—Sn1i0.0O1—Sn2—N2—N13.4 (3)
C1—Sn1—O1—Sn1i104.54 (13)C4—Sn2—N2—N1114.5 (3)
C2—Sn1—O1—Sn1i103.98 (14)C3—Sn2—N2—N1117.0 (3)
O2i—Sn1—O1—Sn1i0.7 (2)O2—Sn2—N2—N11.7 (4)
N1—Sn1—O1—Sn1i178.86 (13)N2—N1—C5—N30.3 (4)
O1—Sn2—O2—C8175.8 (3)Sn1—N1—C5—N3173.6 (2)
C4—Sn2—O2—C865.7 (3)C7—N3—C5—N10.7 (4)
C3—Sn2—O2—C862.5 (3)C6—N3—C5—N1178.0 (4)
N2—Sn2—O2—C8178.9 (3)N1—N2—C7—N31.7 (4)
O1—Sn2—O2—Sn1i2.81 (9)Sn2—N2—C7—N3177.9 (2)
C4—Sn2—O2—Sn1i121.28 (13)N1—N2—C7—S1177.6 (3)
C3—Sn2—O2—Sn1i110.52 (13)Sn2—N2—C7—S11.3 (5)
N2—Sn2—O2—Sn1i8.1 (3)C5—N3—C7—N21.5 (4)
O1i—Sn1—N1—C5178.2 (3)C6—N3—C7—N2177.3 (3)
O1—Sn1—N1—C5179.7 (4)C5—N3—C7—S1177.8 (3)
C1—Sn1—N1—C576.9 (4)C6—N3—C7—S13.4 (5)
C2—Sn1—N1—C575.0 (4)Sn2—O2—C8—C9112.7 (3)
O2i—Sn1—N1—C51.9 (4)Sn1i—O2—C8—C976.5 (4)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Sn4(CH3)8(C2H5O)2O2(C3H4N3S)2]
Mr945.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.3965 (4), 17.8939 (7), 9.9084 (4)
β (°) 103.036 (4)
V3)1623.06 (11)
Z2
Radiation typeMo Kα
µ (mm1)3.20
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.447, 0.567
No. of measured, independent and
observed [I > 2σ(I)] reflections
15728, 3743, 3280
Rint0.037
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 1.04
No. of reflections3743
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.67

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Shahid Beheshti University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds