organic compounds
2,2′-[1,2-Phenylenebis(azanediyl)]diacetonitrile
aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co
The title compound, C10H10N4, shows chemical but not crystallographic C2 symmetry. The two cyanomethyl groups are located in an anti position with respect to the aromatic ring. In the crystal, molecules form parallel ladder-like tapes linked through two N—H⋯N hydrogen bonds. Further weak intramolecular N—H⋯N hydrogen bonding is responsible for the elongation of one of the Caromatic—N bonds.
Related literature
For general background to the title compound, see: Rivera et al. (2010). For related structures, see: Rivera et al. (2010, 2011); Silversides et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.
Supporting information
10.1107/S1600536812047538/bt6866sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812047538/bt6866Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812047538/bt6866Isup3.cml
A mixture of potassium cyanide (0.260 g, 4.00 mmol) and N1,N2-bis((1H-benzotriazol-1-yl)methyl)benzene-1,2-diamine (0.370 g, 1.00 mmol) was stirred at room temperature in DMSO (5 ml) for 6 h. After quenching by addition of aqueous ammonium chloride a solid formed which was separated and extracted with ethyl acetate.The organic extract was sequentially washed with saturated Na2CO3 solution and water, then dried (Na2SO4), filtered, and concentrated to give a solid homogeneous by TLC (80% EtOAc/benzene) in 82% yield. Single crystals were obtained by recrystallization from chloroform/methanol by slow evaporation of the solvent at room temperaature, m.p. 399–400 K.
All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry, but according to common practice H atoms bonded to C were kept in ideal positions with C–H = 0.96 Å. The coordinates of the amino H atoms were refined. Uiso(H) was set to 1.2Ueq(C,N). All non-hydrogen atoms were refined using harmonic refinement.
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).C10H10N4 | Dx = 1.341 Mg m−3 |
Mr = 186.2 | Melting point: 399 K |
Orthorhombic, Pbca | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 4237 reflections |
a = 7.6404 (3) Å | θ = 4.0–67.0° |
b = 15.1703 (7) Å | µ = 0.69 mm−1 |
c = 15.9168 (7) Å | T = 120 K |
V = 1844.87 (14) Å3 | Polygon shape, white |
Z = 8 | 0.17 × 0.15 × 0.10 mm |
F(000) = 784 |
Agilent Xcalibur (Atlas, Gemini ultra) diffractometer | 1641 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 1359 reflections with I > 3σ(I) |
Mirror monochromator | Rint = 0.061 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 67.2°, θmin = 5.6° |
ω scans | h = −7→9 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −18→18 |
Tmin = 0.68, Tmax = 1 | l = −18→16 |
9893 measured reflections |
Refinement on F2 | 34 constraints |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.104 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2) |
S = 1.55 | (Δ/σ)max = 0.005 |
1641 reflections | Δρmax = 0.16 e Å−3 |
133 parameters | Δρmin = −0.20 e Å−3 |
0 restraints |
C10H10N4 | V = 1844.87 (14) Å3 |
Mr = 186.2 | Z = 8 |
Orthorhombic, Pbca | Cu Kα radiation |
a = 7.6404 (3) Å | µ = 0.69 mm−1 |
b = 15.1703 (7) Å | T = 120 K |
c = 15.9168 (7) Å | 0.17 × 0.15 × 0.10 mm |
Agilent Xcalibur (Atlas, Gemini ultra) diffractometer | 1641 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 1359 reflections with I > 3σ(I) |
Tmin = 0.68, Tmax = 1 | Rint = 0.061 |
9893 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.104 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.55 | Δρmax = 0.16 e Å−3 |
1641 reflections | Δρmin = −0.20 e Å−3 |
133 parameters |
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement. The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.67776 (14) | 0.46314 (7) | 0.09105 (8) | 0.0197 (3) | |
N2 | 0.59009 (13) | 0.37473 (8) | −0.05397 (8) | 0.0182 (3) | |
N3 | 0.75959 (16) | 0.31452 (9) | 0.25065 (9) | 0.0316 (4) | |
N4 | 0.68740 (17) | 0.42625 (9) | −0.25896 (9) | 0.0314 (4) | |
C1 | 0.67383 (17) | 0.35295 (9) | 0.20428 (10) | 0.0228 (4) | |
C2 | 0.62292 (17) | 0.38628 (9) | −0.20642 (10) | 0.0227 (4) | |
C3 | 0.81190 (16) | 0.41747 (8) | 0.04529 (9) | 0.0179 (4) | |
C4 | 0.76583 (16) | 0.37282 (8) | −0.02878 (9) | 0.0176 (4) | |
C5 | 0.54231 (16) | 0.33892 (9) | −0.13496 (9) | 0.0200 (4) | |
C6 | 0.89448 (16) | 0.32671 (9) | −0.07229 (10) | 0.0203 (4) | |
C7 | 0.57084 (17) | 0.40361 (9) | 0.14220 (10) | 0.0215 (4) | |
C8 | 1.11225 (17) | 0.37219 (9) | 0.02841 (11) | 0.0248 (4) | |
C9 | 0.98466 (17) | 0.41713 (9) | 0.07282 (10) | 0.0224 (4) | |
C10 | 1.06689 (17) | 0.32645 (10) | −0.04320 (10) | 0.0238 (4) | |
H1c5 | 0.417265 | 0.339719 | −0.140823 | 0.024* | |
H2c5 | 0.57431 | 0.277778 | −0.137292 | 0.024* | |
H1c6 | 0.864639 | 0.294979 | −0.122465 | 0.0244* | |
H1c7 | 0.508788 | 0.363609 | 0.106188 | 0.0258* | |
H2c7 | 0.481985 | 0.436862 | 0.17073 | 0.0258* | |
H1c8 | 1.23154 | 0.372856 | 0.047341 | 0.0298* | |
H1c9 | 1.015681 | 0.44837 | 0.123117 | 0.0268* | |
H1c10 | 1.154716 | 0.294105 | −0.073369 | 0.0286* | |
H1 | 0.732 (2) | 0.5050 (12) | 0.1255 (12) | 0.0237* | |
H2 | 0.536 (2) | 0.4245 (12) | −0.0403 (12) | 0.0219* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0140 (5) | 0.0231 (6) | 0.0221 (7) | 0.0001 (4) | −0.0013 (5) | −0.0013 (5) |
N2 | 0.0087 (5) | 0.0257 (6) | 0.0202 (7) | 0.0023 (4) | 0.0000 (5) | −0.0013 (5) |
N3 | 0.0229 (6) | 0.0399 (7) | 0.0319 (8) | −0.0047 (6) | −0.0020 (6) | 0.0091 (6) |
N4 | 0.0267 (6) | 0.0389 (7) | 0.0287 (8) | 0.0053 (6) | 0.0054 (6) | 0.0065 (6) |
C1 | 0.0167 (7) | 0.0287 (7) | 0.0231 (8) | −0.0035 (6) | 0.0041 (6) | −0.0004 (6) |
C2 | 0.0154 (6) | 0.0286 (7) | 0.0241 (9) | 0.0052 (6) | −0.0007 (6) | −0.0013 (6) |
C3 | 0.0117 (6) | 0.0210 (6) | 0.0210 (8) | −0.0002 (5) | 0.0014 (5) | 0.0041 (5) |
C4 | 0.0101 (6) | 0.0217 (6) | 0.0211 (8) | −0.0006 (5) | 0.0001 (5) | 0.0045 (5) |
C5 | 0.0124 (6) | 0.0268 (7) | 0.0208 (8) | −0.0011 (5) | −0.0006 (6) | 0.0008 (5) |
C6 | 0.0131 (6) | 0.0249 (7) | 0.0229 (8) | 0.0011 (5) | 0.0019 (6) | 0.0012 (6) |
C7 | 0.0137 (6) | 0.0285 (7) | 0.0223 (8) | 0.0013 (5) | 0.0007 (6) | −0.0007 (6) |
C8 | 0.0094 (6) | 0.0300 (7) | 0.0350 (9) | −0.0019 (5) | −0.0030 (6) | 0.0081 (6) |
C9 | 0.0153 (6) | 0.0262 (7) | 0.0256 (9) | −0.0038 (5) | −0.0042 (6) | 0.0051 (6) |
C10 | 0.0107 (6) | 0.0284 (7) | 0.0324 (9) | 0.0028 (5) | 0.0043 (6) | 0.0064 (6) |
N1—C3 | 1.4357 (17) | C4—C6 | 1.3911 (19) |
N1—C7 | 1.4648 (18) | C5—H1c5 | 0.96 |
N1—H1 | 0.935 (18) | C5—H2c5 | 0.96 |
N2—C4 | 1.4016 (16) | C6—C10 | 1.3963 (18) |
N2—C5 | 1.4457 (19) | C6—H1c6 | 0.96 |
N2—H2 | 0.889 (18) | C7—H1c7 | 0.96 |
N3—C1 | 1.146 (2) | C7—H2c7 | 0.96 |
N4—C2 | 1.144 (2) | C8—C9 | 1.384 (2) |
C1—C7 | 1.479 (2) | C8—C10 | 1.379 (2) |
C2—C5 | 1.480 (2) | C8—H1c8 | 0.96 |
C3—C4 | 1.404 (2) | C9—H1c9 | 0.96 |
C3—C9 | 1.3908 (18) | C10—H1c10 | 0.96 |
C3—N1—C7 | 112.49 (10) | H1c5—C5—H2c5 | 105.18 |
C3—N1—H1 | 108.1 (10) | C4—C6—C10 | 120.20 (14) |
C7—N1—H1 | 109.8 (11) | C4—C6—H1c6 | 119.9 |
C4—N2—C5 | 119.29 (11) | C10—C6—H1c6 | 119.9 |
C4—N2—H2 | 113.2 (11) | N1—C7—C1 | 113.27 (11) |
C5—N2—H2 | 114.8 (12) | N1—C7—H1c7 | 109.47 |
N3—C1—C7 | 177.27 (15) | N1—C7—H2c7 | 109.47 |
N4—C2—C5 | 176.55 (16) | C1—C7—H1c7 | 109.47 |
N1—C3—C4 | 118.67 (11) | C1—C7—H2c7 | 109.47 |
N1—C3—C9 | 121.29 (13) | H1c7—C7—H2c7 | 105.38 |
C4—C3—C9 | 120.04 (12) | C9—C8—C10 | 119.55 (13) |
N2—C4—C3 | 118.05 (12) | C9—C8—H1c8 | 120.22 |
N2—C4—C6 | 123.02 (13) | C10—C8—H1c8 | 120.22 |
C3—C4—C6 | 118.90 (12) | C3—C9—C8 | 120.63 (14) |
N2—C5—C2 | 113.45 (11) | C3—C9—H1c9 | 119.69 |
N2—C5—H1c5 | 109.47 | C8—C9—H1c9 | 119.69 |
N2—C5—H2c5 | 109.47 | C6—C10—C8 | 120.65 (13) |
C2—C5—H1c5 | 109.47 | C6—C10—H1c10 | 119.67 |
C2—C5—H2c5 | 109.47 | C8—C10—H1c10 | 119.67 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N4i | 0.935 (18) | 2.202 (19) | 3.0946 (19) | 159.2 (16) |
N2—H2···N1 | 0.889 (18) | 2.427 (18) | 2.7524 (18) | 102.0 (13) |
N2—H2···N1ii | 0.889 (18) | 2.494 (17) | 3.2536 (16) | 143.8 (15) |
Symmetry codes: (i) −x+3/2, −y+1, z+1/2; (ii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C10H10N4 |
Mr | 186.2 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 120 |
a, b, c (Å) | 7.6404 (3), 15.1703 (7), 15.9168 (7) |
V (Å3) | 1844.87 (14) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 0.69 |
Crystal size (mm) | 0.17 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Agilent Xcalibur (Atlas, Gemini ultra) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.68, 1 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 9893, 1641, 1359 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.598 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.104, 1.55 |
No. of reflections | 1641 |
No. of parameters | 133 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.16, −0.20 |
Computer programs: CrysAlis PRO (Agilent, 2012), SUPERFLIP (Palatinus & Chapuis, 2007), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N4i | 0.935 (18) | 2.202 (19) | 3.0946 (19) | 159.2 (16) |
N2—H2···N1 | 0.889 (18) | 2.427 (18) | 2.7524 (18) | 102.0 (13) |
N2—H2···N1ii | 0.889 (18) | 2.494 (17) | 3.2536 (16) | 143.8 (15) |
Symmetry codes: (i) −x+3/2, −y+1, z+1/2; (ii) −x+1, −y+1, −z. |
Acknowledgements
We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work, as well the Praemium Academiae project of the Academy of Sciences of the Czech Republic. LJ—C acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Petříček, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic. Google Scholar
Rivera, A., Maldonado, M., Casas, J. L., Dušek, M. & Fejfarová, K. (2011). Acta Cryst. E67, o990. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rivera, A., Maldonado, M., Ríos-Motta, J., Navarro, M. A. & González-Salas, D. (2010). Tetrahedron Lett. 51, 102–104. Web of Science CSD CrossRef CAS Google Scholar
Silversides, J. D., Sparke, A. E. & Archibald, S. J. (2006). Acta Cryst. E62, o5944–o5946. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The reaction of N1,N2-bis((1H-benzotriazol-1-yl)methyl)benzene-1,2-diamine with potassium cyanide in DMSO at room temperature gives the title compound in high yield. The two cyanomethyl groups are both anti with respect to the planar aromatic ring, no doubt in order to favour intermolecular N—H···N interactions. Intermolecular amine-to-amine and amine-to-cyano hydrogen bonding interactions established "ladder-like" parallel tapes in the crystalline solid (Fig. 2).
The molecular structure and atom numbering scheme for the title compound are shown in Fig. 1. Its X-ray structure confirms the presence of intramolecular hydrogen bond between the amino groups [N–H, 2.426 (18) Å]. Furthermore the observed C3—N1 bond length [1.4357 (17) Å] is considerably elongated in relation to related structures [1.404 (3) Å] (Rivera et al., 2010), [1.3961 (18) Å] (Silversides et al., 2006) and is longer than the C4—N2 bond [1.4016 (16) Å]. Thus, these results indicate that the intramolecular interaction is responsible for the C3—N1 bond elongation. This is confirmed by the N1—C7 bond length [1.4648 (18) Å] that is longer than N2—C5 bond [1.4457 (19) Å]. Besides, the hybridization of both N1 and N2 atoms are slightly different. In fact, N1 has more sp2 character [Sα = 347.25°] than N2 [Sα = 330.39°] if compared to sp3-hybridization [Sα = 328.50°] angle value. Other bond distances and bond angles are in good agreement with the standard values.