organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,5-Di­methyl­phen­yl)-4-nitro­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 17 November 2012; accepted 19 November 2012; online 24 November 2012)

There are two independent mol­ecules in the asymmetric unit of the title compound, C14H14N2O4S, in which the dihedral angles between the benzene rings are 56.22 (15) and 58.16 (14)°. In the crystal, N—H⋯Onitro hydrogen bonds link the mol­ecules into zigzag chains running along the a-axis direction.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda & Weiss (1994[Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695-702.]); Shahwar et al. (2012[Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.]), of N-aryl­sulfonamides, see: Chaithanya et al. (2012[Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2823.]) and of N-chloro­aryl­sulfonamides, see: Shetty & Gowda (2004[Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63-72.]). For hydrogen-bonding patterns and motifs, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O4S

  • Mr = 306.33

  • Orthorhombic, P n a 21

  • a = 14.708 (1) Å

  • b = 7.9410 (7) Å

  • c = 24.741 (2) Å

  • V = 2889.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.38 × 0.30 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.914, Tmax = 0.944

  • 6693 measured reflections

  • 3714 independent reflections

  • 2624 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.074

  • S = 1.00

  • 3714 reflections

  • 390 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1005 Friedel pairs

  • Flack parameter: 0.04 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.85 (2) 2.35 (2) 3.129 (5) 152 (3)
N3—H3N⋯O8ii 0.84 (2) 2.40 (2) 3.168 (5) 152 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda & Weiss, 1994; Shahwar et al., 2012); N-arylsulfonamides (Chaithanya et al., 2012) and N-chloroarylsulfonamides (Shetty & Gowda, 2004),in the present work, the crystal structure of N-(3,5-dimethylphenyl)-4-nitrobenzenesulfonamide (I) has been determined (Fig. 1).

The asymmetric unit of the structure of (I) contains two crystallographically independent molecules, similar to that observed in N-(3,5-dimethylphenyl)-2-nitrobenzenesulfonamide (II) (Chaithanya et al., 2012). The molecules are twisted at the S—N bonds with the torsional angles of -66.67 (38) and -70.56 (39)°, compared to the values of 44.24 (26) and -49.34 (25)° in (II).

The dihedral angles between the sulfonyl and the anilino rings in the two molecules are 56.22 (15)° and 58.16 (14)°, compared to the values of 71.53 (7)° and 72.11 (7)° in (II).

The amide H-atom showed bifurcated intramolecular H-bonding with the O-atom of the ortho-nitro group in the sulfonyl benzene ring, generating S(7) motifs and the intermolecular H-bonding with the sulfonyl oxygen atom of the other molecule, generating C(4) motifs (Adsmond et al., 2001).

In the crystal, the intermolecular N–H···O (N) hydrogen bonds (Table 1) link the molecules into zigzag chains running along the a axis. Part of the crystal structure is shown in Fig. 2.

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda & Weiss (1994); Shahwar et al. (2012), of N-arylsulfonamides, see: Chaithanya et al. (2012) and of N-chloroarylsulfonamides, see: Shetty & Gowda (2004). For hydrogen-bonding patterns and motifs, see: Adsmond et al. (2001).

Experimental top

The title compound was prepared by treating 4-nitrobenzenesulfonylchloride with 3,5-dimethylaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid, N-(3,5-dimethylphenyl)-4-nitrobenzenesulfonamide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å. The amino H atoms were freely refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) or 1.5 Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(3,5-Dimethylphenyl)-4-nitrobenzenesulfonamide top
Crystal data top
C14H14N2O4SF(000) = 1280
Mr = 306.33Dx = 1.408 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1548 reflections
a = 14.708 (1) Åθ = 2.6–27.9°
b = 7.9410 (7) ŵ = 0.24 mm1
c = 24.741 (2) ÅT = 293 K
V = 2889.7 (4) Å3Prism, colourless
Z = 80.38 × 0.30 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3714 independent reflections
Radiation source: fine-focus sealed tube2624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Rotation method data acquisition using ω scansθmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 176
Tmin = 0.914, Tmax = 0.944k = 97
6693 measured reflectionsl = 1629
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0295P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.18 e Å3
3714 reflectionsΔρmin = 0.18 e Å3
390 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0037 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1005 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (8)
Crystal data top
C14H14N2O4SV = 2889.7 (4) Å3
Mr = 306.33Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 14.708 (1) ŵ = 0.24 mm1
b = 7.9410 (7) ÅT = 293 K
c = 24.741 (2) Å0.38 × 0.30 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3714 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2624 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.944Rint = 0.030
6693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.18 e Å3
S = 1.00Δρmin = 0.18 e Å3
3714 reflectionsAbsolute structure: Flack (1983), 1005 Friedel pairs
390 parametersAbsolute structure parameter: 0.04 (8)
3 restraints
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20029 (7)0.68335 (15)0.47849 (4)0.0495 (3)
O10.2499 (2)0.8380 (4)0.48316 (13)0.0631 (9)
O20.1473 (2)0.6216 (4)0.52234 (12)0.0710 (10)
O30.4490 (3)0.0058 (6)0.42894 (19)0.1052 (15)
O40.5359 (3)0.1925 (6)0.3950 (2)0.1156 (17)
N10.1295 (2)0.7027 (5)0.42794 (16)0.0476 (9)
H1N0.094 (2)0.618 (3)0.4263 (16)0.057*
N20.4666 (3)0.1511 (6)0.41830 (18)0.0681 (13)
C10.2802 (2)0.5258 (5)0.46126 (14)0.0381 (9)
C20.2595 (3)0.3583 (5)0.47151 (17)0.0517 (11)
H20.20460.32950.48770.062*
C30.3211 (3)0.2352 (5)0.4575 (2)0.0550 (16)
H30.30890.12230.46430.066*
C40.4008 (3)0.2829 (6)0.43324 (19)0.0481 (12)
C50.4228 (3)0.4459 (6)0.42402 (17)0.0541 (12)
H50.47840.47390.40850.065*
C60.3614 (3)0.5702 (5)0.43812 (16)0.0483 (11)
H60.37510.68290.43200.058*
C70.1582 (3)0.7666 (5)0.3761 (2)0.0422 (12)
C80.1593 (3)0.6614 (6)0.33197 (19)0.0492 (11)
H80.14460.54830.33640.059*
C90.1817 (3)0.7198 (7)0.2813 (2)0.0553 (14)
C100.2049 (3)0.8896 (7)0.2769 (2)0.0626 (13)
H100.22080.93250.24320.075*
C110.2050 (3)0.9959 (6)0.3212 (2)0.0601 (13)
C120.1793 (3)0.9334 (5)0.37078 (18)0.0504 (11)
H120.17631.00450.40060.060*
C130.1821 (3)0.6099 (7)0.2319 (2)0.0839 (17)
H13A0.12180.60370.21730.126*
H13B0.20240.49890.24150.126*
H13C0.22250.65680.20540.126*
C140.2293 (4)1.1823 (6)0.3147 (3)0.103 (2)
H14A0.21891.21620.27790.155*
H14B0.29211.19900.32370.155*
H14C0.19201.24870.33840.155*
S20.03497 (7)0.80910 (15)0.05640 (5)0.0475 (3)
O50.01620 (19)0.6581 (3)0.05262 (13)0.0618 (8)
O60.0860 (2)0.8702 (4)0.01140 (12)0.0664 (9)
O70.2958 (3)1.3138 (6)0.1386 (2)0.1138 (18)
O80.2121 (3)1.4949 (5)0.09994 (16)0.0838 (11)
N30.1086 (2)0.7845 (4)0.10462 (16)0.0446 (10)
H3N0.142 (2)0.871 (3)0.1028 (15)0.054*
N40.2285 (3)1.3523 (6)0.11394 (18)0.0665 (12)
C150.0414 (2)0.9711 (5)0.07551 (14)0.0387 (10)
C160.1215 (3)0.9299 (5)0.10135 (17)0.0530 (11)
H160.13380.81830.11010.064*
C170.1833 (3)1.0543 (6)0.1142 (2)0.0571 (13)
H170.23791.02850.13130.069*
C180.1616 (3)1.2180 (6)0.1009 (2)0.0440 (12)
C190.0830 (3)1.2609 (5)0.0751 (2)0.0486 (14)
H190.07071.37230.06610.058*
C200.0221 (2)1.1340 (5)0.06260 (17)0.0478 (11)
H200.03231.16000.04530.057*
C210.0857 (3)0.7124 (5)0.1559 (2)0.0389 (11)
C220.0684 (3)0.5420 (5)0.16021 (18)0.0468 (11)
H220.06890.47500.12940.056*
C230.0504 (2)0.4699 (5)0.2103 (2)0.0481 (11)
C240.0518 (3)0.5743 (6)0.2550 (2)0.0538 (12)
H240.04180.52670.28890.065*
C250.0673 (3)0.7446 (5)0.2521 (2)0.0483 (14)
C260.0837 (3)0.8133 (6)0.2017 (2)0.0505 (11)
H260.09350.92850.19840.061*
C270.0307 (4)0.2842 (5)0.2156 (2)0.0811 (17)
H27A0.01100.24070.18140.122*
H27B0.08490.22640.22680.122*
H27C0.01620.26740.24210.122*
C280.0679 (3)0.8542 (7)0.30165 (19)0.0821 (16)
H28A0.01050.91090.30480.123*
H28B0.07780.78560.33310.123*
H28C0.11570.93590.29870.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0542 (6)0.0496 (8)0.0446 (7)0.0110 (6)0.0033 (6)0.0041 (7)
O10.074 (2)0.0460 (19)0.069 (2)0.0071 (18)0.0228 (18)0.0130 (19)
O20.077 (2)0.086 (2)0.0502 (19)0.0283 (19)0.0294 (17)0.0126 (18)
O30.102 (3)0.062 (2)0.151 (4)0.034 (3)0.006 (3)0.027 (3)
O40.077 (3)0.117 (3)0.153 (5)0.029 (3)0.042 (3)0.034 (3)
N10.037 (2)0.046 (2)0.060 (3)0.0075 (18)0.0004 (18)0.003 (2)
N20.065 (3)0.067 (3)0.072 (3)0.019 (3)0.007 (2)0.022 (3)
C10.042 (2)0.036 (2)0.036 (2)0.003 (2)0.0014 (18)0.0015 (19)
C20.044 (2)0.047 (3)0.064 (3)0.000 (2)0.005 (2)0.005 (2)
C30.054 (3)0.034 (3)0.078 (5)0.002 (2)0.008 (3)0.000 (2)
C40.047 (3)0.052 (3)0.046 (3)0.018 (3)0.000 (2)0.011 (2)
C50.049 (3)0.059 (3)0.054 (3)0.003 (3)0.010 (2)0.007 (3)
C60.054 (3)0.041 (3)0.050 (3)0.004 (2)0.004 (2)0.008 (2)
C70.033 (2)0.044 (3)0.050 (3)0.006 (2)0.001 (2)0.002 (2)
C80.040 (2)0.048 (3)0.059 (3)0.001 (2)0.001 (2)0.002 (3)
C90.050 (3)0.065 (3)0.051 (4)0.001 (3)0.002 (3)0.006 (3)
C100.066 (3)0.072 (4)0.050 (3)0.001 (3)0.004 (2)0.012 (3)
C110.066 (3)0.051 (3)0.063 (3)0.000 (2)0.005 (3)0.013 (3)
C120.054 (3)0.044 (3)0.053 (3)0.000 (2)0.009 (2)0.008 (2)
C130.076 (3)0.107 (4)0.069 (4)0.007 (3)0.011 (3)0.026 (3)
C140.145 (5)0.058 (3)0.107 (5)0.010 (4)0.005 (4)0.026 (4)
S20.0512 (6)0.0443 (7)0.0471 (7)0.0100 (6)0.0015 (6)0.0028 (7)
O50.070 (2)0.0401 (17)0.075 (2)0.0035 (16)0.0198 (18)0.0141 (18)
O60.073 (2)0.078 (2)0.0489 (19)0.0261 (18)0.0172 (16)0.0081 (18)
O70.074 (3)0.095 (3)0.173 (5)0.004 (3)0.053 (3)0.046 (3)
O80.099 (3)0.058 (2)0.094 (3)0.029 (2)0.007 (2)0.014 (2)
N30.039 (2)0.041 (2)0.054 (3)0.0005 (17)0.0038 (18)0.003 (2)
N40.057 (3)0.070 (3)0.073 (3)0.013 (3)0.005 (2)0.036 (3)
C150.038 (2)0.036 (2)0.042 (2)0.002 (2)0.0009 (19)0.0019 (19)
C160.056 (3)0.047 (3)0.056 (3)0.006 (2)0.008 (2)0.009 (2)
C170.042 (3)0.063 (3)0.066 (3)0.003 (3)0.018 (2)0.011 (3)
C180.036 (2)0.043 (3)0.053 (3)0.004 (2)0.005 (2)0.019 (2)
C190.051 (3)0.036 (3)0.059 (4)0.005 (2)0.004 (2)0.004 (2)
C200.039 (2)0.044 (2)0.061 (3)0.005 (2)0.009 (2)0.002 (2)
C210.032 (2)0.040 (3)0.045 (3)0.002 (2)0.0048 (19)0.003 (3)
C220.046 (2)0.037 (3)0.057 (3)0.006 (2)0.003 (2)0.008 (2)
C230.052 (3)0.031 (2)0.062 (3)0.005 (2)0.001 (2)0.003 (2)
C240.049 (3)0.064 (3)0.048 (3)0.005 (2)0.002 (2)0.011 (3)
C250.044 (3)0.049 (3)0.051 (4)0.001 (2)0.003 (3)0.009 (2)
C260.042 (2)0.039 (3)0.070 (4)0.004 (2)0.004 (2)0.008 (3)
C270.108 (4)0.051 (3)0.084 (4)0.006 (3)0.017 (3)0.007 (3)
C280.086 (4)0.101 (4)0.059 (4)0.017 (3)0.001 (3)0.029 (3)
Geometric parameters (Å, º) top
S1—O21.423 (3)S2—O51.419 (3)
S1—O11.433 (3)S2—O61.428 (3)
S1—N11.634 (4)S2—N31.623 (4)
S1—C11.769 (4)S2—C151.772 (4)
O3—N21.211 (5)O7—N41.203 (5)
O4—N21.216 (5)O8—N41.208 (5)
N1—C71.442 (6)N3—C211.433 (6)
N1—H1N0.849 (18)N3—H3N0.843 (18)
N2—C41.473 (6)N4—C181.486 (6)
C1—C61.371 (5)C15—C201.363 (5)
C1—C21.388 (5)C15—C161.379 (5)
C2—C31.378 (6)C16—C171.380 (6)
C2—H20.9300C16—H160.9300
C3—C41.369 (7)C17—C181.378 (6)
C3—H30.9300C17—H170.9300
C4—C51.354 (5)C18—C191.364 (6)
C5—C61.382 (5)C19—C201.383 (5)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C121.366 (5)C21—C221.380 (5)
C7—C81.376 (6)C21—C261.387 (6)
C8—C91.376 (7)C22—C231.391 (5)
C8—H80.9300C22—H220.9300
C9—C101.395 (6)C23—C241.382 (6)
C9—C131.502 (7)C23—C271.509 (5)
C10—C111.383 (6)C24—C251.373 (5)
C10—H100.9300C24—H240.9300
C11—C121.376 (6)C25—C261.382 (7)
C11—C141.532 (6)C25—C281.504 (7)
C12—H120.9300C26—H260.9300
C13—H13A0.9600C27—H27A0.9600
C13—H13B0.9600C27—H27B0.9600
C13—H13C0.9600C27—H27C0.9600
C14—H14A0.9600C28—H28A0.9600
C14—H14B0.9600C28—H28B0.9600
C14—H14C0.9600C28—H28C0.9600
O2—S1—O1120.9 (2)O5—S2—O6121.0 (2)
O2—S1—N1105.49 (19)O5—S2—N3107.50 (19)
O1—S1—N1107.79 (19)O6—S2—N3105.3 (2)
O2—S1—C1107.69 (18)O5—S2—C15107.14 (17)
O1—S1—C1106.67 (18)O6—S2—C15107.14 (17)
N1—S1—C1107.78 (19)N3—S2—C15108.30 (19)
C7—N1—S1121.8 (3)C21—N3—S2122.8 (3)
C7—N1—H1N115 (3)C21—N3—H3N121 (3)
S1—N1—H1N110 (3)S2—N3—H3N104 (3)
O3—N2—O4122.6 (5)O7—N4—O8123.2 (5)
O3—N2—C4118.8 (5)O7—N4—C18118.2 (5)
O4—N2—C4118.6 (5)O8—N4—C18118.6 (5)
C6—C1—C2120.9 (4)C20—C15—C16120.8 (4)
C6—C1—S1119.9 (3)C20—C15—S2119.6 (3)
C2—C1—S1119.2 (3)C16—C15—S2119.5 (3)
C3—C2—C1119.3 (4)C15—C16—C17119.9 (4)
C3—C2—H2120.3C15—C16—H16120.0
C1—C2—H2120.3C17—C16—H16120.0
C4—C3—C2118.5 (4)C18—C17—C16117.9 (4)
C4—C3—H3120.8C18—C17—H17121.0
C2—C3—H3120.8C16—C17—H17121.0
C5—C4—C3122.9 (4)C19—C18—C17122.9 (4)
C5—C4—N2118.6 (4)C19—C18—N4118.9 (4)
C3—C4—N2118.4 (5)C17—C18—N4118.2 (4)
C4—C5—C6118.9 (4)C18—C19—C20118.2 (4)
C4—C5—H5120.5C18—C19—H19120.9
C6—C5—H5120.5C20—C19—H19120.9
C1—C6—C5119.4 (4)C15—C20—C19120.2 (4)
C1—C6—H6120.3C15—C20—H20119.9
C5—C6—H6120.3C19—C20—H20119.9
C12—C7—C8120.6 (5)C22—C21—C26120.0 (5)
C12—C7—N1119.6 (5)C22—C21—N3120.2 (4)
C8—C7—N1119.7 (4)C26—C21—N3119.8 (4)
C7—C8—C9121.4 (5)C21—C22—C23120.5 (4)
C7—C8—H8119.3C21—C22—H22119.8
C9—C8—H8119.3C23—C22—H22119.8
C8—C9—C10117.1 (5)C24—C23—C22117.6 (4)
C8—C9—C13123.1 (5)C24—C23—C27121.3 (5)
C10—C9—C13119.8 (5)C22—C23—C27121.1 (4)
C11—C10—C9121.9 (5)C25—C24—C23123.4 (5)
C11—C10—H10119.0C25—C24—H24118.3
C9—C10—H10119.0C23—C24—H24118.3
C12—C11—C10119.1 (4)C24—C25—C26117.8 (5)
C12—C11—C14120.4 (5)C24—C25—C28121.8 (5)
C10—C11—C14120.5 (5)C26—C25—C28120.4 (4)
C7—C12—C11119.9 (5)C25—C26—C21120.8 (4)
C7—C12—H12120.1C25—C26—H26119.6
C11—C12—H12120.1C21—C26—H26119.6
C9—C13—H13A109.5C23—C27—H27A109.5
C9—C13—H13B109.5C23—C27—H27B109.5
H13A—C13—H13B109.5H27A—C27—H27B109.5
C9—C13—H13C109.5C23—C27—H27C109.5
H13A—C13—H13C109.5H27A—C27—H27C109.5
H13B—C13—H13C109.5H27B—C27—H27C109.5
C11—C14—H14A109.5C25—C28—H28A109.5
C11—C14—H14B109.5C25—C28—H28B109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
C11—C14—H14C109.5C25—C28—H28C109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
O2—S1—N1—C7178.5 (3)O5—S2—N3—C2144.9 (4)
O1—S1—N1—C748.1 (4)O6—S2—N3—C21175.1 (3)
C1—S1—N1—C766.7 (4)C15—S2—N3—C2170.6 (4)
O2—S1—C1—C6152.5 (3)O5—S2—C15—C20154.9 (3)
O1—S1—C1—C621.4 (4)O6—S2—C15—C2023.6 (4)
N1—S1—C1—C694.1 (3)N3—S2—C15—C2089.4 (3)
O2—S1—C1—C227.4 (4)O5—S2—C15—C1622.5 (4)
O1—S1—C1—C2158.5 (3)O6—S2—C15—C16153.7 (3)
N1—S1—C1—C285.9 (3)N3—S2—C15—C1693.2 (3)
C6—C1—C2—C30.9 (6)C20—C15—C16—C170.3 (6)
S1—C1—C2—C3179.2 (3)S2—C15—C16—C17177.1 (3)
C1—C2—C3—C40.7 (7)C15—C16—C17—C180.7 (7)
C2—C3—C4—C52.2 (7)C16—C17—C18—C191.1 (7)
C2—C3—C4—N2180.0 (4)C16—C17—C18—N4179.1 (4)
O3—N2—C4—C5176.4 (5)O7—N4—C18—C19177.1 (5)
O4—N2—C4—C54.7 (7)O8—N4—C18—C191.9 (6)
O3—N2—C4—C31.5 (7)O7—N4—C18—C174.9 (7)
O4—N2—C4—C3177.4 (5)O8—N4—C18—C17176.2 (5)
C3—C4—C5—C62.0 (7)C17—C18—C19—C201.1 (7)
N2—C4—C5—C6179.8 (4)N4—C18—C19—C20179.1 (4)
C2—C1—C6—C51.1 (6)C16—C15—C20—C190.3 (6)
S1—C1—C6—C5179.0 (3)S2—C15—C20—C19177.1 (3)
C4—C5—C6—C10.3 (6)C18—C19—C20—C150.7 (6)
S1—N1—C7—C1271.1 (5)S2—N3—C21—C2272.3 (5)
S1—N1—C7—C8112.5 (4)S2—N3—C21—C26109.8 (4)
C12—C7—C8—C90.2 (6)C26—C21—C22—C231.0 (6)
N1—C7—C8—C9176.6 (4)N3—C21—C22—C23176.9 (3)
C7—C8—C9—C101.2 (6)C21—C22—C23—C240.9 (5)
C7—C8—C9—C13178.9 (4)C21—C22—C23—C27179.5 (4)
C8—C9—C10—C110.4 (7)C22—C23—C24—C252.0 (6)
C13—C9—C10—C11179.6 (4)C27—C23—C24—C25178.4 (4)
C9—C10—C11—C121.6 (7)C23—C24—C25—C261.1 (7)
C9—C10—C11—C14179.0 (5)C23—C24—C25—C28179.7 (4)
C8—C7—C12—C112.3 (6)C24—C25—C26—C210.9 (6)
N1—C7—C12—C11178.7 (3)C28—C25—C26—C21178.3 (4)
C10—C11—C12—C73.0 (6)C22—C21—C26—C251.9 (6)
C14—C11—C12—C7179.7 (4)N3—C21—C26—C25176.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.85 (2)2.35 (2)3.129 (5)152 (3)
N3—H3N···O8ii0.84 (2)2.40 (2)3.168 (5)152 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formulaC14H14N2O4S
Mr306.33
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)14.708 (1), 7.9410 (7), 24.741 (2)
V3)2889.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.38 × 0.30 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.914, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
6693, 3714, 2624
Rint0.030
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.074, 1.00
No. of reflections3714
No. of parameters390
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.18
Absolute structureFlack (1983), 1005 Friedel pairs
Absolute structure parameter0.04 (8)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.849 (18)2.35 (2)3.129 (5)152 (3)
N3—H3N···O8ii0.843 (18)2.40 (2)3.168 (5)152 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1/2, y+5/2, z.
 

Acknowledgements

UC thanks Mangalore University for the award of a research fellowship. BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o2823.  CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds