organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[1,2-Phenyl­enebis(aza­nedi­yl)]di­aceto­nitrile

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 17 November 2012; accepted 19 November 2012; online 24 November 2012)

The title compound, C10H10N4, shows chemical but not crystallographic C2 symmetry. The two cyano­methyl groups are located in an anti position with respect to the aromatic ring. In the crystal, mol­ecules form parallel ladder-like tapes linked through two N—H⋯N hydrogen bonds. Further weak intra­molecular N—H⋯N hydrogen bonding is responsible for the elongation of one of the Caromatic—N bonds.

Related literature

For general background to the title compound, see: Rivera et al. (2010[Rivera, A., Maldonado, M., Ríos-Motta, J., Navarro, M. A. & González-Salas, D. (2010). Tetrahedron Lett. 51, 102-104.]). For related structures, see: Rivera et al. (2010[Rivera, A., Maldonado, M., Ríos-Motta, J., Navarro, M. A. & González-Salas, D. (2010). Tetrahedron Lett. 51, 102-104.], 2011[Rivera, A., Maldonado, M., Casas, J. L., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o990.]); Silversides et al. (2006[Silversides, J. D., Sparke, A. E. & Archibald, S. J. (2006). Acta Cryst. E62, o5944-o5946.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N4

  • Mr = 186.2

  • Orthorhombic, P b c a

  • a = 7.6404 (3) Å

  • b = 15.1703 (7) Å

  • c = 15.9168 (7) Å

  • V = 1844.87 (14) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 120 K

  • 0.17 × 0.15 × 0.10 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.68, Tmax = 1

  • 9893 measured reflections

  • 1641 independent reflections

  • 1359 reflections with I > 3σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.104

  • S = 1.55

  • 1641 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.935 (18) 2.202 (19) 3.0946 (19) 159.2 (16)
N2—H2⋯N1 0.889 (18) 2.427 (18) 2.7524 (18) 102.0 (13)
N2—H2⋯N1ii 0.889 (18) 2.494 (17) 3.2536 (16) 143.8 (15)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

The reaction of N1,N2-bis((1H-benzotriazol-1-yl)methyl)benzene-1,2-diamine with potassium cyanide in DMSO at room temperature gives the title compound in high yield. The two cyanomethyl groups are both anti with respect to the planar aromatic ring, no doubt in order to favour intermolecular N—H···N interactions. Intermolecular amine-to-amine and amine-to-cyano hydrogen bonding interactions established "ladder-like" parallel tapes in the crystalline solid (Fig. 2).

The molecular structure and atom numbering scheme for the title compound are shown in Fig. 1. Its X-ray structure confirms the presence of intramolecular hydrogen bond between the amino groups [N–H, 2.426 (18) Å]. Furthermore the observed C3—N1 bond length [1.4357 (17) Å] is considerably elongated in relation to related structures [1.404 (3) Å] (Rivera et al., 2010), [1.3961 (18) Å] (Silversides et al., 2006) and is longer than the C4—N2 bond [1.4016 (16) Å]. Thus, these results indicate that the intramolecular interaction is responsible for the C3—N1 bond elongation. This is confirmed by the N1—C7 bond length [1.4648 (18) Å] that is longer than N2—C5 bond [1.4457 (19) Å]. Besides, the hybridization of both N1 and N2 atoms are slightly different. In fact, N1 has more sp2 character [Sα = 347.25°] than N2 [Sα = 330.39°] if compared to sp3-hybridization [Sα = 328.50°] angle value. Other bond distances and bond angles are in good agreement with the standard values.

Related literature top

For general background to the title compound, see: Rivera et al. (2010). For related structures, see: Rivera et al. (2010, 2011); Silversides et al. (2006).

Experimental top

A mixture of potassium cyanide (0.260 g, 4.00 mmol) and N1,N2-bis((1H-benzotriazol-1-yl)methyl)benzene-1,2-diamine (0.370 g, 1.00 mmol) was stirred at room temperature in DMSO (5 ml) for 6 h. After quenching by addition of aqueous ammonium chloride a solid formed which was separated and extracted with ethyl acetate.The organic extract was sequentially washed with saturated Na2CO3 solution and water, then dried (Na2SO4), filtered, and concentrated to give a solid homogeneous by TLC (80% EtOAc/benzene) in 82% yield. Single crystals were obtained by recrystallization from chloroform/methanol by slow evaporation of the solvent at room temperaature, m.p. 399–400 K.

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry, but according to common practice H atoms bonded to C were kept in ideal positions with C–H = 0.96 Å. The coordinates of the amino H atoms were refined. Uiso(H) was set to 1.2Ueq(C,N). All non-hydrogen atoms were refined using harmonic refinement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of the crystal structure of the tittle compund (I) with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules of the title compound view along a axis. N—H···CN and N—H···N hydrogen bonds are drawn as dashed lines.
2,2'-[1,2-Phenylenebis(azanediyl)]diacetonitrile top
Crystal data top
C10H10N4Dx = 1.341 Mg m3
Mr = 186.2Melting point: 399 K
Orthorhombic, PbcaCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ac 2abCell parameters from 4237 reflections
a = 7.6404 (3) Åθ = 4.0–67.0°
b = 15.1703 (7) ŵ = 0.69 mm1
c = 15.9168 (7) ÅT = 120 K
V = 1844.87 (14) Å3Polygon shape, white
Z = 80.17 × 0.15 × 0.10 mm
F(000) = 784
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
1641 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1359 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.061
Detector resolution: 10.3784 pixels mm-1θmax = 67.2°, θmin = 5.6°
ω scansh = 79
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1818
Tmin = 0.68, Tmax = 1l = 1816
9893 measured reflections
Refinement top
Refinement on F234 constraints
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2)
S = 1.55(Δ/σ)max = 0.005
1641 reflectionsΔρmax = 0.16 e Å3
133 parametersΔρmin = 0.20 e Å3
0 restraints
Crystal data top
C10H10N4V = 1844.87 (14) Å3
Mr = 186.2Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 7.6404 (3) ŵ = 0.69 mm1
b = 15.1703 (7) ÅT = 120 K
c = 15.9168 (7) Å0.17 × 0.15 × 0.10 mm
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
1641 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1359 reflections with I > 3σ(I)
Tmin = 0.68, Tmax = 1Rint = 0.061
9893 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.55Δρmax = 0.16 e Å3
1641 reflectionsΔρmin = 0.20 e Å3
133 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.67776 (14)0.46314 (7)0.09105 (8)0.0197 (3)
N20.59009 (13)0.37473 (8)0.05397 (8)0.0182 (3)
N30.75959 (16)0.31452 (9)0.25065 (9)0.0316 (4)
N40.68740 (17)0.42625 (9)0.25896 (9)0.0314 (4)
C10.67383 (17)0.35295 (9)0.20428 (10)0.0228 (4)
C20.62292 (17)0.38628 (9)0.20642 (10)0.0227 (4)
C30.81190 (16)0.41747 (8)0.04529 (9)0.0179 (4)
C40.76583 (16)0.37282 (8)0.02878 (9)0.0176 (4)
C50.54231 (16)0.33892 (9)0.13496 (9)0.0200 (4)
C60.89448 (16)0.32671 (9)0.07229 (10)0.0203 (4)
C70.57084 (17)0.40361 (9)0.14220 (10)0.0215 (4)
C81.11225 (17)0.37219 (9)0.02841 (11)0.0248 (4)
C90.98466 (17)0.41713 (9)0.07282 (10)0.0224 (4)
C101.06689 (17)0.32645 (10)0.04320 (10)0.0238 (4)
H1c50.4172650.3397190.1408230.024*
H2c50.574310.2777780.1372920.024*
H1c60.8646390.2949790.1224650.0244*
H1c70.5087880.3636090.1061880.0258*
H2c70.4819850.4368620.170730.0258*
H1c81.231540.3728560.0473410.0298*
H1c91.0156810.448370.1231170.0268*
H1c101.1547160.2941050.0733690.0286*
H10.732 (2)0.5050 (12)0.1255 (12)0.0237*
H20.536 (2)0.4245 (12)0.0403 (12)0.0219*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0140 (5)0.0231 (6)0.0221 (7)0.0001 (4)0.0013 (5)0.0013 (5)
N20.0087 (5)0.0257 (6)0.0202 (7)0.0023 (4)0.0000 (5)0.0013 (5)
N30.0229 (6)0.0399 (7)0.0319 (8)0.0047 (6)0.0020 (6)0.0091 (6)
N40.0267 (6)0.0389 (7)0.0287 (8)0.0053 (6)0.0054 (6)0.0065 (6)
C10.0167 (7)0.0287 (7)0.0231 (8)0.0035 (6)0.0041 (6)0.0004 (6)
C20.0154 (6)0.0286 (7)0.0241 (9)0.0052 (6)0.0007 (6)0.0013 (6)
C30.0117 (6)0.0210 (6)0.0210 (8)0.0002 (5)0.0014 (5)0.0041 (5)
C40.0101 (6)0.0217 (6)0.0211 (8)0.0006 (5)0.0001 (5)0.0045 (5)
C50.0124 (6)0.0268 (7)0.0208 (8)0.0011 (5)0.0006 (6)0.0008 (5)
C60.0131 (6)0.0249 (7)0.0229 (8)0.0011 (5)0.0019 (6)0.0012 (6)
C70.0137 (6)0.0285 (7)0.0223 (8)0.0013 (5)0.0007 (6)0.0007 (6)
C80.0094 (6)0.0300 (7)0.0350 (9)0.0019 (5)0.0030 (6)0.0081 (6)
C90.0153 (6)0.0262 (7)0.0256 (9)0.0038 (5)0.0042 (6)0.0051 (6)
C100.0107 (6)0.0284 (7)0.0324 (9)0.0028 (5)0.0043 (6)0.0064 (6)
Geometric parameters (Å, º) top
N1—C31.4357 (17)C4—C61.3911 (19)
N1—C71.4648 (18)C5—H1c50.96
N1—H10.935 (18)C5—H2c50.96
N2—C41.4016 (16)C6—C101.3963 (18)
N2—C51.4457 (19)C6—H1c60.96
N2—H20.889 (18)C7—H1c70.96
N3—C11.146 (2)C7—H2c70.96
N4—C21.144 (2)C8—C91.384 (2)
C1—C71.479 (2)C8—C101.379 (2)
C2—C51.480 (2)C8—H1c80.96
C3—C41.404 (2)C9—H1c90.96
C3—C91.3908 (18)C10—H1c100.96
C3—N1—C7112.49 (10)H1c5—C5—H2c5105.18
C3—N1—H1108.1 (10)C4—C6—C10120.20 (14)
C7—N1—H1109.8 (11)C4—C6—H1c6119.9
C4—N2—C5119.29 (11)C10—C6—H1c6119.9
C4—N2—H2113.2 (11)N1—C7—C1113.27 (11)
C5—N2—H2114.8 (12)N1—C7—H1c7109.47
N3—C1—C7177.27 (15)N1—C7—H2c7109.47
N4—C2—C5176.55 (16)C1—C7—H1c7109.47
N1—C3—C4118.67 (11)C1—C7—H2c7109.47
N1—C3—C9121.29 (13)H1c7—C7—H2c7105.38
C4—C3—C9120.04 (12)C9—C8—C10119.55 (13)
N2—C4—C3118.05 (12)C9—C8—H1c8120.22
N2—C4—C6123.02 (13)C10—C8—H1c8120.22
C3—C4—C6118.90 (12)C3—C9—C8120.63 (14)
N2—C5—C2113.45 (11)C3—C9—H1c9119.69
N2—C5—H1c5109.47C8—C9—H1c9119.69
N2—C5—H2c5109.47C6—C10—C8120.65 (13)
C2—C5—H1c5109.47C6—C10—H1c10119.67
C2—C5—H2c5109.47C8—C10—H1c10119.67
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.935 (18)2.202 (19)3.0946 (19)159.2 (16)
N2—H2···N10.889 (18)2.427 (18)2.7524 (18)102.0 (13)
N2—H2···N1ii0.889 (18)2.494 (17)3.2536 (16)143.8 (15)
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H10N4
Mr186.2
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)7.6404 (3), 15.1703 (7), 15.9168 (7)
V3)1844.87 (14)
Z8
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)0.17 × 0.15 × 0.10
Data collection
DiffractometerAgilent Xcalibur (Atlas, Gemini ultra)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.68, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
9893, 1641, 1359
Rint0.061
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.55
No. of reflections1641
No. of parameters133
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: CrysAlis PRO (Agilent, 2012), SUPERFLIP (Palatinus & Chapuis, 2007), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.935 (18)2.202 (19)3.0946 (19)159.2 (16)
N2—H2···N10.889 (18)2.427 (18)2.7524 (18)102.0 (13)
N2—H2···N1ii0.889 (18)2.494 (17)3.2536 (16)143.8 (15)
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1, y+1, z.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well the Praemium Academiae project of the Academy of Sciences of the Czech Republic. LJ—C acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRivera, A., Maldonado, M., Casas, J. L., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o990.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Maldonado, M., Ríos-Motta, J., Navarro, M. A. & González-Salas, D. (2010). Tetrahedron Lett. 51, 102–104.  Web of Science CSD CrossRef CAS Google Scholar
First citationSilversides, J. D., Sparke, A. E. & Archibald, S. J. (2006). Acta Cryst. E62, o5944–o5946.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds